AASHTOWare Bridge Rating Design Update

RADBUG 2015

Albany, NY – August 4, 2015

Comprehensive Bridge Software

AASHTOWare Bridge Design and Rating

"A Software Success Story"

A 16 year history of the development progression

from common to complex bridge analysis

for more than 40 agencies and 600 consultants!

The modernization proposes to create more powerful, easier to use tools to assist agencies in designing and load rating their inventory in a more cost-effective manner.

Why Modernize?

- Life span of the Bridge Design/Bridge Rating predecessor, BARS, was 20+ years
- It has been nearly 20 years since the design and development of the current system began and 16 years since it's April 1999 release (formerly known as Virtis)
- The design is based on the technology of the late 1990s.

Why Modernize?

When development started:

- Windows 95 or NT was common and was replacing Windows 3.11
 - Needed a 386DX processor

- Needed minimum 4 MB RAM (8 MB recommended)
- Hard drives in the 40-100 MB size were common
- There have been 7 versions of Windows OS since development began:
 - Windows 95, 98, ME, XP, Vista, 7, and 8 and Windows 10 last week

Why Modernize?

Currently:

- Windows 7 or 8 64 bit
- Memory 16 to 32 GB common
- Hard drives in 1 or 2 TB are common, very fast solid state drives becoming common in 250-500 GB range

Tremendous changes in OS and hardware over the last 15-20 years

Why Modernize?

7

- Recent addition of 3D analysis pushes the computational limits of the current system
- Software tools for development have significantly improved
- User expectations have matured
- Hardware has improved, need to take full advantage of new hardware capabilities (e.g. multi-threading)

Benefits:

It is time to migrate to a new architecture using the latest development tools.

- Significantly upgrade the core technology to a modern software architecture that better utilizes current and future hardware, and the latest software development technologies
- Improve analysis performance by taking advantage of multi-threading (running multiple tasks simultaneously) capabilities of the latest hardware

Benefits:

- Improve and simplify the user interface easier to use for beginners without losing modeling flexibility for advanced users
- Improve reporting capabilities
- Reduce maintenance costs
- Reduce implementation time for new features

Progress:

- Conducted a workshop with stakeholders to identify the requirements that drive the software design.
 - Summer 2013 Task Force, Users, Contractor
 - Let by specialist from Carnegie Mellon
- Completed an architecture design that will satisfy those requirements.
- Prepared conceptual user interface mockups of the modernized user interface.
- Solicitation for funding later this month

Quality Attributes

- #1 Performance
 - Reduced analysis time
- #2 Usability
 - User Interface, Error Reporting, Output
- #3 Extensibility
 - 3rd Party, Adding new functionality
- #4 Modifiability
 - Ease of making changes

Proposed Schedule

- 3 + 1 year
- 3 years for the actual modernization with 1 additional year for enhancements
- Modernization will be funded by solicitation
- Enhancements funded by license fees
- BrDR 6.8 last release with enhancements
- Interim bugs and Spec Updates

- A new, more robust architecture
- A modernized user interface similar to the existing interface so as not to require retraining of users but with sufficient changes to improve and simplify data management
- All capabilities of the existing system
- Complete reuse of all data contained within the existing database.

• A new analytical engine that matches the analysis results of the existing engine but is significantly faster when running on hardware containing a multi-core processor. As hardware containing more cores becomes available the performance of the new analytical engine will continue to improve.

Project will:

- Improved reporting of analysis results
- Many of the enhancements requested by the users
- A code base that is less costly to maintain

Trivia items:

- Over 8 million lines of software code
- Over 1000 windows
- Support 10 superstructure types
- Estimated agencies have spend \$100,000,000 to model their bridges in the software (conservative estimate)

3 Phases:

- Add new analysis engine
- User interface and data access
- Enhancements

Testing:

- Regression testing
- NCHRP 12-50
 - Report 485
- Easier to test between software versions
- Contractor using it
 - make it available to the users

Progress to date:

- Finite Element engine modernization underway
- New enhancements, when possible done in the new modernization architecture
- Design tools being developed in the modernized architecture
- Rating tool will be developed in modernized architecture

Other items:

- Task Force met with Bala in Fall of 2013 and he gave feedback on the product.
 - Overall he thought the product followed AASHTO Specifications
 - Offered some suggestions for additional enhancements
- Task Force works closely with T-18 (and other committees) to ensure the product is following the specs and their intent
- Continue to do this moving forward

SPR Funding option

 Task Force has worked with FHWA and have secured approval letter from FHWA to allow use of SPR funds.

In conclusion...

Improve efficiency for more than 600 consultants and 40 agencies.

"It's all about the data!" Licensing agencies have an enormous investment in their bridge data. The data and your investment will be preserved.

Thank you

