

Load Rating Challenges in Idaho

Parking Garages under Public Roads and

The Wallace Viaduct

Scott Wood, P.E. & Will Johnson, P.E.

BOISE

BOI SEE

WHEN YOU DON'T EVEN KNOW IT'S THERE

FSS

McEuen Park Garage in Coeur d'Alene, Idaho

- Owner: City of Coeur d'Alene
- Opened in 2014
- 20-acre, \$20 million project
- Companies/names withheld

RATING PROGRAM

CSI SAFE

RATING PROGRAM

1.3 Dead L	oad IAB	LE: Concre	te Slab Design Ul	- Flexural And	d Shear Data	a –																		∠ase 1⊦				4	
Strip		Station	ConcWidtFTopCon	nb TopMomen	nelectTopMo	pacityTopM	TopAre	TopAMir B	otComb	BotMomenSe	electBotMona	apacityBotMo	BotAre	BotAMir	atialForce	/Combo	VForce V	Area Statu:	s GlobalX	GlobalY Layer	Se	lectTopMoi	ielectBotMor	1.7	3LL	2	2.17LL	1 1	Selec
Text		in	in Text	kip-ft	kip-ft	kip-ft	in2	in2	Text	kip-ft	kip-ft	kip-ft	in2	in2	kip	Text	kip i	n2/ft Text	in	in Text		kip-ft	kip-ft	Top	Bot	Top	Bot		
SA9	NA	0	80.3572 1.3DL	-7.897			0	0 1.3	3DL	3.7532			0	4.6286	-0.00948	1.3DL	3.839	0 OK	1614	1277 A			r	∧¥A	N/A	N/A	N/A	Controlling Value	
SA9	NA	48	96 1.3DL	-461.133	3		3.4193	6.912 1.	3DL	17.5691			0	0	-5.752	1.3DL	28.901	0 OK	1662	1277 A			r	AWA .	N/A	N/A	N/A	for 1.3LL:	
SA9	NA	60	96 1.3DL	-480.1118	3		3.5084	5.5296 1.	3DL	8.3152			0	0	1.477	1.3DL	44.309	0 OK	1674	1277 A			r	AWA .	N/A	N/A	N/A	0.45864	
SA9	NA	72	96 1.3DL	-537.8615	5		3.9275	6.912 1.	3DL	7.4327			0	0	5.381	1.3DL	117.69	0 OK	1686	1277 A			r	AWA .	N/A	N/A	N/A	Controlling Value	
SA9	NA	120	120 1.3DL	-112.4617			0.8171	0 1.	3DL	201.3432			1.4644	6.912	6.745	1.3DL	109.38	0 OK	1734	1277 A			r	AWA .	N/A	N/A	N/A	for 2.17LL:	
SA9	NA	163	120	0)		0	0 1.	3DL	187.6527			2.8791	3.456	6.32	1.3DL	22.271	0 OK	1777	1277 A			r	AWA .	N/A	N/A	N/A	0.27476	1
SA9	NA	206	120	0)		0	0 1.	3DL	234.2035			3.6021	3.456	5.867	1.3DL	1.315	0 OK	1820	1277 A			r	o¥A	N/A	N/A	N/A		
SA9	NA	249	120	0)		0	0 1.	3DL	206.9493			3.1784	3.456	5.499	1.3DL	24.186	0 OK	1863	1277 A			r	oVA	N/A	N/A	N/A		
SA9	NA	292	120 1.3DL	-12.4023	3		0.1886	0 1.3	3DL	109.5221			1.6735	3.456	5.28	1.3DL	49.503	0 OK	1906	1277 A			r	NVA	N/A	N/A	N/A		
SA9	NA	335	120 1.3DL	-122.2248	3		1.8689	3.456 1.3	3DL	6.5765			0.1	0	5.035	1.3DL	82.932	0 OK	1949	1277 A			r	NVA	N/A	N/A	N/A		
SA9	NA	378	120 1.3DL	-474.9768	3		7.4007	3,456 1.3	3LL	0			0	0	0	1.3DL	167.65	0 OK	1992	1277 A			r	NVA	N/A	N/A	N/A		
SA9	NA	420	120 1.3DL	-1369.5963	3		10,101	6,912 1.3	3LL	0			0	0	0	1.3DL	223.71	0 OK	2034	1277 A			r	NVA	N/A	N/A	N/A		
SA9	NA	462	120 1.3DL	-474.94			7.4001	3.456 1.	3LL	0			0	Ū.	0	1.3DL	167.78	0 OK	2076	1277 A			Í	N/A	N/A	N/A	N/A		
SA9	NA	505	120 1.3DL	-122.482			1.8728	3.456 1.	3DL	6.8025			0.1034	Ū.	5.002	1.3DL	83.066	0 OK	2119	1277 A			Í	N/A	N/A	N/A	N/A		
SA9	NA	548	120 1.3DL	-12.603	3		0.1916	0 1.	3DL	110.2276			1.6844	3.456	5.2	1.3DL	49.66	0 OK	2162	1277 A			Í	N/A	N/A	N/A	N/A		
SA9	NA	591	120	0)		0	0.1.	3DL	208.8003			3.2071	3.456	5.369	1.3DL	24.404	0 OK	2205	1277 A			Í	N/A	N/A	N/A	N/A		
SA9	NA	634	120	0	1		0	0.13	301	236 1759			3,6329	3 456	5.683	1301	1.619	0.0K	2248	1277 A			ſ	NVA	N/A	N/A	N/A		
SA9	NA	677	120	0	i		0	0.1	301	189.3271			2 9051	3 456	6 103	1301	21786	0.0K	2291	1277 A			I	NVA	N/A	N/A	N/A		
SA9	NA	720	120 1 30	-113 0759			0.8216	0.1	301	200.3584			14572	6 912	6 506	1301	107.59	0.0K	2334	1277 A			, T	NVA	N/A	N/A	N/A		
549	NA	768	96 130	-527 2339	1		3 8495	6 912 1	301	14 1262			0	0.0.0	4 669	1301	116	0 OK	2382	1277 A			, T	NVA	N/A	N/A	N/A		
549	NA	780	96 130	-451 0392			3 2946	5 5296 1	301	11 9824			0	ň	0.991	1301	42 743	0 OK	2394	1277 A			, T	NVA	N/A	N/A	N/A		
549	NA	792	96 130	-514 8424			3,8335	6 912 1	301	14 2945			0	ů.	-7.849	1301	62 333	0 OK	2406	1277 A			, r	NVA	N/A	N/A	N/A		
549	NA	840	120 1 30	-201 5715			14894	6 912 1	301	49 9469			0.386	ů.	-2 421	1301	6.807	0 OK	2454	1277 A			Ċ	NVA	N/A	N/A	N/A		
SB1		010	24.5 130	-0.9998			0	0.012	301	6 2559			0.000	0.7056	0.112	1301	0.077	0 OK	414	1709 B			ċ	NVA	N/A	N/A	N/A		
SB1		45	24.5 130	-0.8644			0	0.1	301	11 7872			0.1894	0.7056	0.619	1301	0.546	0 OK	414	1754 B			i	NVA	NVA	N/A	N/A		
CD1		90	24.5 1.000	-9.9962			0.1009	0 7056 1	201	9.42			0.1514	0.7056	1.094	1 201	0.947	0.0K	414	1799 P			i i i i i i i i i i i i i i i i i i i	NU O	NUO	NUO	NUA		
SB1		135	24.5 130	-20 2778			0.3305	0.7056 1	301	5.615			0.094	0.1000	-0.37	1301	0.325	0.0K	414	1844 B			i	NVA	NVA	NVA	NA		
GD1 E2	C CIN	100	24.5 1000	-20.2110			0.0000	0.1030 1.	201	62 0644	62.0544		1,0129	6 912	-0.31	1 201	2 55	0 OK	414	1094 D				NU0	NUA	NUA NUA	NUA		
CD1 IL	.0 0/14	225	240 120	17 2916			0.2771	0 1	201	47 1022	00.0044		0.7554	6.912	0.24	1 201	6.917	0 OK	414	1924 P				NUA	AU A	AU A	NUA		
OD1		223	240 1300	E1 0699			0.2111	6 912 1	201	41.1023			0.1334	0.512	2 200	1.201	20.299	0 OK	414	1034 D				NIA	NUA	- NUA	NUA		
ODI		210	240 1300	105 509			1 6949	6.912 1.	200	11.1314			0.2155	0	3.333	1.30L	19 59	0 OK	414	2024 B				NHO NO	NUA	NUA	NIA		
001 50	F 0	260	240 1300	100.000	,		19594	0.012 1.	201	0			0			1 201	10.33	0 OK	414	2024 0				NUA	NUA	NUA	NUA		
SB1 62.	.5 5	405	240 1300	-92.6956			19276	6.912 1.	301	6 19/9			0	0	6 506 1	1300	34 415	0.0K	414	2003 D				NUO	NUA	NUO	NZA		
CD1		403	240 1300	-35 4112			0.5677	0.512 1.5	201	116 1292			19662	6.912	7 79 -	1 201	EE 029	0.0K	414	2169 8				NUO	NUA	NUO	NUA		
CD1		430	240 1.300	-33.4112			0.3011	0.1	201	247 1945			2 997	6.912	0 6290 -	1 201	34.472	0.0K	414	2103 D				NUO	NUA	NUO	NUA		
CD1		435	240	0	,		0	01	201	241.1040	215 2516		5.30 r	6.912	0.523	1201	7 000	0.0K	414	2204 D				NUO	NUO	NUA	NUO		
CD1		540	240	0	,		0	01	201	202 7695	315.2510		4 9914	6.912	7 129	1201	19.097	0.0K	414	229J D				NUO	NUA	NUA	NUA		
CD1		505	240 120	12 2005			0.2145	0 1	201	202.2412			9.0314	0.312	4 997 1	1.00L	41.019	0.0K	414	22.34 D				NIIO NIIO	AU A	NUA	NIA		
CD1		630	240 L3DL	-13.3005			0.2145	0 1.	201	203.3413			1.2292	0.312	9.301	1.00L	91.010	0 OK	414	2333 D				NHO NHO	AUA	NUA	NIA		
001 00	E 6	700	240 L3UL	-43.503			1,2001	6 912 1	201	10.5131			0.2207	0.312	1.101	1.00L	19.277	0 UK	414	2.304 D				NHO NHO	NUA	NUA	NIA		
301 DZ	.ə 5	720	240 L3UL	-00.3315			1.0001	0.312 1.	JUL DU	14.3001			0.2301	0	0.700	LODL .	10.211	0 UK	414	242J D				STM	IN M	DUA	THEA .		
001		760.8	240 13UL	-72.6852			1.1665	6.912 1.	JUL	10.9877			0.176	0.010	0.722	LODL	0.134	U UK	414	2403.6 B				WH	IWA	INA	INFA		
301		001.6	240 1.3UL	-30.8079			0.5119	0 1.3	JUL	55.3034	05 0047		0.3211	0.312	-1.003	I.JUL	14.175	U UK	414	2510.6 B				84	DWA .	N/A	- N/A		
381		842.4	240 13UL	-6.2442			0	0 1.3	SUL .	35.8217	95.8217		1.5461	6.912	-0.684	LODL	6.606	U UK	414	25514 B				4A	IWA	IWA	IWA		
381		883.2	240 13UL	-4.2856			0	0 1.3	SUL .	33.4382			1.5005	6.912	1.558	LODL	7.165	U UK	414	2532.2 B			f	4A	IWA	IWA	IWA		
581		924	240 1.3DL	-15.9818	5		0.4361	U 1.:	SUL	77.4529			1.4228	6.912	-16.869	1. JUL	33.123	UUK	414	2633 B			L	AWA .	INVA	INRA	N/A		

RATING ISSUES

- Two-Way Slab
- DRAWINGS (Architectural, Structural & Civil)
- CSI SAFE
- Live Loading
- Pre/Post Processing
- Design Error?

Problem Areas Screenshot

Main Street in Boise, Idaho

- Owner: ???????????
- Valley Regional Transit / Ada County HD/ Private Developer
- Opened in 2016

DESIGN PLANS

- Many, many sheet
- Many, many Details

A 2797 - 81

(P)

(K.6)-

- Architectural, Structural, & Civil

BrR RATING

Floor Beam / Stringer

D 📽 🖬 📽 🛅 🎠 X 📭 🖻 🎒 🤣 🗄	. 🎟 🎟 🐨 👬 😂 ALL INT 🏬 隆 🕕 US Customary 🗸 🖪 🛍 🎭 🖆 🖳 🕮 🕮 🖉 🗟, 🎶 🏲	(四) (文 強) 目 留 節 Preliminary → 川 片 論 ● 図 録 回 留 臨 告 性
	💑 Schematics: Framing Plan View	
Bridge Workspace - 34100LRFR	🛍 🔖 🔍 🗢 🖽 🗟 🖂 160% 🗸	
A 3100LFFR A 3100LFFR Beam Shapes Growers G	34100LRFR 99793A 0.68 - Simple 3 Span SS Girder/Floorbeam Bridge over VRT - Span 1&3 SMA 9793; Main St / Boise VRT Center 11/29/17	
⊕ → ☐ Factors → ☐ FActors → ☐ FACS Substructure Design Settings → ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷	Girder 1	A Schematics: Bridge Typical Cross Section View
Shear Connector Definition Shear Connector Definit Shear Connector Definition Shear Connector Definition	Girder 2	Ball © Q Q ⊕ I I B E H 80% ✓ S4100LRFR 997934.0 68 - Simple 3 Span SS Girder/Floorbeam Bridge over VRT - Span 183 SNA 9793, Main St / Boise VRT Center 11/29/17 44'-8" 26'-10" 17-4" Sidewalk Thickness 1'-0" 17-4" Sidewalk Thickness 1'-0" 1'-10" Travelway 1
		<u>Haunch Th. 3°</u> W 27x178 W 27x178

RATIN

- DRAWII Civil)
- Live Loa
- Prelimin

GROUND LEVEL - AREA A

TEMP. SHORING

- LARSA
- Equivalent DL to match Moment

· 그같은 제품 이어 제작을 구절하는 것을 수 있는 것 / steel · ·

WALLACE VIADUCT

Load rating a curved PT multicell box bridge in BrR

Outline:

- Location/Geometry
- BrR Information
- Geometry Challenges
- Post-Tension Limitations
- Live Load Distribution Factors
- Solid Sections
- Pier Input

LOCATION

- Carries I-90 through the town of Wallace
- Located between Spokane
 and Missoula
- Constructed in 1991
- Railroad under most of the structure converted to Trail of the Coeur d' Alenes

- Total length of 4478'
- Two ramps
- Four circular curves, with spiral transitions
- In span hinge
- Width transitions from 84' min to 145' max
- Splayed webs
- Multi-column piers

BrR Information

- BrR Version 6.8.1 used
- Bridge designed LFR
- LRFR module was used for rating:
 - $_{\circ}$ LFR module was not stable
 - LRFR module has more flexibility with live load distribution factors

Standard	LRFD		
- Distribu	ition Factor Input Me	thod	
🖲 Us	e Simplified Method	O Use Advanced Method	🔘 Use Advanced Meth
	distribution factors to	be used to compute effects of	permit loads with routine t

Lanes	Distribution Factor (Wheels)									
Loaded	Shear	Shear at Supports	Moment	Deflection						
1 Lane										
Multi-Lane										

Standa	rd	LRFD										
Dist	Distribution Factor Input Method OUse Simplified Method											
All Action	ow i	distribution facto Moment	ors to be used	to compute	e effects of perr	nit loads with ro	outine					
Supp	port	Start Distance	Length	End	Distributio (Lar	on Factor nes)						
Num	ber	(ft)	(ft)	(ft)	1 Lane	Multi-Lane						
1	\sim	0.00	92.531	92.53	6.518	8.773						
1	\sim	92.53	66.364	158.89	6.486	8.684]					
2	\sim	34.31	81.976	116.29	2.894	5.634						
2	\sim	116.29	67.673	183.96	2.862	5.541]					
3	\sim	33.98	85.874	119.86	2.829	5.446						
3	\sim	119.86	62.167	182.02	2.944	5.553						
4	~	32.08	77.394	109.48	3.090	5.698						

GEOMETRY CHALLENGES

- Curved superstructure
- Non-linear splayed girder webs

GEOMETRY SIMPLIFICATIONS

- Curved superstructure
 - $_{\odot}~$ Modeled as straight, per AASHTO Art. 4.6.1.2.3
 - Central angle of individual spans less than 12 degrees
- Splayed girder webs
 - $_{\circ}$ BrR does not rate individual webs for shear when girder webs are splayed.
 - AASHTO 4.6.2.2 allows cast-in-place multi-cell box girders to be analyzed as full width sections
 - All piers radial, no correction factor needed for webs in obtuse corner
- BrR can handle splayed geometry, however it has to be linear
 - Edge of deck and CL webs follow spiral and circular curves while also transitioning width, therefore edge of deck follows non-linear path
 - $_{\circ}$ Span lengths and shear stirrup spacing based on middle web dimensions in design plans

GEOMETRY SIMPLIFICATIONS

🕰 Schemat	tics: Framing Plan View		
🖻 📐 🔍	ର୍ 🕂 🎛 🗟 🖂 34% 🔍		
TSELARS SETTE 1132: Cordmann 31 June 3 HE INSECTION OF	PECH Release INE List 1		
l J			
		All	
atta			

POST-TENSION LIMITATIONS

- BrR only allows one PT Loss definition per frame
 - Limits anchor set, coefficient of friction and wobble coefficient values to be the same on every profile defined in an individual frame
 - Multiple Post Tensioned Losses can be defined, but only one can be defined in the cross section ranges window
 - --- SUPERSTRUCTURE DEFINITIONS
 - 🗠 🏧 Continuous 34 Span PSCMB Bridge over I90B Unit 1
 - 🚽 📑 Impact / Dynamic Load Allowance
 - H Load Case Description
 - ----- 🕂 Hinge Locations
 - 🗄 🖳 🗀 Concrete Stress Limits
 - 🖮 🗎 Post Tension Losses
 - Post Tensioned Losses
 - 💷 🗀 Structure Cross Sections
 - 🖿 🗀 Tendon Profile Definitions
 - 📟 🛱 Cross Section Range Properties
 - 📟 🐨 Structure Typical Section
 - 🛲 🛲 Framing Plan Detail

 - ---- 🔥 Shrinkage/Time
 - ---- \Lambda Supports

 - LL Live Load Distribution
 - --- 🗎 Points of Interest
 - ---- 🗀 Vertical Shear Reinforcement Definitions
 - 🖃 🗀 WEBS

Cro	oss Section Ranges							-	×
Cro	ss Sections Post Tensioning	Effective S	Supports						
-	Post Tension Losses: F	ost Tensio	oned Losses	~					
	Tendon Profile	Start Span	Start Distance into Start Span (ft)	End Span	End Distance from End Span (ft)				
	Tendons	1	0.000	4	0.000]			
							New	Delete	
					[OK	Apply	Cance	1

POST-TENSION LIMITATIONS

- Friction losses due to horizontal curvature
 - $_{\odot}\,$ Hand calculations were ran to determine friction losses due to horizontal curvature
 - $_{\odot}\,$ Wobble coefficient was modified to account for additional frictional losses
 - Only one wobble coefficient allowed per frame, worst case was used when more than one PT tendon profile was present

POST-TENSION LIMITATIONS

- Only one PT profile is allowed at any given location
 - $_{\circ}~$ PT losses are reset when a new profile is defined
 - $_{\odot}$ Jacking stress ratios in BrR were modified to account for mid-frame friction loss effects
 - This causes conservative friction losses, which will cause conservative Service III ratings

LIVE LOAD DISTRIBUTION FACTORS

- LLDF follow current AASHTO LRFD code
 - $_{\circ}$ Slight discrepancies were found in exterior and first interior web from BrR calculations
 - Interior girders and independent calculations matched
 - $_{\circ}$ Independent LLDF were calculated
 - $_{\circ}$ Width used for LLDF was midpoint between contraflexure points for moment, and CL span for shear

andaro	ł L	RFD					Standa	rd I	LRFD				
Distri	outic Jse	on Factor Inp Simplified M	out Method lethod	O Use	Advanced Meth	nod	Dist	ributi Use	ion Factor Inp 9 Simplified №	out Method - lethod	OUse	Advanced Meth	nod
Allo	w di	istribution far	ctors to be u	ised to c	ompute effects	of permit loads	All	ow c	distribution fa Shear	ctors to be u	ised to c	ompute effects	of perm
Supp Numl	ort oer	Start Distance (ft)	Length (ft)	End Distanc e	Distribution (Lar	on Factor les) Multi-Lane	Sup	port	Start	Length	End Distanc	Distributi (Lar	on Fact les)
1	\sim	0.00	78.071	(ft) 78.07	0.906	0.906	Nun	nber	(ft)	(ft)	e (ft)	1 Lane	Multi
1	\sim	78.07	62.178	140.25	0.885	0.885	1	\sim	0.00	110.163	110.16	1.184	
2	\sim	30.09	86.479	116.56	0.864	0.864	2	\sim	0.00	150.455	150.46	1.183	
2	\sim	116.56	67.769	184.33	0.841	0.841	3	\sim	0.00	150.591	150.59	1.181	
3	\sim	33.88	82.604	116.48	1.181	1.078	4	\sim	0.00	124.858	124.86	1.178	
3	\sim	116.48	66.046	182.53	1.179	1.053							
4	\sim	31.94	92.920	124.86	1.178	1.025							

SOLID SECTIONS

- When defining solid sections at the pier locations, BrR uses the gross area and section properties of the solid concrete section for Service III stress calculations
 - This results in an erroneous result, since P/A + Mc/I for a solid section will result in far smaller compressive stresses than the hollow section that it was designed for.
 - $_{\odot}\,$ Recommend not using solid section check box for pier locations

ss Sections Post Tensi	oni	ng Effecti∨e Supports									
eft end projection: 24.0	00	in Righte	n	d projection: 26.250	in						
Start Section		End Section		Depth Vary		Solid Section	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	
CL Abut. 1	$^{\prime}$	Abut. 1 - Face	~	None	\sim		1 ~	0.000	3.000	3.000	
Abut. 1 - Face	\sim	Abut. 1 - Transition	\sim	None	\sim		1 ~	3.000	8.500	11.500	
Abut. 1 - Transition	\sim	Pier 1 - BS Transition	\sim	None	\sim		1 ~	11.500	87.604	99.104	
Pier 1 - BS Transition	\sim	Pier 1 - BS Face	\sim	None	\sim		1 ~	99.104	7.500	106.604	
Pier 1 - BS Face	\sim	Pier 1 - FS Face	~	None	\sim		1 ~	106.604	7.000	113.604	
Pier 1 - FS Face	\sim	Pier 1 - FS Transition	~	None	\sim		2 ~	3.500	11.500	15.000	
Pier 1 - FS Transition	\sim	Pier 2 - BS Transition	~	None	\sim		2 ~	15.000	114.125	129.125	
Pier 2 - BS Transition	\sim	Pier 2 - BS Face	~	None	\sim		2 ~	129.125	17.250	146.375	
Pier 2 - BS Face	\sim	Pier 2 - FS Face	~	None	\sim		2 ~	146.375	8.000	154.375	
Pier 2 - FS Face	\sim	Pier 2 - FS Transition	~	None	\sim		3 ~	4.000	17.250	21.250	
Pier 2 - FS Transition	\sim	Pier 3 - BS Transition	~	None	\sim		3 ~	21.250	114.260	135.510	
Pier 3 - BS Transition	\sim	Pier 3 - BS Face	~	None	\sim		3 ~	135.510	11.000	146.510	
Pier 3 - BS Face	\sim	Pier 3 - FS Face	~	None	\sim		3 ~	146.510	8.000	154.510	
Pier 3 - FS Face	\sim	Pier 3 - FS Transition	~	None	\sim		4 ~	4.000	8.500	12.500	
Pier 3 - FS Transition	\sim	Pier 4 - Transition	~	None	\sim		4 ~	12.500	99.792	112.292	
Pier 4 - Transition	\sim	Pier 4 - Face	~	None	\sim		4 ~	112.292	8.688	120.979	
Pier 4 - Face	~	Pier 4 - BS Brg	~	None	\sim		1 ~	120 979	3 813	124 792	

HINGE

- Hinge input into BrR with simplifications:
 - $_{\odot}~$ Unit 6 varies in width from 106' to 112', at hinge, Unit 7 drops to constant 84' width
 - $_{\odot}~$ Unit 6 modeled with all spans from Unit 6 & 7 with a width of 110'
 - Loads adjusted to account for differences in Unit 7
 - Unit 7 modeled as 84' constant width using the stiffness of Unit 6 at hinge

: 0.055 1/1

PIERS

• Piers input into BrR using Integral piers input in the superstructure definition

🕰 Concrete Multi-Cell Box Su	Superstructure Definition	- 0	×
Definition Analysis Specs	Factors Engine Control Options		
Name: C	Continuous 34 Span PSCMB Bridge over 190B - Unit 1		
Description: B 1 0 W F	Bridge Key: 17247 1.5" Concrete Wearing Surface (2015 Report): Start=>> (12.7875 - (1.5)(2) - 2)(1.5")(0.150 kcf) = 2.304 klf End =>> (92.896' - (1.5)(2) - 2)(1.5")(0.150 kcf) = 1.648 klf ITD Jersey Barrier =>> (2)((9")(33.5")+(2")(19")(0.5)+(2")(14.5")+(14.5" + 4.5")(7")(0.5)+(8.5")(6"))(0.150 kcf) = 0.973 klf Median Barrier =>> ([10" + 6")(0.5)(19") + (10" + 24")(0.5)(10") + (4.5")(24"))(0.150 kcf) = 0.448 klf Railroad Splashguards (Assume 50 plf for aluminum panel. Increase wt. 10% to account for misc. wt) ==>		
Default Units:	US Customary VEnter Span Lengths Along the Reference		
Number of spans: 4	4 Line: Integral piers: Average humidity:		
Number of cells: 8	Span Length (ft) Support Integral 1 110.10 2 55.000 % 2 150.38 3 ✓ 3 150.51 4 1 4 124.79 5 1		
	Structure Type		
	Frame structure simplified definition Instance with substructure		
	Consider substructure skew in FE section properties		
	PosHensioned		

PIER INPUT

- Bridge Alternative input to run multiple superstructure definitions with piers

🖪 Bridge Workspace - 17247LRFR	A Bridge Alternative	
Bridge Workspace - 17247LRFR Image: Straight of the st	Bridge Alternative Alternative Name: Continuous 34 Span PSCMB Description Substructures Substructure Station Offset Unit Type Unit Name (ft) 0.000 Abutment Unit 1 Pier 1 110.104 -0.000 Pier Unit 1 Pier 2 260.479 -0.000 Pier Unit 1 Pier 3 410.990 -0.000 Pier Unit 1 Pier 4 55.781 -0.000 Pier Unit 2 Pier 4 600.000 -0.000 Pier Unit 2 Pier 4 600.000 -0.000 Pier	Superstructure Name: Unit 1 Description Alternatives Vehicle Path Engine Substructures Select the substructure supports: Support Substructure Unit 1 Pier 1 Unit 1 Pier 1 Unit 1 Pier 2
SUPERSTRUCTURE DEFINITIONS WC continuous 34 Span PSCMB Bridge over 190B - Unit 1 WC continuous 34 Span PSCMB Bridge over 190B - Unit 2 WC continuous 34 Span PSCMB Bridge over 190B - Unit 3 WC continuous 34 Span PSCMB Bridge over 190B - Unit 4 WC continuous 34 Span PSCMB Bridge over 190B - Unit 5 WC continuous 34 Span PSCMB Bridge over 190B - Unit 6 WC continuous 34 Span PSCMB Bridge over 190B - Unit 6 WC continuous 34 Span PSCMB Bridge over 190B - Unit 7 WC continuous 34 Span PSCMB Bridge over 190B - Unit 7	Unit 2 Pier 5 724.583 -0.000 Pier ~ Unit 2 Pier 6 874.563 -0.000 Pier ~ Unit 2 Pier 7 1024.500 -0.000 Pier ~ Unit 2 Pier 8 1133.979 -0.000 Pier ~ Unit 3 Pier 8 1200.000 -0.000 Pier ~ Unit 3 Pier 9 1299.490 -0.000 Pier ~ Unit 3 Pier 10 1424.469 -0.000 Pier ~ Unit 3 Pier 11 1549.448 -0.000 Pier ~ Unit 3 Pier 12 1648.938 -0.000 Pier ~	Superstructure Name: Unit 2 Description Attemptings Vehicle Path Engine Substructures
BRIDGE ALTERNATIVES Gontinuous 34 Span PSCMB (E) (C) Gontinuous 34 Span PSCMB (E) (C) Gontinuous 34 Span PSCMB Bridg FT PT Box (E) (C) (Continuous 34 Span PSCMB Bridg FT Unit 2 Gontinuous 34 Span PSCMB Brid FT Unit 2 Gontinuous 34 Span PSCMB Brid FT Unit 3 Gontinuous 34 Span PSCMB Brid FT Unit 4 FT Unit 5 Gontinuous 34 Span PSCMB Brid FT Unit 7 Gontinuous 34 FT Unit 7 FT Unit 7 FT Unit 8 Ft Stiffness Analysis	Unit 4 Pier 12 1700.000 -0.000 Pier Unit 4 Pier 13 1824.510 -0.000 Pier Unit 4 Pier 14 1974.510 -0.000 Pier Unit 4 Pier 15 2124.448 -0.000 Pier Unit 4 Pier 16 2248.719 -0.000 Pier Unit 5 Pier 16 2200.000 -0.000 Pier Unit 5 Pier 17 2420.287 -0.000 Pier Unit 5 Pier 18 2566.276 -0.000 Pier Unit 5 Pier 19 2712.521 -0.000 Pier Unit 5 Pier 20 2833.724 -0.000 Pier Unit 6 Pier 21 2990.000 -0.000 Pier Unit 6 Pier 21 2998.500 -0.000 Pier Unit 6 Pier 23 3219.990 -0.000 Pier	Select the substructure supports: Support 1 Unit 2 Pier 4 2 Unit 2 Pier 5 3 Unit 2 Pier 6 4 Unit 2 Pier 7 5 Unit 2 Pier 8
🖶 🖨 PIERS 🗸		

SUMMARY

- Location/Geometry
- BrR Information
- Geometry Challenges
- Post-Tension Limitations
- Live Load Distribution Factors
- Solid Sections
- Pier Input

Questions?

