AASHTOWare BrD 6.8 Substructure Tutorial Solid Shaft Pier Example

CL Brgs Abut 1 120'-0"	Fix Fix CL Pier 120'-0' 240'-0"	CL Brgs Abut 2						
Span Arrangement								

Pier Elevation Looking Sta Ahead

Pier Side View

Pier Reinforcement

Footing Plan View

BrD Substructure Training

Pier 1 – Solid Shaft Pier Example

This example describes the entry and analysis of a reinforced concrete solid shaft pier in BrD Substructure. In this example, a two span continuous steel superstructure is supported by a solid shaft pier.

Example features:

- Two span continuous steel superstructure
- Reinforced concrete, solid shaft pier on a pile footing
- Pier skew 0 degrees
- Specification checking of reinforcement

This example uses many default settings and loadings in BrD Substructure instead of overriding these values with user defined input. For example, the Environmental Conditions window contains default wind and temperature settings from the AASHTO specifications. Users have the ability to override these values but this example uses the default values and thus that window is not shown in this example. Another feature users have in the program is to override the computed loads on the pier with user defined loads. This example uses the computed loads and does not override any of them.

Note: It is assumed that users are familiar with the BrD Superstructure module and as such this example does not go into detail describing BrD Superstructure windows or bridge workspace navigation.

BrD Substructure Capabilities

The BrD Substructure module currently has the capability to describe the pier gross geometry, compute loads acting on the pier, perform a finite element analysis of the pier, compute the load combination results and perform specification checks for the reinforcement. Four types of reinforced concrete pier alternatives can be described: solid shaft (hammerhead) piers, frame piers, wall piers and pile bent piers.

A three-dimensional schematic is available where you can view a to-scale drawing of your pier alternative. BrD can compute the loads acting on the pier for you or you can enter your own override forces. Superstructure dead load and live load reactions are computed for you based on the superstructure definition assigned to the superstructure supported by the pier. BrD generates a three-dimensional finite element model of the pier based on modeling parameters you input. A finite element analysis of the pier is performed and load combination results are generated based on the limit states you choose to include. The analysis results can be viewed in a text output and also be viewed on the three-dimensional schematic of the pier. Detailed specification check results can be viewed and summary reports of the specification results can be generated.

Locating Substructure Units

In BrD, substructures are defined relative to bridge alternatives and the superstructures in a bridge alternative. Through this arrangement, loads from the superstructure can be carried down to the substructures.

Our example has the following bridge layout:

We are going to describe this bridge alternative and pier in BrD Substructure by adding a bridge alternative to the bridge with BID 23 in our sample database. Open the bridge workspace for BID 23. As shown below, this bridge already contains a superstructure definition and a bridge alternative. We are going to re-use this superstructure definition and create a new bridge alternative and a new pier in this example.

We are going to jump down to the Bridge Alternatives section and create a new bridge alternative. Double click the "BRIDGE ALTERNATIVES" label and enter the following information.

A Bridge Alternative		
Alternative Name: Training Alt		
Description Substructures		
Description:		*
Horizontal curvature	_ Glo	bbal Positioning
Reference Line Length = 240.00 ft		Distance = ft
💿 Start bearing 🛛 🔘 End bearing		Offset = ft
Starting Station = 0.00 ft		Elevation = ft
Bearing = N 90^ 0' 0.00'' E		
Bridge Alignment © Curved	Start tangent length:	ft
 Tangent, curved, tangent 	Curve length:	ft
Tangent, curved Curved tangent	Radius:	ft
	Direction:	Left 💌
	End tangent length:	ft
Superstructure Wizard		
		OK Apply Cancel

The data on this tab orients the bridge alternative reference line. Our substructure units will be located with respect to this bridge alternative reference line. Our bridge alternative is 240 feet long and the starting station is 0+00.

Click the 'Superstructure Wizard' button to have BrD create our Superstructure and Pier for us.

Click the 'Generate ..' buttons to have the wizard generate Superstructure names for us and then click the 'Finish' button.

Superstructure Wizard	×
This wizard allows you to create Superstructures, Superstructure Alternatives and assign Superstructure Definitions to the new alternatives. The wizard will also create Piers if you are running BrD Substructure. Piers can only be created if the Bridge Alternative does not contain a horizontal curve.	
Number of superstructures 1	
Prefix to Use When Generating Names	-
Superstructure prefix: Superstructure % Generate Superstructure Names	
Superstructure Alternative prefix: Superstructure Alt % Generate Superstructure Alternative Names	
Superstructure Distance Superstructure Superstructure Name (ft) Name Definition	
Superstructure1 Superstructure Alt 1 Superstructure 1	
Substructure Units	
First unit type: Abutment	
Last unit type: Abutment	
Finish Cancel Help	

Click 'OK' on the Bridge Alternative window and the Bridge Workspace tree appears as follows.

Open the Pier window and enter the following data.

Pier Skew Angle Input skew angle Input bearing angle	Description:	A
Finished groundline elevation = 5.50 ft Soil density = 0.12 kcf Superstructure Longitudinal Direction Consider as fixed © Consider as expansion	Superstructure defined in BrDR	
Pier Location Relative to Bridge Alternative Station = 120.000 ft	Offset = -0.000 ft	
Computed Pier Location Relative to Superstructure Station = 120.000 ft Offset = -0.000 ft	Computed Pier Coordinates $X = \begin{bmatrix} 120.000 \\ ft \end{bmatrix}$ $Y = \begin{bmatrix} 0.000 \\ ft \end{bmatrix}$	
Existing Current Pier Alternative Name Description		

This pier is not subject to stream flow so we do not have to enter anything on the Stream Flow tab. Click OK to close the window.

Pier Alternatives

We are now ready to create our solid shaft pier alternative. Double click the PIER ALTERNATIVES label and the following New Pier Alternative Wizard will open.

New Pier Alternative Wizard
Frame Pier Solid Shaft Pier Wall Pier Pier
< Back Next > Cancel Help

Select the solid shaft pier and click Next.

Enter a name for the pier alternative and click Finish to close the wizard and create the new pier alternative.

New Pier Alternative Wizard		—
Туре:	RC SolidShaft Pier	
Name: Description:	Hammerhead	
Units:	US Customary	
	< Back Finish Cancel	Help

The Pier Alternative window will automatically open.

🗛 Pier Alterna	ative - Hammerhead
Name:	Hammerhead Type: RC SolidShaft Pier
Description	Stiffness Reports
Descript	ion: Units: US Customary Customary Customary Mode Customary Mode Customary Mode Customary Design Settings: Preliminary Design Setting: Preliminary Design Setting: Override default Customary Customary Customary Customary Customary Setting: Inal Design Setting: Inal Design Setting: Customary Customary Setting: Customary Customary Setting: Customary Customary Setting: Customary Customary Setting: Customary Setti

Click the Ok button to close this window. Do **not** click the Cancel button as that will cause the creation of the new pier alternative to be canceled.

The bridge workspace under Pier Alternative is shown below.

Pier Geometry

We can now start entering the geometry of our pier. Open the following Geometry window.

This window allows you to define some basic pier geometry. The following items should be noted about the geometry windows in BrD Substructure:

- The window is **not** drawn to scale.
- Only the values in blue font can be edited.
- If a pier component, such as the cap or column, does not have any geometry defined yet, that component is drawn with a dashed red line.
- A right click menu is available for each pier component, such as the cap or a column, which you can use to navigate to the component or geometry window for that component.

In this window, the location of the pier beneath the superstructure is set in this window by entering the distance from the superstructure reference line to the left end of the cap or wall. This is a very important dimension to input correctly since a bad value could result in your girders not being supported by the pier. Enter the following data and click the OK button.

Open the Cap window and enter the following data.

💊 Cap Prope	erties - Pier 1 - H	lammerhead				
Description	Additional Load	ds				
Сар Туре:	Beam Shape Ca	ap Cap Top Configurat	ion: Sloped		Cap Mat	erial: Class A (US) 🔹
📝 Pedesta	als	Exposure factor: 1.	000			
Member	CL Bearing Station (ft)	Angle Between CL Member and CL Support (Degrees)	Bearing Seat Elevation (ft)	Pedestal Width (ft)	Pedestal Length (ft)	
G1	120.00	90.00	30.50	2.00	2.50	
G2	120.00	90.00	30.50	2.00	2.50	
G3	120.00	90.00	30.50	2.00	2.50	
G4	120.00	90.00	30.50	2.00	2.50	
G5	120.00	90.00	30.50	2.00	2.50	
,						
				ОК		Apply Cancel

The loads from the superstructure will be applied at the bearing seat elevation specified on this tab.

The Additional Loads tab allows you to define additional, user defined loads on the cap. Our example does not contain any additional loads on the cap. Click the OK button to close the window and save the data to memory.

Expand the bridge workspace tree under the Cap label and open the Components window. Select the following type of cap cantilever component for both the left and right cantilevers.

🕰 Cap Components - Pier 1 - Hammerhead	- • •
Cap type: Beam Inverted Tee Beam Cap Left Cantilever Cap Right Cantilever	
Straight Cantilever Sloped Cantilever	
ОК Арріу	Cancel

Click OK to close the window.

Open the Reinforcement window and enter the following data.

🕰 Cap	Reinfo	orcemer	nt -	Pier 1 - Ha	ammerhe	ad									
Flex	ural S ongitud Bar sizi	hear linal Skin e: 8		• в	ar spacing	: 8.000	in	Bar mate	rial: Grad	de 60	•]	Stirrup de	ear cover:	2.5000 in
F	Primary Flexural Reinforcement Input Method Image: Simplified Image: Advanced														
	Set	Measu From C	ire Cap	Vertical Distance (in)	Bar Size	Number	Material	Start Distance (ft)	Straight Length (ft)	End Distance (ft)	Hook at Start	Hook at End	Developed at Start	Developed at End	
	1	Тор	•	3.830	11 💌	10.000	Grade 60 💌	0.500	45.500	46.000	V	V			
	2	Тор	•	8.240	11 💌	10.000	Grade 60 💌	0.500	45.500	46.000	V	V			
	3	Bottom	•	3.625	8 💌	5.000	Grade 60 💌	0.500	45.500	46.000					
	New Duplicate Delete														
												0	OK	Apply	Cancel

Cap Reinforcement - Pier 1 - Hammerhead																
lexu	ural	Sh	ear				_	Start				End				_
В	ar Si	ze	Number of Legs	Material	Measure From	Direc	tion	Distance (ft)	of Spaces	Spacing (in)	Length (ft)	Distance (ft)				
5		•	4.000	Grade 60 💌	Left Edge of 💌	Right	-	0.375	1	0.000	0.000	0.375				
5		•	4.000	Grade 60 💌	Left Edge of 💌	Right	-	0.375	61	9.000	45.750	46.125				
<u> </u>										_						_
										D	up & Mirr	or	New	Duplicate	Delete	
-		_												_		
													OK		ly Car	ncel

Open the Column window, enter the Exposure Factor and click OK to close the window.

🕰 Column Properties - Pier 1 - Hammerhead	- • ×
Name: Column1	
Description Additional Loads	
Existing Current Foundation Alternative Name Description	
Exposure Factor: 1.000	
ОК Аррју	Cancel

The Column Components window is shown below. This window allows you to specify the cross-section segments in the column. Segment cross-sections can vary linearly over their height. In our example, the cross-section is constant over its height.

🗛 Column	Components -	- Pier 1 - Hamme	rhead - Column1		- • •
Number of	cross-section se	gments for column:			
Segment	Material Class A	Segment Vary	Cross-Section Type]	Segment 1
	(US)	None	Round		Segment 2
					*
				ОК	Apply Cancel

BrD sets the default column cross section type as circular when a column is created. Our example has a rectangular column cross section so change the cross section type to rectangular as shown and click OK.

•	Column	Components -	Pier 1 - Hammer	rhead - Column1		
	Number of	cross-section se	gments for column:	1		
	Segment	Material Class A	Segment Vary	Cross-Section Type	_	
	1	(US)	None	Rectangular	*	∐ ∐ Segment 2
					ОК	Apply Cancel

Open the Column Geometry window and enter the following column geometry data.

Click OK to close the window.

Double-click the Reinforcement Definitions label to create a new reinforcement definition for the column. The reinforcement definition will later be assigned to ranges over the height of the column.

Click the Generate Pattern button to open the following wizard to create a pattern for the column flexural reinforcement.

The clear cover is cover to the face of the flexural reinforcement. In this case the cover to the face of the ties is 2.5" and the tie is a #4 bar so the clear cover is 3.0".

Generate Pattern Wizard				—X —
Pattern name: Column segment:	76#10Bars	Bundle Type Single 2 Parallel	Bar size: Material:	3 •
Segment cross section:	Bertangular	 2 Perpendicular 3 Bar 	Clear cover:	3.0000 in
Top/Bottom:		Transverse	number of bars:	8
Overall trans width:	54.0000 in	Longitudinal	I number of bars:	32
Overall long width:	186.0000 in			Apply Cancel

Clicking the Apply button will create the following pattern.

Now open the Column Reinforcement window and assign this pattern as follows. The negative start distance is used because the rebars extend into the footing.

Column Reinforcement - Column1 - Pier1 - Hammerhead										
Flexural	Shear									
Set	Start Distance (ft)	Straight Length (ft)	End Distance (ft)	Pattern		Hook at Start	Hook at End	Developed at Start	Developed at End	Follows Profile
1	-3.000	25.000	22.000	76#10Bars	•	V			V	

Enter the following shear reinforcement. The ties extend into the footing and cap as they would be detailed on the design drawings but BrD will not consider the shear reinforcement in the footing or cap when performing specification checks.

"	Column Reinforcement - Column1 - Pier1 - Hammerhead											
	Flexural Shear											
	Shear Reinforcement Type © Ties © Spirals © Spirals designed as ties											
		Bar Size	Trans. Number of Legs	Long. Number of Legs	Material	Start Distance (ft)	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)		r
L	4	-	2.00	2.00	Grade 60 💌	-1.500	1	0.0000	0.000	-1.500		
	4	-	2.00	2.00	Grade 60 💌	-1.500	18	12.0000	18.000	16.500]	
	New Duplicate Delete											
								C	OK		Apply Can	cel

Click 'OK' to save this data. You will get a warning message that the flexural reinforcement is not located inside the footing and that the shear reinforcement extends below the column. This message is issued because the rebar is defined as extending into the footing but the footing dimensions have not been entered yet. Click 'Yes' to save the reinforcement data.

Double click the FOUNDATION ALTERNATIVES label and the New Foundation Alternatives wizard will open. Select the Pile Footing option. Click Next.

New Foundation Alternative Wizard	
Spread Footing	
L	
< Back	Next > Cancel Help

Enter the following description of the foundation.

New Foundation Alternative Wizard					—
Туре:	Pile Foundation				
Name:	Pile Footing				
Description:					
Units:	US Customary	-			
Footing width:	12.00 ft		Footing thickness:	3.50	ft
Footing length:	23.00 ft				
Footing material:	Class A (US)	•			
Piles	[
Pile material:	Steel Pile	_			
Pile type:	Rolled H Shape	•			_
Pile pattem:	5 Across		Pile edge distance:	1.50	ft
	4 🕞 Down		Steel shape:	HP 14x89	•
Pile embedment depth:	1.00 ft		Steel material:	Grade 50	•
Bottom of pile elevation:	-10.00 ft		Factored comp. resistance:	340.00	kip
Point of fixity elevation:	-5.00 ft		Factored tension resistance:		kip
			< Back Finish	Cancel	Help

Click Finish and the Foundation Properties window will open.

A Foundation Properties - Pier 1 - Hammerhead - Column1	
Name: Pile Footing	Foundation type: Pile Foundation
Description Additional Loads Soil Piles	
Description:	Units: US Customary
Footing	Foundation Seal
Footing Material: Class A (US)	Foundation seal Material: Class A (US)
Exposure factor	Width:ft
Exposure ractor.	Length: ft
	Bottom elevation:ft
	Foundations are not included in the finite element model of the pier but you can describe them BrD
	OK Apply Cancel

Select the Piles tab to view the pile information.

Pile Layout Wizard Pile type: Polled H Shape Pile embedment deptt: 1.00 ft Point of fixity elevation: 5.00 ft Name L T Shape Material Strong Axis Batter Bottom Resistance Head Downdreg Factor Name L T Shape Material Strong Axis Vertical to Elevation Fixity (kp) Pile Correll Fixity (kp) Pile Correll Fixity (kp) Pile Correll Fixity (kp) Pile Correll Fixity (kp) Pile Fixity (kp) Pile Correll Fixity (kp) Pile Strong Axis Vertical to Elevation Resistance Head Downdreg Factor Correll Fixity (kp) Pile Strong Axis Vertical to Elevation Resistance Head Strong Axis Fixity Factor Correll Fixity Fixity Strong Axis Fixity </th <th>ne: Pile escription</th> <th>e Footing</th> <th>ional Lo</th> <th>ads Soil</th> <th>Piles</th> <th></th> <th></th> <th></th> <th>Foun</th> <th>dation type</th> <th>Pile Fou</th> <th>ındat</th> <th>on</th> <th></th> <th></th> <th></th>	ne: Pile escription	e Footing	ional Lo	ads Soil	Piles				Foun	dation type	Pile Fou	ındat	on			
Local Name Coordinates L (ft) Shape Material Strong Axis Direction Batter Bottom (ft) Resistance (ft) Pile Head (kip) Downdrag Force (kip) Factor Com (ft) Pile1 -10.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile2 -5.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile3 0.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile4 5.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile5 10.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile5 10.00 -15.00 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile6 10.00 1.50 HP 14x8 Gra	Pile	Layout \	Vizard	Pile e Point	Pile ty embedment de of fixity eleval	ppe: Rolled H pth: 1.00 tion: -5.00	Sha f	ipe t								
Pile1 -10.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile2 -5.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile3 0.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile3 0.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile4 5.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile5 10.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile6 -10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile7 -5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 -1.50 HP 14x8 G	Pile Name	Lo Coord L (ft)	cal inates T (ft)	Shape	Material	Strong Axis Direction	s	B Axis	atter Vertical to 1 Horizontal	Bottom Elevation (ft)	Resistan Type	ice	Pile Head Fixity (%)	Downdrag Force (kip)	Factor Com Resista (kip)	*
Pile2 -5.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile3 0.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile3 0.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile4 5.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile5 10.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile6 -10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile6 -10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile7 -5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile8 0.00 -1.50 HP 14x8 Gra	Pile1	-10.00	-4.50	HP 14x8 🔻	Grade 50 💌	Longitudinal	-	None 🔻		-10.00	Bearing	-			340	
Pile3 0.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile4 5.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile5 10.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile5 10.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile6 -10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile7 -5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile8 0.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile11 -10.00 1.50 HP 14x8 Gr	Pile2	-5.00	-4.50	HP 14x8 🔻	Grade 50 💌	Longitudinal	-	None 👻		-10.00	Bearing	-			340	
Pile4 5.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile5 10.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile6 -10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile6 -10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile7 -5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile7 -5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile8 0.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile12 -5.00 1.50 HP 14x8 G	Pile3	0.00	-4.50	HP 14x8 🔻	Grade 50 💌	Longitudinal	-	None 👻		-10.00	Bearing	-			340	
Pile5 10.00 -4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile6 -10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile6 -10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile7 -5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile8 0.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile9 5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile11 -10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile13 0.00 1.50 HP 14x8	Pile4	5.00	-4.50	HP 14x8 🔻	Grade 50 💌	Longitudinal	•	None 🔻		-10.00	Bearing	-			340	
Pile6 -10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile7 -5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile8 0.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile9 5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile9 5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile11 -10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile13 0.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile14 5.00 1.50 HP 14x8 Gra	Pile5	10.00	-4.50	HP 14x8 💌	Grade 50 💌	Longitudinal	-	None 👻		-10.00	Bearing	•			340	Ξ
Pile7 -5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile8 0.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile9 5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile11 -10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile12 -5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile13 0.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile14 5.00 1.50 HP 14x8 Gr	Pile6	-10.00	-1.50	HP 14x8 💌	Grade 50 💌	Longitudinal	-	None 👻		-10.00	Bearing	•			340	
Pile8 0.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile9 5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile11 -10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile12 -5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile12 -5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile13 0.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile14 5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile15 10.00 1.50 HP 14x8 Gra	Pile7	-5.00	-1.50	HP 14x8 👻	Grade 50 💌	Longitudinal	•	None 👻		-10.00	Bearing	-			340	
Pile9 5.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile10 10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile11 -10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile12 -5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile13 0.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile14 5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile15 10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 + Viet15 10.00 4.50 HP 14x8	Pile8	0.00	-1.50	HP 14x8 💌	Grade 50 💌	Longitudinal	-	None 👻		-10.00	Bearing	-			340	
Pile10 10.00 -1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile11 -10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile12 -5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile12 -5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile13 0.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile14 5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile15 10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 V V Vone -10.00 Bearing 340 - V Vone -10.00 Bearing 340 - V Vone	Pile9	5.00	-1.50	HP 14x8 💌	Grade 50 💌	Longitudinal	•	None 👻		-10.00	Bearing	-			340	
Pile11 -10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile12 -5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile13 0.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile14 5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile15 10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile16 -10.00 4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 V III Vone -10.00 Bearing 340 Vone -10.00 Bearing 340	Pile10	10.00	-1.50	HP 14x8 💌	Grade 50 💌	Longitudinal	-	None 👻		-10.00	Bearing	•			340	
Pile12 -5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile13 0.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile14 5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile15 10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile16 -10.00 4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 III None -10.00 Bearing Duplicate Delete	Pile11	-10.00	1.50	HP 14x8 💌	Grade 50 💌	Longitudinal	-	None 👻		-10.00	Bearing	-			340	
Pile13 0.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile14 5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile15 10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile16 -10.00 4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 V III IIII III IIII IIII IIII IIII IIIII IIII IIIII IIII IIIII	Pile12	-5.00	1.50	HP 14x8 🔻	Grade 50 💌	Longitudinal	-	None 🔻		-10.00	Bearing	-			340	
Pile14 5.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile15 10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile16 -10.00 4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 V III III III III III III III	Pile13	0.00	1.50	HP 14x8 👻	Grade 50 👻	Longitudinal	-	None 👻		-10.00	Bearing	-			340	
Pile15 10.00 1.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 Pile16 -10.00 4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 III III III III Delete	Pile14	5.00	1.50	HP 14x8 👻	Grade 50 👻	Longitudinal	-	None 👻		-10.00	Bearing	-			340	
Pile16 -10.00 4.50 HP 14x8 Grade 50 Longitudinal None -10.00 Bearing 340 + III III III III Duplicate Delete	Pile15	10.00	1.50	HP 14x8 👻	Grade 50 👻	Longitudinal	-	None 👻		-10.00	Bearing	-			340	
	Pile16	-10.00	4.50	HP 14x8 👻	Grade 50 👻	Longitudinal	-	None 👻		-10.00	Bearing	-			340	-
New Duplicate Delete	•						1								۶.	
											N	ew		Duplicate	Dele	te

There is no additional information to enter so click the OK button. Do **not** click the Cancel button as that will cause the creation of the new foundation alternative to be canceled.

Open the Foundation Geometry window.

Our bottom of footing elevation is zero feet. Click the OK button to save this data to memory.

Enter the following reinforcement for the footing.

A Foundation Reinforcement - Pier 1 - Hammerhead - Column	L - Pile Footing
Direction of topmost rebar: Longitudinal Top bar cle Direction of bottommost rebar: Longitudinal Bottom bar cle	ear cover: 3.000 in End cover: 3.000 in ear cover: 3.000 in Material: Grade 60
Top Longitudinal Reinforcement Bar size: 9 Number: 24.00 Hooked Fully developed	Top Transverse Reinforcement Bar size: 9 Number: 46.00 Hooked Fully developed
Bottom Longitudinal Reinforcement Bar size: 9 Number: 24.00 Hooked Fully developed	Bottom Transverse Reinforcement Bar size: 9 Vumber: 46.00 Hooked Fully developed
	OK Apply Cancel

Pier 3D Schematic

We can now view the 3D schematic of the pier alternative. Select the name of our pier alternative in the bridge workspace tree. The 3D schematic can then be accessed by the "3D" button on the BrD Substructure toolbar shown below.

🚯 Bridge Workspace - LRFD Substructure Example 4
🖃 ···· 🕰 LRFD Substructure Example 4
🗀 Materials
🛓 📖 📄 Beam Shapes
🛓 📖 🔁 Appurtenances
🗄 🚥 🧰 Connectors
🛅 Diaphragm Definitions
🛅 Lateral Bracing Definitions
📑 Impact / Dynamic Load Allowance
MPF LRFD Multiple Presence Factors
🗄 🚥 💼 Factors
🛓 📖 💼 LRFD Substructure Design Settings
EC Environmental Conditions
DP Design Parameters
Superstructure 1
Image: Im
The statistics analysis
Geometry
Em Can
Europe Column1
Superstructure Environmental Loads
++ Substructure Loads

This 3D schematic is a to-scale drawing of the pier alternative. This schematic view has a lot of useful features like rotating, scaling, and dimensioning. Select F1 to open the BrD help topic for this window to review the features available in this schematic window.

Validating a Pier Alternative

Another useful feature is to validate your pier alternative once you have the geometry defined. This will alert you to any missing or incorrect data in your pier description. You can access the validation feature from the right-click menu available when your pier alternative is selected in the bridge workspace tree.

This opens a window which contains warnings and errors if your pier alternative description is in error or missing data.

Pier Analysis and Specification Checks

We are now ready to analyze our pier. Select the 'Spec Check' toolbar button from the BrD Substructure toolbar.

The superstructure will first be analyzed to determine the superstructure dead load reactions. The remaining loads acting on the pier (such as live load, wind, etc.) are computed and applied to the pier finite element analysis. Load combinations are generated and then the specification checks are processed.

The Substructure Analysis Progress dialog will open as shown below.

Specification Checking

The specification checks can be viewed by selecting the "Spec Check Detail" button.

BrD performs spec checks at each node in the finite element model along with locations where the reinforcement is developed and at a distance dv from the face of each column.

Specification Checks for Hammerhead - 12 of 273				- • •
E-	Specification Reference	Limit State	Flex. Sense	Pass/Fail
	✓ 5.10.8 Shrinkage and Temperature Reinforcement		N/A	Passed
	5.4.2.5 Poisson's Ratio		N/A	General Comp.
	5.4.2.6 Modulus of Rupture		N/A	General Comp.
2.97 ft.	5.5.4.2 Strength Limit State - Resistance Factors		N/A	General Comp.
5.75 ft.	5.7.2.2 Rectangular Stress Distribution		N/A	General Comp.
13.50 ft	× 5.7.3.2 Flexural Resistance (Reinforced Concrete)		N/A	Failed
15.50 ft.	✓ 5.7.3.3.2 Minimum Reinforcement		N/A	Passed
	NA 5.7.3.4 Control of Cracking by Distribution of Reinforcement		N/A	Not Required
	✓ 5.7.3.4(a) Longitudinal Skin Reinforcement		N/A	Passed
33.00 ft.	✓ 5.8.2.1 Torsion		N/A	Passed
41.10 ft.	Cracked_Moment_of_Inertia Section Property Calculations		Positive Flexure	General Comp.
42.75 ft.	Cracked_Moment_of_Inertia Section Property Calculations		Negative Flexure	General Comp.
🧰 43.53 ft.				
🛅 43.77 ft.				
🖨 🛑 Column1				
0.00 ft.				
15.00 ft.				
Column1:Pile Footing				
Pile Footing				
Footing Longitudinal Moment Section				
Footing Longitudinal Shoar Section				
Footing Longitudinal Shear Section				
Column Punching Shear Section				
Pile Punching Shear Section				

Open the spec check detail window for the flexural resistance at the center of the cap. The following is noted for this window, other spec articles are similar:

- For each spec check location, both the left and right sides of the point are evaluated. (Note for the example shown below: The LL loading is not symmetric so the left/right sides of the cap midpoint show slightly different max/min load values.)
- The design ratio is printed out for the article. The design ratio is the ratio of capacity to demand. A design ratio less than one indicates the demand is greater than the capacity and the spec article fails. A design ratio equal to 99.0 indicates the section is subject to zero demand.
- The user has control over which limit states are investigated. For our example we are using the Preliminary Design Mode and the default Preliminary Design Setting only contains the Strength-I limit state. For each limit state, the max and min force effect is checked. Thus each limit state shows two rows of data.
- The LL load combination is shown in this column. If the location is not at a node in the FE model (eg, the node is at a point where the rebar is fully developed), this column will list two load combinations separated by a comma. The first load combination is the combination considered at the left end and the second load combination is the combination considered at the right end of the FE element that contains this location. The resulting load displayed is a linear interpolation between the two displayed load cases.

Spec Check Detail for 5.7.3.2 Flexural Resistance (Reinforced Concrete)	
5 Concrete Structures 5.7 Material Properties 5.7.3 Flexural Members 5.7.3.2 Flexural Resistance (AASHTO LRFD Bridge Design Specifications, Fifth Edition - 2010, with 2010 interims) Pier Cap Section - At Location = 23,2500 (ft) - Left	
Cross Section Properties	
Depth = 132.00(in) Width = 60.00(in)	
Area = 7920.00(in^2)	
Flexural Reinforcement As Dist. From Bottom (in^2) (in) 15.60 128.17 15.60 123.76 3.95 73.30	E
f'c = 4.00 ksi	
Note: If the capacity has been overridden, the Resistance is computed as override phi*override capacity. Otherwise the Resistance is computed as per the Specification.	
4 Override Mr= Mr= 2 Limit State Load Mu Phi Mn Phi Mn Phi * Mn Mr/Mu Mr/Mu Mr/Mu Mr/Mu Mr Mr/Mu Mr Mr/Mu Mr/Mu	1 1 L
Pier Cap Section - At Location = 23.2500 (ft) - Right	
Cross Section Properties	
Depth = 132.00(in) Width = 60.00(in)	
Area = 7920.00(in^2)	
Flexural Reinforcement	
As Dist. From	-
 III 	•
	JK