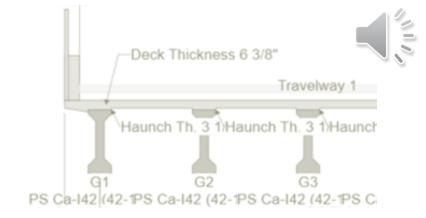

# ADVANCED CONCRETE MEMBER (ACM) ALT.














## ACM: BRDR VERSION 7.1.0+

Member alternative in:

- Girder System
- Girder Line

Shear Reinforcement Definitions

| <u> </u>    | E Vertical                  |                                     |                      |          |
|-------------|-----------------------------|-------------------------------------|----------------------|----------|
|             | 🖿 2Leg-US#5-Fy=60ksi        |                                     |                      |          |
|             | 📁 Horizontal                |                                     |                      |          |
| - 2         | MEMBERS                     | New Member Alternative              |                      | $\times$ |
| <b>•</b> •• | <b>I</b> G1                 |                                     |                      |          |
|             | ····· 井 Member Loads        | Material type:                      | Girder type:         |          |
|             | 🚡 Supports                  | Post tensioned concrete             | Advanced Concrete PT |          |
|             | ····· 🧭 MEMBER ALTERNATIVES | Prestressed (pretensioned) concrete |                      |          |
| <b>•</b> •• | <b>I</b> G2                 | Reinforced concrete                 |                      |          |
|             | I G3 (G2)                   |                                     |                      |          |
|             | I G4 (G2)                   | Steel                               |                      |          |
| <u></u>     | <b>I</b> G5                 | Timber                              |                      |          |
|             | 🕂 Member Loads              |                                     |                      |          |
|             | 🚠 Supports                  |                                     |                      |          |
|             | 📁 MEMBER ALTERNATIVES       |                                     | OK Car               | ncel     |
| <b>.</b>    | <b>I</b> G6                 |                                     |                      |          |
| 1           |                             | L                                   |                      |          |

A dvanced

C oncrete

M ember

| A New Member Alternative            | ×                       |
|-------------------------------------|-------------------------|
| Material type:                      | Girder type:            |
| Post tensioned concrete             | Advanced Concrete RC    |
| Prestressed (pretensioned) concrete | Reinforced Concrete I   |
| Reinforced concrete                 | Reinforced Concrete Tee |
| Steel                               |                         |
| Timber                              |                         |
|                                     |                         |
|                                     | OK Cancel               |
|                                     |                         |



## LIMITATIONS OF OTHER AVAILABLE GIRDER TYPES

Current limitation of other concrete girder types:

PT MCB:

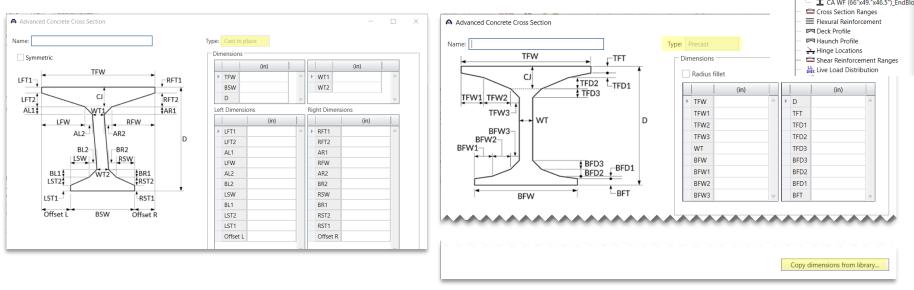
• Unable to analyze individual webs if girder lengths vary ACM  $\checkmark$ 

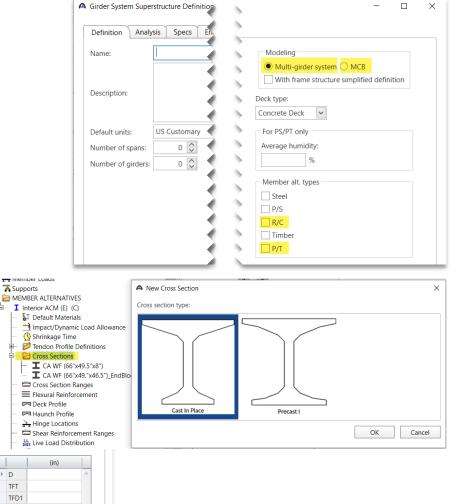
Not able to define individual PT paths for each girder or multiple tendon paths ACM  $\checkmark$ 

Not able to define partial length PT ACM  $\checkmark$ 

Girder System

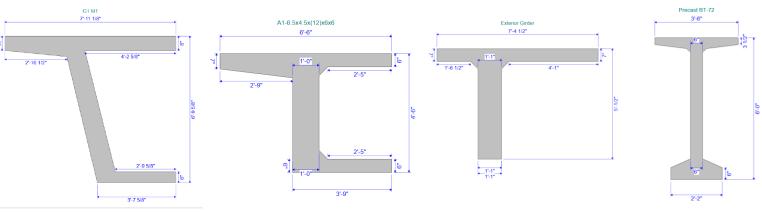
No capability for spliced girders ACM- some capability


(Available: Simple for DL, cont. for LL, no PT. Precast girders full span length)


No capability for RC precast girders ACM

Not able to define post-tensioning  $ACM \checkmark$ 

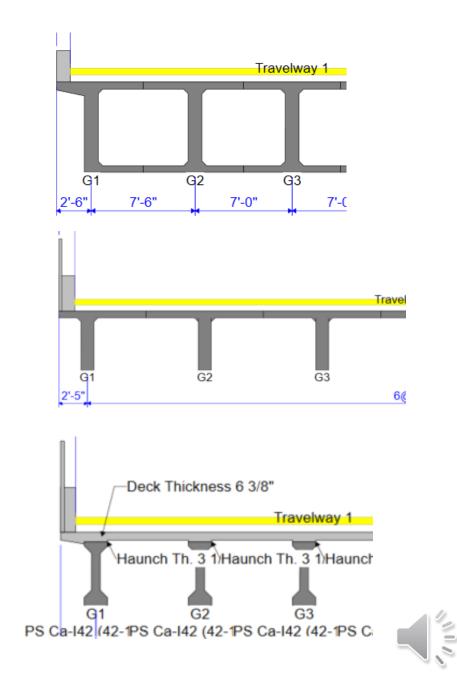
Not able to define variable depth precast girders, only one cross section per span ACM  $\checkmark$ 


- Built-in modeling versatility:
- MCB or open girders
- Reinforced and/or Post-Tensioned
- Versatile Cross Section Shapes:
  - Cast In Place: user defined
  - Precast I: user defined or import precast 'I' shapes from library





占...


### Versatile Cross Section Shapes:





Provides ability to model limited construction staging

| a | • ⊦ | linge             |                   |          |                  |                            |                                       |                                        |
|---|-----|-------------------|-------------------|----------|------------------|----------------------------|---------------------------------------|----------------------------------------|
|   |     |                   | Hi                | inge loo | ation            | Cor                        | nsider in stage                       |                                        |
|   |     | Support<br>number | Left or<br>of sup | -        | Distance<br>(ft) | Non-Composite<br>(Stage 1) | Composite<br>(long term)<br>(Stage 2) | Composite<br>(short term)<br>(Stage 3) |
|   | ►   | 2 -               | Right             | -        | 24               | $\checkmark$               |                                       |                                        |
|   |     | 3 -               | Left              | •        | 24               | $\checkmark$               |                                       |                                        |
|   |     |                   |                   |          |                  |                            |                                       |                                        |



### **PT Prestressing:**

- Partial length tendons
  - Cross sections with tendon analyzed as prestressed
  - Cross sections without tendon analyzed as reinforced
- Multiple tendon paths
  - Stacked or overlapping tendons
- Staged Construction, apply to
  - Stage 1 (non-composite) or
  - Stage 2 (composite)



Cross Section Transitions

90"x5'-

90"x40'-0"

90"x10'-4



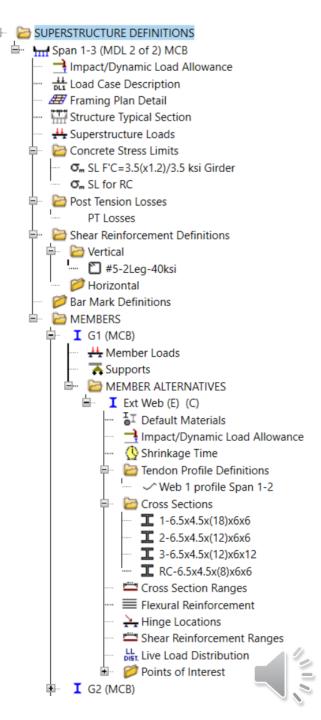
P/T

### Tree similar to other Girder System superstructures:

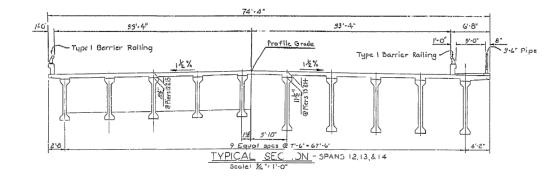
•In Superstructure Definition, choose RC and/or PT to make ACM available in tree

•Available only if PT chosen:

- Concrete Stress Limits
- Post Tension Losses
- Tendon Profile


•Cross Sections

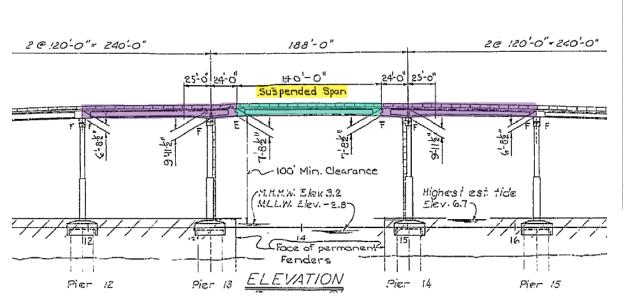
Cast In Place or Precast shapes


•Cross Section Ranges

- Apply defined cross sections
- Apply defined tendons if PT

| OSS       | sections                            | Post tensio                                  | ning                      | Effe    | ctive s        | upports              |                         |                                 |   |                                |                           |                                              |                         |
|-----------|-------------------------------------|----------------------------------------------|---------------------------|---------|----------------|----------------------|-------------------------|---------------------------------|---|--------------------------------|---------------------------|----------------------------------------------|-------------------------|
| .eft      | end projec                          | tion: 9                                      |                           | in      | Rigl           | nt end pr            | ojectio                 | in: 9                           |   | in                             |                           |                                              |                         |
|           | Star                                | t section                                    |                           |         | End se         | ction                |                         | Depth var                       | у | Support<br>number              | Start<br>distance<br>(ft) | Length<br>(ft)                               | End<br>distance<br>(ft) |
|           | PS Ca-I72 (                         | 72-19-19)                                    | -                         | PS Ca-I | /2 (72-        | 19-19)               | - N                     | lone                            | - | 1 -                            | 0                         | 85                                           | 85                      |
|           | PS Ca-172 (                         | 72-19-19)                                    | -                         | PS Ca-1 | 08 (10         | 3-19-19)             | - P                     | arabolic                        | - | 1 -                            | 85                        | 35                                           | 120                     |
|           | PS Ca-108                           | (108-19-19)                                  | -                         | PS Ca-I | 34 (84-        | 19-19)               | - P                     | arabolic                        | Ŧ | 2 -                            | 0                         | 24                                           | 24                      |
|           | PS Ca-184 (                         | 84-19-19)                                    | -                         | PS Ca-I | 34 (84-        | 19-19)               | - N                     | lone                            | Ŧ | 2 -                            | 24                        | 140                                          | 164                     |
| Þ         | PS Ca-184 (                         | 84-19-19)                                    | -                         | PS Ca-1 | 08 (10         | 3-19-19)             | * P                     | arabolic                        | Ŧ | 2 -                            | 164                       | 24                                           | 188                     |
|           | PS Ca-108                           | (108-19-19)                                  | -                         | PS Ca-I | 2 (72-         | 19-19)               | - P                     | arabolic                        | - | 3 -                            | 0                         | 35                                           | 35                      |
|           | PS Ca-172 (                         | 72-19-19)                                    | •                         | PS Ca-I | /2 (72-        | 19-19)               | - N                     | lone                            | - | 3 -                            | 35                        | 85                                           | 120                     |
|           | Section Ran                         | Post tension                                 |                           | Effect  | ive sup        |                      |                         |                                 |   |                                |                           |                                              |                         |
| ost       | tension loss                        |                                              |                           |         | Start<br>span  | Start di<br>into sta | rt span                 | End<br>span                     |   | distance<br>end span<br>(ft)   |                           | Stage                                        |                         |
| ost<br>Te | ndon assign                         | ments                                        | ile                       | e 1) 🔻  |                | Start di             | rt span                 | span <sup>1</sup>               |   |                                | Non-compo                 |                                              | e 1)                    |
| ost<br>Te | ndon assign<br>PT Sp1 To            | Tendon profi                                 | ile<br>Profile            |         | span           | Start di<br>into sta | rt span<br>t)           | span 1                          |   | end span<br>(ft)               | Non-compo<br>Non-compo    | osite (Stage                                 | -                       |
| ost<br>Te | ndon assign<br>PT Sp1 To            | Tendon profi<br>Sp2 Hinge (F<br>Sp2 Hinge (F | ile<br>Profile            |         | span<br>1      | Start di<br>into sta | rt span<br>t)<br>0      | span 1<br>2<br>2<br>2           |   | end span<br>(ft)<br>164        |                           | osite (Stage<br>osite (Stage                 | e 1)                    |
| ost<br>Te | PT Sp1 Tc<br>PT Sp1 Tc<br>PT Sp2 Di | Tendon profi<br>Sp2 Hinge (F<br>Sp2 Hinge (F | ile<br>Profile<br>Profile | e 2) 🔻  | span<br>1<br>1 | Start di<br>into sta | rt span<br>t)<br>0<br>0 | span 1<br>2<br>2<br>2<br>2<br>2 |   | end span<br>(ft)<br>164<br>164 | Non-compo                 | osite (Stage<br>osite (Stage<br>osite (Stage | e 1)<br>e 1)            |




### EXAMPLE 1: CANTILEVERED PSI GIRDERS AND SUSPENDED SPAN



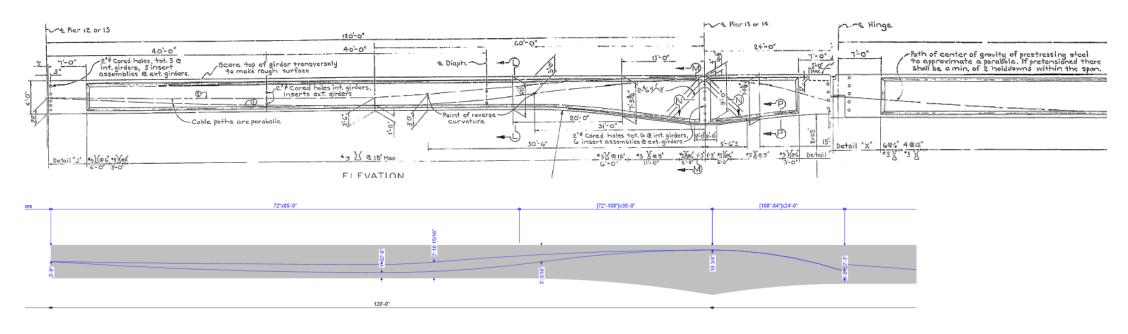
Structural Model:

3-Span continuous Girder System with framed bent

ACM with normal hinges within middle span.



| Definition Anal                                       | lysis Specs Engine      |                                                                                                      |                                                                                                                       |
|-------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| lame:<br>escription:                                  | Span 18-20 (Mdl 1 of 1) |                                                                                                      | Modeling <ul> <li>Multi-girder system O MCB</li> <li>With frame structure simplified definition</li> </ul> Deck type: |
| efault units:<br>umber of spans:<br>umber of girders: | US Customary            | Enter span lengths<br>along the reference<br>line:<br>Span Length<br>(ft)<br>1 120<br>2 188<br>3 120 | Concrete Deck                                                                                                         |


A Hinge

|   |   |              | Hir               | nge loo | ation            | Cor                        | isider in stage                       |                                        |
|---|---|--------------|-------------------|---------|------------------|----------------------------|---------------------------------------|----------------------------------------|
|   |   | port<br>nber | Left or<br>of sup | -       | Distance<br>(ft) | Non-Composite<br>(Stage 1) | Composite<br>(long term)<br>(Stage 2) | Composite<br>(short term)<br>(Stage 3) |
| Þ | 2 | *            | Right             | *       | 24               | $\checkmark$               | $\checkmark$                          | $\checkmark$                           |
|   | 3 | *            | Left              | Ŧ       | 24               | <b>v</b>                   | 1                                     | 1                                      |



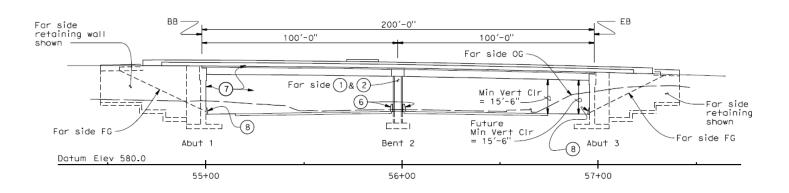
### **EXAMPLE 1: CANTILEVERED PSI GIRDERS** AND SUSPENDED SPAN

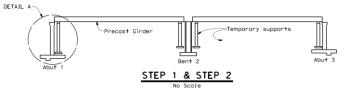
### **Prestressing:**



- Stressing & Placing Sequence of Operations
- Stress girder with Prestress Force O. Non-composite (Stage 1) tensioning Pre or Post tensioning Erect Span 12, 14 \$ 13 girders Stress girder with Prestress Force O. Non-composite (Stage 1) tensioning Post tensioning Place Stabs, see "Stab Placing Diagram, Spans 12, 13 \$ 14".




### EXAMPLE 1: CANTILEVERED PSI GIRDERS AND SUSPENDED SPAN


|                                                                                     | Tensioning Type<br>Per As-Builts                                                                                           | Stage Applied in<br>Model                                                                                                                                                       | Limitations                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prestress in girder before erecting                                                 | Pre-tension or<br>Post-tension                                                                                             | PT- Stage 1                                                                                                                                                                     | Losses not accurate if<br>Pre-T                                                                                                                                                                                                                                    |
| Prestress in girder before erecting                                                 | Pre-tension or<br>Post-tension                                                                                             | PT- Stage 1                                                                                                                                                                     | Losses not accurate if<br>Pre-T                                                                                                                                                                                                                                    |
| Additional prestress applied to end spans<br>after erecting girders but before deck | Post-tension                                                                                                               | PT- Stage 1                                                                                                                                                                     | None                                                                                                                                                                                                                                                               |
| P                                                                                   | Prestress in girder before erecting<br>Additional prestress applied to end spans<br>ofter erecting girders but before deck | Prestress in girder before erecting Pre-tension or Post-tension | Prestress in girder before erectingPre-tension or<br>Post-tensionPT- Stage 1Prestress in girder before erectingPre-tension or<br>Post-tensionPT- Stage 1Additional prestress applied to end spans<br>offer erecting girders but before deckPost-tensionPT- Stage 1 |

Tendon Profile Definitions
 PT Sp1 To Sp2 Hinge (Profile 1)
 PT Sp1 To Sp2 Hinge (Profile 2)
 PT Sp2 Drop-In
 PT Sp2 Hinge To Sp3 (Profile 1)
 PT Sp2 Hinge To Sp3 (Profile 2)

|     | sections Post tensioning Effections | ve suppo      |                                           |             |                                       |                         |
|-----|-------------------------------------|---------------|-------------------------------------------|-------------|---------------------------------------|-------------------------|
|     | idon assignments                    | *             |                                           |             |                                       |                         |
| ler |                                     | T             | 1                                         | 1           | 1                                     | 1                       |
|     | Tendon profile                      | Start<br>span | Start distance<br>into start span<br>(ft) | End<br>span | End distance<br>from end span<br>(ft) | Stage                   |
| Þ   | PT Sp1 To Sp2 Hinge (Profile 1)     | 1             | 0                                         | 2           | 164                                   | Non-composite (Stage 1) |
|     | PT Sp1 To Sp2 Hinge (Profile 2)     | 1             | 0                                         | 2           | 164                                   | Non-composite (Stage 1) |
|     | PT Sp2 Drop-In                      | 2             | 24                                        | 2           | 24                                    | Non-composite (Stage 1) |
|     | PT Sp2 Hinge To Sp3 (Profile 1)     | 2             | 164                                       | 3           | 0                                     | Non-composite (Stage 1) |
|     | PT Sp2 Hinge To Sp3 (Profile 2)     | 2             | 164                                       | 3           | 0                                     | Non-composite (Stage 1) |





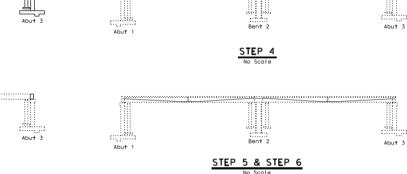


\_\_\_Abut diaphragm, Typ

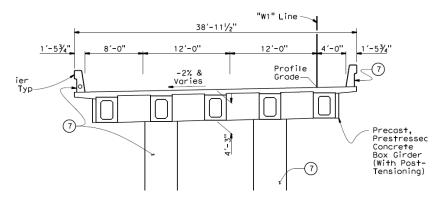
ergilik,

Abut 1

Intermediate


ļ. l.

Bent 2


STEP 3

No Scale

diaphragm, Typ



Bent cap-



#### BRIDGE CONSTRUCTION SEQUENCE

- Step 1. Construct abutments, bent footings and columns.
- Step 2. Erect precast girders on temporary supports. Temporary supports are to be located within 2'-0" of precast girder ends. Maximum loading per bent footing shall be 310 kips per span. Maximum loading per abutment footing shall be 11 kips per linear foot.
- Step 3. Construct abutment and intermediate diaphragms.
- Step 4. Construct deck in span 1. Starting at Abutment 3, construct deck in span 2 and bent cap last.
- Step 5. Complete longitudinal prestressing (post-tensioning). Longitudinal prestressing (post-tensioning) shall not be permitted sooner than 28 days after the last concrete has been placed.
- Step 6. Remove temporary supports. Install Type 736 Mod barrier. Barrier shall not be placed prior to post-tensioning.

LEGEND:

..... Indicates previously completed steps



🗛 Hinge

Support

number

2

Hinge location

-

Distance Non-Composite

(Stage 1)

 $\checkmark$ 

 $\checkmark$ 

(ft)

3

3

Left or right

of support

Left

Right

Consider in stage

Composite

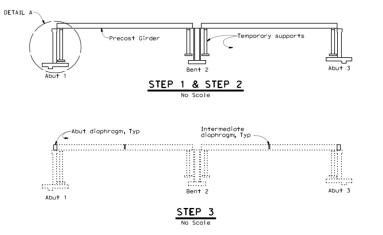
(long term)

(Stage 2)

Composite

(short term)

(Stage 3)

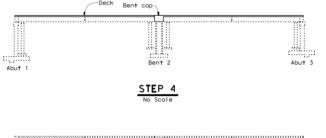

### Structural Model:

2-Span continuous Girder System with framed Bent connection

ACM with Stage 1 only hinges at temp supports

| Girder System Superstructure Definition                                           | *                                                                                    | – 🗆 X                                                                                |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Definition Analysis Specs Engine                                                  |                                                                                      |                                                                                      |
| Name: Span 1-2 (MDL1 of 2)                                                        |                                                                                      | Modeling<br>Multi-girder system O MCB                                                |
| Description:                                                                      | <u>è</u>                                                                             | With frame structure simplified definition                                           |
|                                                                                   |                                                                                      | Deck type:<br>Concrete Deck V                                                        |
| Default units:   US Customary     Number of spans:   2     Number of girders:   5 | Enter span lengths<br>along the reference<br>line:<br>Span Length<br>(ft)<br>1 98.75 | For PS/PT only Average humidity: % Member alt. types                                 |
|                                                                                   | 2 98.75                                                                              | <ul> <li>Steel</li> <li>✓ P/S</li> <li>R/C</li> <li>Timber</li> <li>✓ P/T</li> </ul> |

### **Prestressing:**



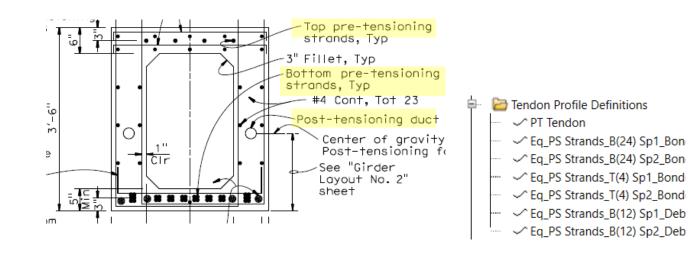

#### BRIDGE CONSTRUCTION SEQUENCE

- Step 1. Construct abutments, bent footings and columns.
- Step 2. Erect precast girders on temporary supports. Temporary supports are to be located within 2'-0" of precast girder ends. Maximum loading per bent footing shall be 310 kips per span. Maximum loading per abutment footing shall be 11 kips per linear foot.
- Step 3. Construct abutment and intermediate diaphragms.
- Step 4. Construct deck in span 1. Starting at Abutment 3, construct deck in span 2 and bent cap last.
- Step 5. Complete longitudinal prestressing (post-tensioning). Longitudinal prestressing (post-tensioning) shall not be permitted sooner than 28 days after the last concrete has been placed.
- Step 6. Remove temporary supports. Install Type 736 Mod barrier. Barrier shall not be placed prior to post-tensioning.

#### **Pre-tensioning** Non-Composite (Stage 1) Tensioning

#### **Post-tensioning** Composite (Stage 2) tensioning

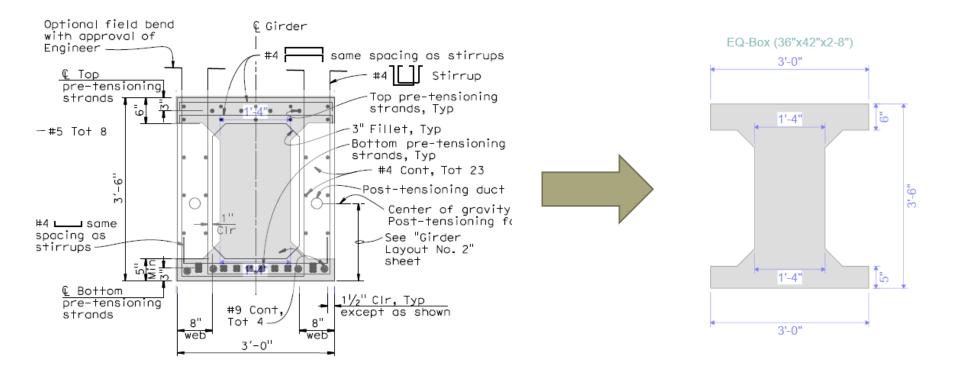






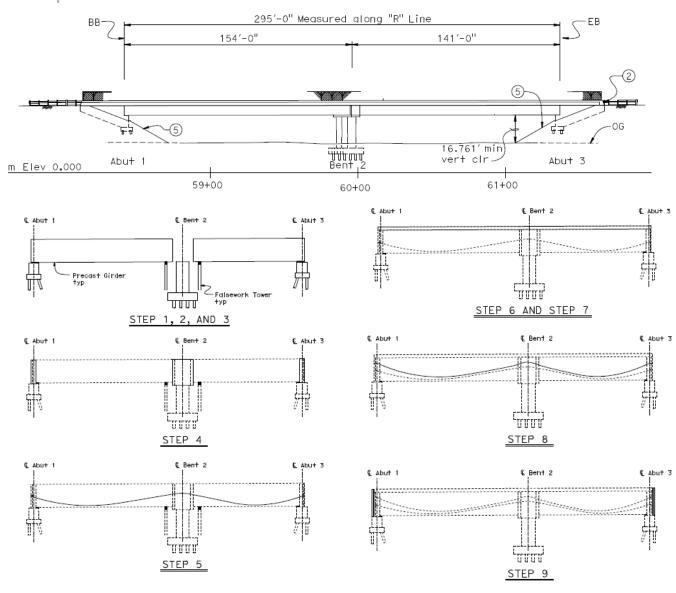

LEGEND:

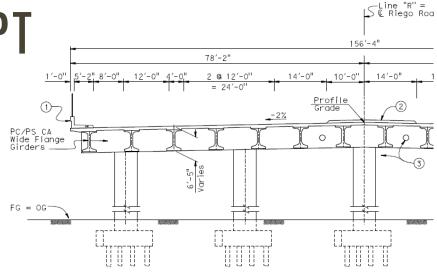
..... Indicates previously completed steps


| Prestressing    | Description                                                          | Tensioning Type<br>Per As-Builts | Stage Applied in<br>Model | Limitations            |
|-----------------|----------------------------------------------------------------------|----------------------------------|---------------------------|------------------------|
| Precast girders | Prestress in girder before erecting                                  | Pre-tension                      | PT- Stage 1               | Losses not<br>accurate |
| Post Tension    | Additional prestress applied after erecting girders and placing deck | Post-tension                     | PT- Stage 2               | None                   |



#### A Cross Section Ranges


|    | ension losses: PT Losses          |   | ~             | ]                                         |             |                                       |                                |
|----|-----------------------------------|---|---------------|-------------------------------------------|-------------|---------------------------------------|--------------------------------|
| en | don assignments<br>Tendon profile |   | Start<br>span | Start distance<br>into start span<br>(ft) | End<br>span | End distance<br>from end span<br>(ft) | Stage                          |
| Þ  | Eq_PS Strands_B(12) Sp1_Debond    | - | 1             | 16.25                                     | 1           | 18.25                                 | Non-composite (Stage 1)        |
|    | Eq_PS Strands_B(12) Sp2_Debond    | • | 2             | 18.25                                     | 2           | 16.25                                 | Non-composite (Stage 1)        |
|    | Eq_PS Strands_B(24) Sp1_Bonded    | • | 1             | 0                                         | 1           | 3.25                                  | Non-composite (Stage 1)        |
|    | Eq_PS Strands_B(24) Sp2_Bonded    | - | 2             | 3.25                                      | 2           | 0                                     | Non-composite (Stage 1)        |
|    | Eq_PS Strands_T(4) Sp1_Bonded     | • | 1             | 0                                         | 1           | 3.25                                  | Non-composite (Stage 1)        |
|    | Eq_PS Strands_T(4) Sp2_Bonded     | - | 2             | 3.25                                      | 2           | 0                                     | Non-composite (Stage 1)        |
|    | PT Tendon                         | - | 1             | 0                                         | 2           | 0                                     | Composite (long term) (Stace 2 |


### **Cross Section:**



LLDF must be input manually since PS precast box section not directly supported by ACM







#### BRIDGE CONSTRUCTION SEQUENCE

Step 1: Construct abutments, bent footings, and columns.

Step 2: Erect Falsework Towers.

- Step 3: Erect precast prestressing girders on Abutment and falsework towers.
- Step 4: Construct cast-in-place end diaphragms and bent cap. Allow cast-in-place end diaphragms and bent cap concrete to reach a minimum strength of 3500 psi.
- Step 5: Complete Stage 1 prestressing (post-tensioning).
- Step 6: Remove Falsework Towers.
- Step 7: Form and pour deck concrete.
- Step 8: Complete Stage 2 prestressing (post-tensioning). Stage 2 prestressing shall not be permitted less than 10 days after deck concrete has been placed and the deck concrete compressibe strength at time of stressing has achieved the minimum specified f<sub>ci</sub> (3500 psi).

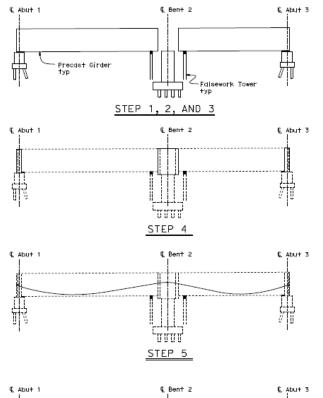
Step 9: Complete prestress blockouts, construct backwalls at abutments, approach slab, barrier rails, and raised median.

-

Structural Model:

2-Span continuous Girder System with Framed bent

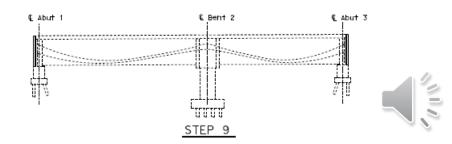
ACM with Stage 1 only hinges at temp supports


| Definition Analy                                         | sis Specs Engine      |                                                                                                     |                                                                                                 |
|----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Name:<br>Description:                                    | \$pan 1-2 (MDL1 of 2) |                                                                                                     | Modeling<br>Multi-girder system MCB<br>With frame structure simplified definition<br>Deck type: |
| Default units:<br>Number of spans:<br>Number of girders: | US Customary          | Enter span lengths<br>along the reference<br>line:<br>Span Length<br>(ft)<br>1 152.485<br>2 139.485 | Concrete Deck                                                                                   |

🗛 Hinge

|   |                   | Hinge location              |   |                  | Consider in stage          |                                       |                                        |  |  |
|---|-------------------|-----------------------------|---|------------------|----------------------------|---------------------------------------|----------------------------------------|--|--|
|   | Support<br>number | Left or right<br>of support |   | Distance<br>(ft) | Non-Composite<br>(Stage 1) | Composite<br>(long term)<br>(Stage 2) | Composite<br>(short term)<br>(Stage 3) |  |  |
| ► | 2 -               | Left                        | - | 3.5              | $\checkmark$               |                                       |                                        |  |  |
|   | 2 *               | Right                       | * | 3.5              | <b>v</b>                   |                                       |                                        |  |  |




### Prestressing:



#### BRIDGE CONSTRUCTION SEQUENCE

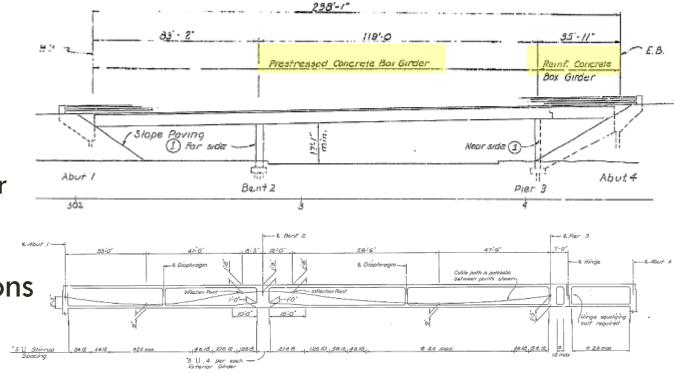
- Step 1: Construct abutments, bent footings, and columns.
- Step 2: Erect Falsework Towers.
- Step 3: Erect precast prestressing girders on Abutment and falsework towers.
- Step 4: Construct cast-in-place end diaphragms and bent cap. Allow cast-in-place end diaphragms and bent cap concrete to reach a minimum strength of 3500 psi.
- Step 5: Complete Stage 1 prestressing (post-tensioning).
- Step 6: Remove Falsework Towers.
- Step 7: Form and pour deck concrete.
- Step 8: Complete Stage 2 prestressing (post-tensioning). Stage 2 prestressing shall not be permitted less than 10 days after deck concrete has been placed and the deck concrete compressibe strength at time of stressing has achieved the minimum specified f<sub>ci</sub> (3500 psi).
- Step 9: Complete prestress blockouts, construct backwalls at abutments, approach slab, barrier rails, and raised median.
- Step 9: Complete prestress blockouts, construct backwalls at abutments, approach slab, barrier rails, and raised median.





#### **Pre-tensioning** Non-composite (Stage 1) tensioning

**Post-tensioning** Non-Composite (Stage 1) tensioning


> **Post-tensioning** Composite (Stage 2) tensioning

| Prestressing    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tensionin<br>Per As-Bu                         |              |                                                                                                              | age Appl<br>odel                                                                                                                                        | ied in                                                                                                                                                                                                                  | Limitations            |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Precast girders | Prestress in girders before erecting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pre-tension                                    | Pre-tension  |                                                                                                              | - Stage 1                                                                                                                                               |                                                                                                                                                                                                                         | Losses not<br>accurate |
| Post Tension 1  | Prestress applied after erecting girder but before deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bost-tensio                                    | Post-tension |                                                                                                              |                                                                                                                                                         |                                                                                                                                                                                                                         | None                   |
| Post Tension 2  | Prestress applied after placing deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Post-tensio                                    | Post-tension |                                                                                                              |                                                                                                                                                         |                                                                                                                                                                                                                         | None                   |
|                 | Indon (Stage 1)       Image: Tendon assisted and the second assisted assiste | Post tensioning Effective s<br>sees: PT Losses | Start St     | to start span<br>(ft)         s           0         0           15         3.25           3.25         18.25 | 1         3.25           1         18.25           2         0           2         0           2         0           2         15           2         0 | Stage<br>Non-composite (Stage 1<br>Non-composite (Stage 1<br>Non-composite (Stage 1<br>Non-composite (Stage 1<br>Non-composite (Stage 1<br>Non-composite (Stage 1<br>Non-composite (Stage 1<br>Composite (long term) (S |                        |

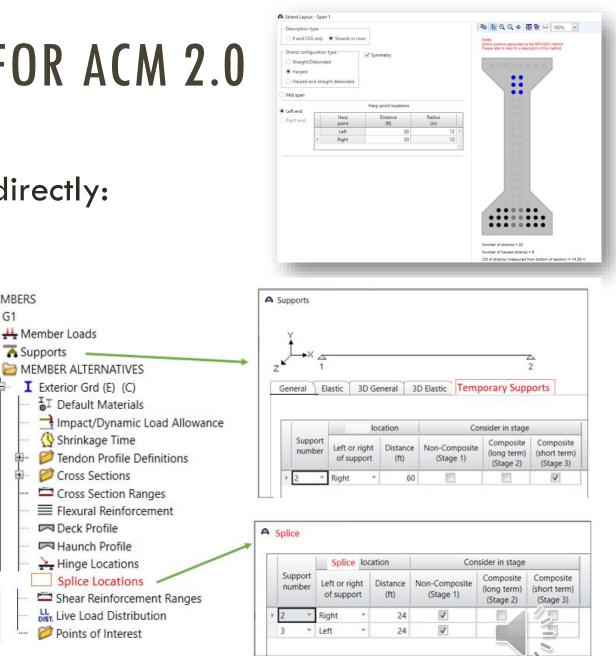
## **OTHER EXAMPLES**

### CIP MCB

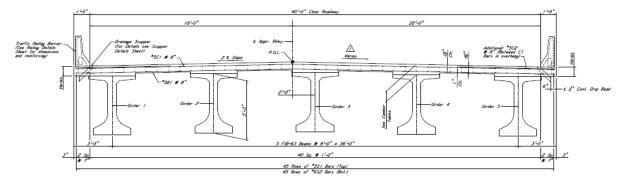
- with different tendon paths in each girderOnly portion of bridge post-tensioned
- Overlapping tendons, stacked tendons
- T girder (RC and/or PT)
- Cont. bridge where girder type changes (e.g. Precast I main spans, T girder end spans)
- Use ACM when structure has features that are outside the capability of other types



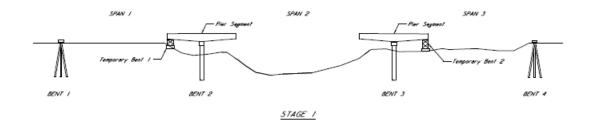
## **POSSIBLE IMPROVEMENTS FOR ACM 2.0**

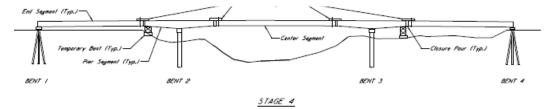

MEMBERS

I G1


A Supports

- Add capability to model Pre-tensioning directly:
  - Strand patterns & debonding
  - Harped profile
- Additional Cross Section Shapes?
- Spliced girders:
  - Splice Locations
    - Vertical support and release for moment
  - Additional intermediate stages (Stage 1a, 1b, 1c, 2a, 2b, etc)


Add Option for Temporary Support

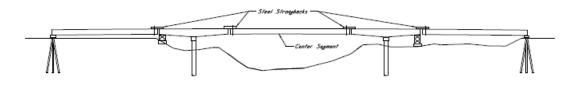


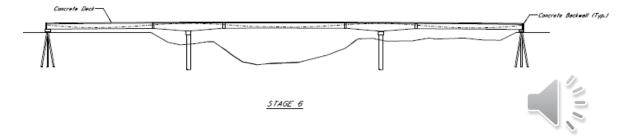

### ACM 2.0 EXAMPLE 1



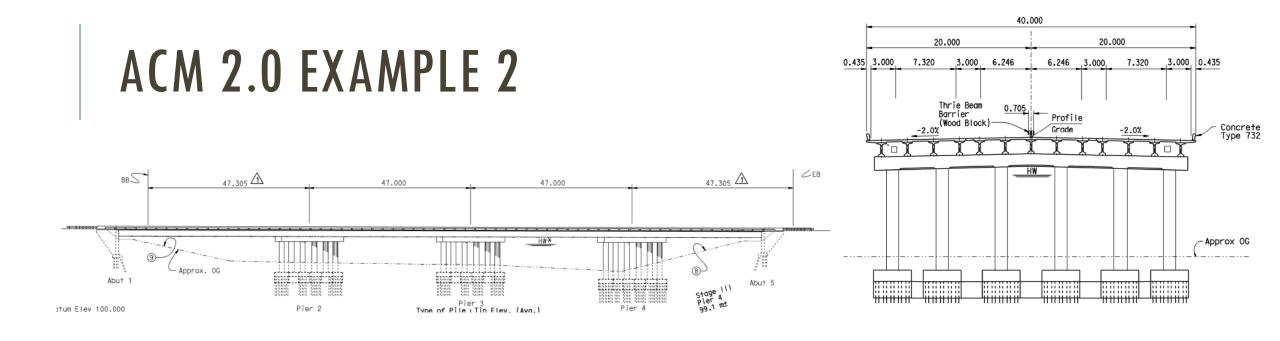









STAGE 5





STAGE 3





## **ADDITIONAL RESOURCES**

### AASHTOWare Bridge website, Training page

https://www.aashtowarebridge.com/bridge-rating-and-design/training/

#### 2021 RADBUG Presentation "Advanced (Post-Tensioned) Concrete Beam"

#### **User Group Information**

2022 User Group – Training

2021 RADBUG Virtual Meeting

#### "Advanced Concrete" Tutorials

**Tutorials** 





# **THANK YOU!**

Igor Chernioglo, P.E. igor.chernioglo@dot.ca.gov

