

Subhadeep Ghosh, P.E. subhadeep@promiles.com

AASHTOWare RADBUG August 8, 2023

General Enhancement (E)

E1: Advanced Concrete Multicell

Box

E2: Report Tool Phase 1

E3: Grid copy and paste

E4: Licensing Mechanism

E5: WiX Installer Phase 2

E6: Capacity Calculator 2.0

E7: ARC Tool Usability

Improvements

E8: Update Tutorial

E9: Truss and Gusset Plate

Adjacent Vehicle Analysis

E10: Gusset Plate Shear Analysis

Improvements

E11: MBE 2023 Interim Update

User Group Enhancement (UG)

UG1: LFR of Curved Steel Girder Spans > 300'

UG2: LRFR Concrete Moment Redistribution

UG3: Culvert Design Tool Final Iteration

UG4: Precomputed Data Window Filter

UG5: Square Rebar

Maintenance Work (M)

M1: Database Maintenance

M2: Rating Method Rename

M3: 3D Mesh Generation Improvements

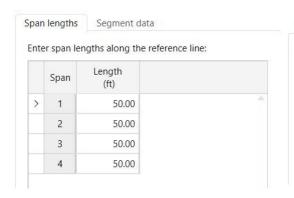
M4: LRFD Maximum Aggregate Size Input

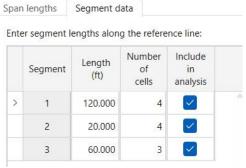
M5: LRFD Modulus of Rupture Input

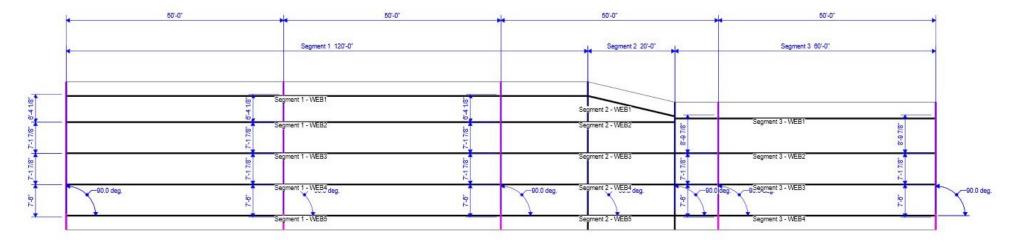
M6: Variable Axle Spacing for Permit Trucks

M7: Concurrent Moments for Cb Calculation

M8: Net Area Deduction for Truss LRFR

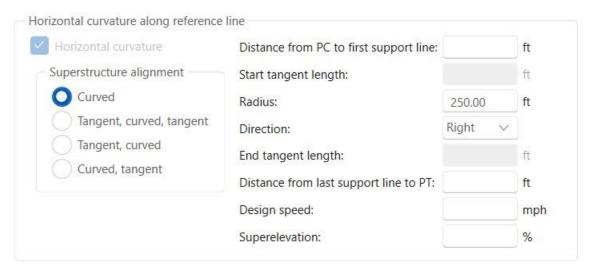

Service Unit Work (SU)

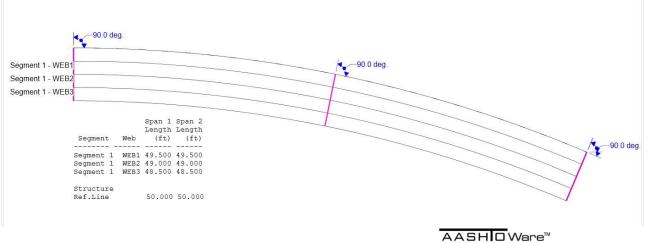

• SU1: General Preference Additions



E1: Advanced Concrete Multicell Box

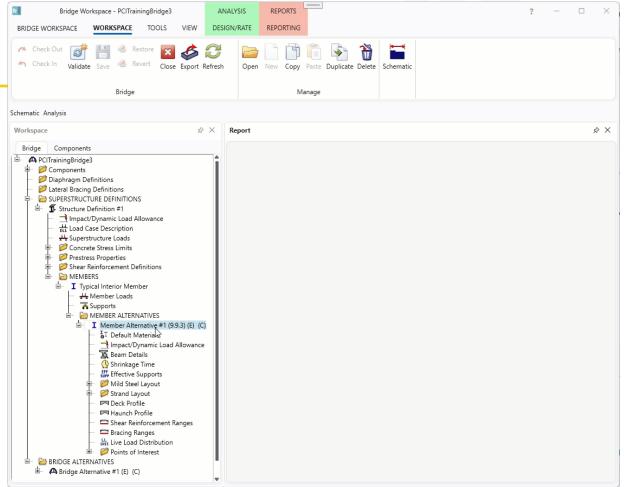
- Define multicell box in multiple segments
- Each segment can have different number of cells





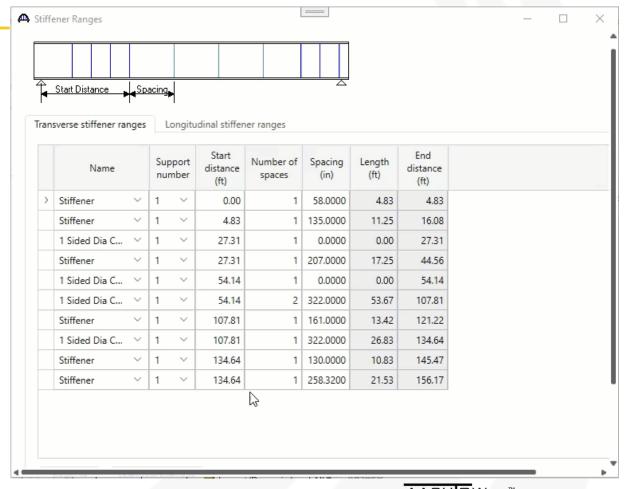
E1: Advanced Concrete Multicell Box

- Define horizontal curvature
- Line girder only LFR and LRFR
- Update for integral pier modeling



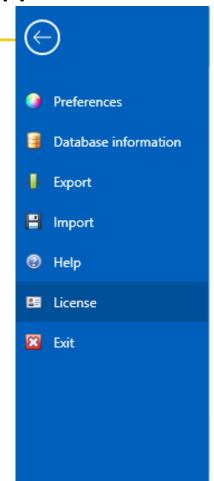
E2: Report Tool Phase 1

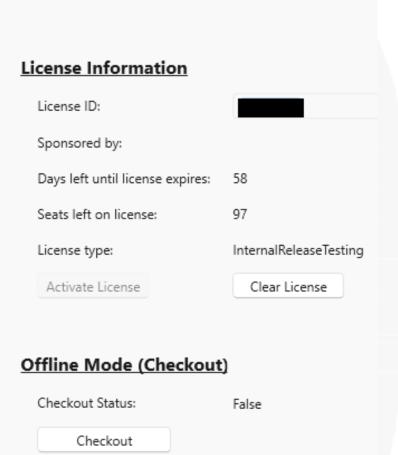
- BWS tree driven reporting
- Report Tool Template Editor
 - Custom BWS Report Templates
 - Drag and drop addition
- Report Tool Viewer
 - BWS tree report preview
 - Select one or more templates
- Only for superstructure with prestressed members



E3: Grid Copy and Paste

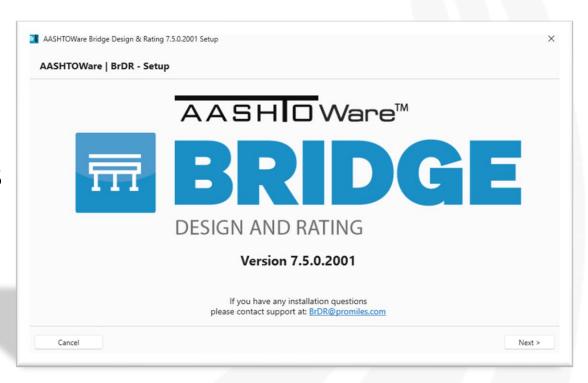
- Extend the copy and paste functionality to all grids for
 - BrDR
 - Design Tools
- Grids have "Excel-Like" behavior
 - Single click to select
 - Double click to edit
 - Click and drag selection





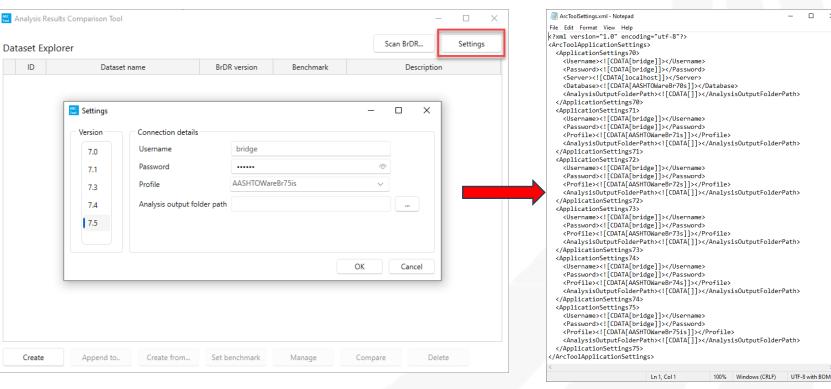
E4: License Mechanism

- BrDR Desktop Service BrDR and Design Tools use the same license
- All license types have a single installer
- Secure exported model with cryptographic signature
- Offline use with license checkout mode (Agency Unlimited Only)



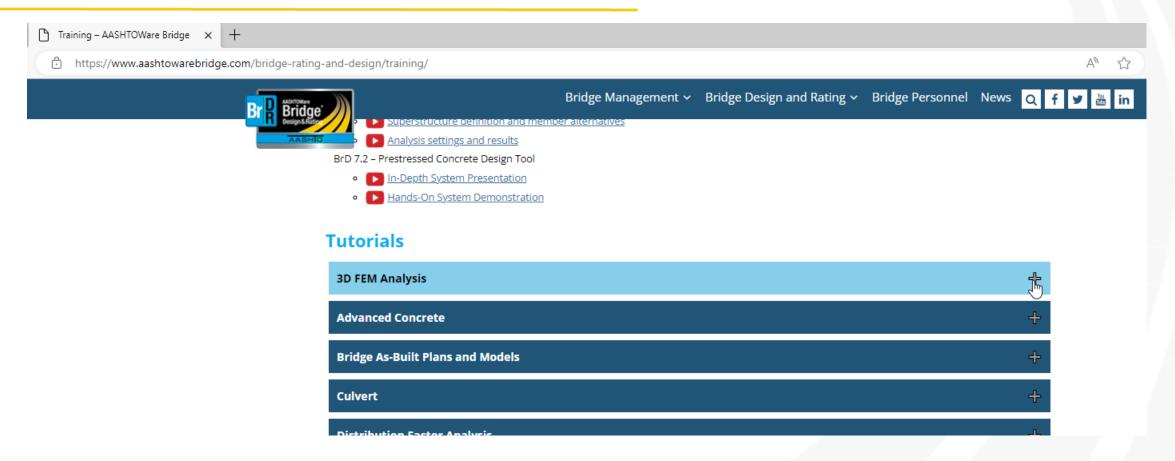
E5: WiX Installer – Phase 2

- New UI
- Improved error handling and recovery
- Improved silent installation commands
- Improved installer modify capability
- Installer upgrade capabilities
- Upgrade to WiX v4 and .NET 6 support

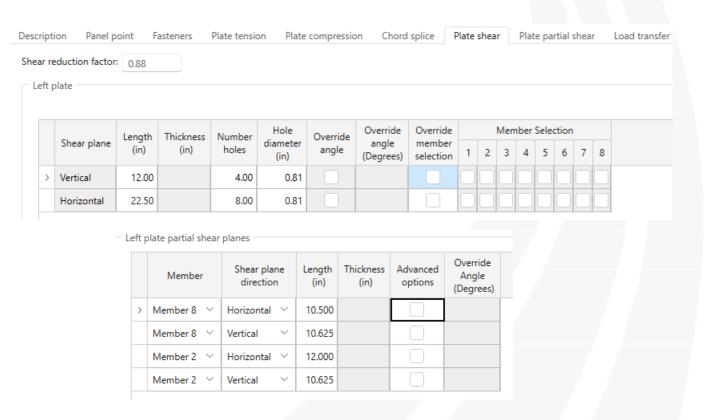

E6: Capacity Calculator 2.0

- Will be used with Engine 2.0 modules
- Based on Cross Section 2.0

E7: ARC Tool Usability


- Settings window for connection settings
- Relocate ARC Tool database
- Add additional columns in UI

E8: Update Tutorials


E9: Truss and Gusset Plate Adjacent Vehicle Analysis

- For LFR
 - Truss LFR already supported
 - Gusset plate LFR will be supported
- For LRFR
 - Truss LRFR will be supported
 - Gusset plate LRFR will be supported

E10: Gusset Plate Shear Analysis Improvements

- Consider members for shear plane ignored by AASHTO engine.
- Consider shear plane other than horizontal
- Override partial shear plane angle for partial shear plane along a non-truss member

E11: MBE 2023 Interim Update

- Consider concurrent actions for load rating related to shear
- New control option "Consider iterative shear rating"
 - 6A.4.2.1 Shear rating
 - 6A.5.8 Longitudinal reinforcement rating for shear
- New control option "Modify MCFT theta"
- New control option "Modify MCFT size effect"

For the purposes of load rating and application of MCFT it is permissible to modify the LRFD Article 5.7.3.4.2 as follows:

- In areas of low strain where the section remains uncracked, that is M_u < M_{cr}, the strain ε_s may be assumed to be zero regardless of values of M_u and V_u; therefore, θ can be taken as 29 degrees.
- For reinforced concrete members with web reinforcement Av < Av min, the beta should be adjusted by applying the size effect. For prestressed concrete beams, if fpc/f c is greater than or equal to 0.02, regardless of the amount of shear reinforcement, the size effect may be neglected.

 β can be taken as shown below-

$$\beta = \frac{4.8}{(1 + 750\varepsilon_s)}$$

UG1: LFR of Curved Steel Girder Spans > 300'

- AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges 2003 applies to spans up to 300'
- History of construction problems with spans > 300'
- Ignore span limit for rating with warning

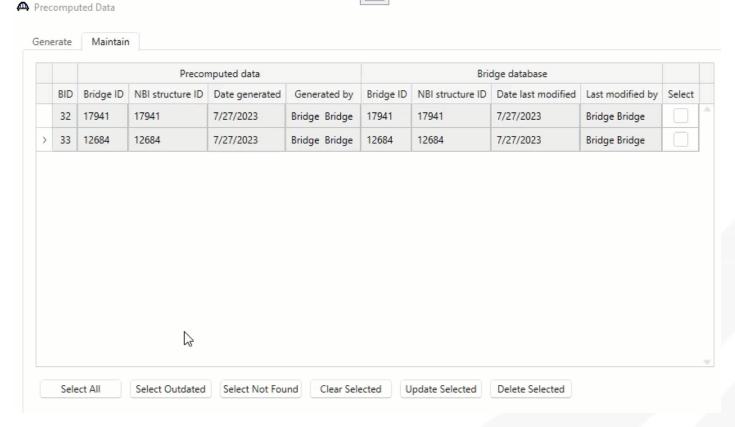
UG2: LRFR Concrete Moment Redistribution

- New LRFR control option "Allow moment redistribution"
- General process
 - Adjust percent of moment redistribution at each pier (up to 20%)
 - Evaluate controlling rating factor to achieve
 - Critical positive flexure RF = Critical negative flexure RF

5.6.3.4—Moment Redistribution

In lieu of more refined analysis, where bonded reinforcement that satisfies the provisions of Article 5.10.8 is provided at the internal supports of continuous spans, negative moments determined by elastic theory at strength limit states may be increased or decreased by not more than $1000\varepsilon_t$ percent, with a maximum of 20 percent. Redistribution of negative moments shall be made only where ε_t is equal to or greater than $1.5\varepsilon_{tl}$ at the section at which moment is reduced, where ε_{tl} is the tension-controlled strain limit specified in Article 5.6.2.1.

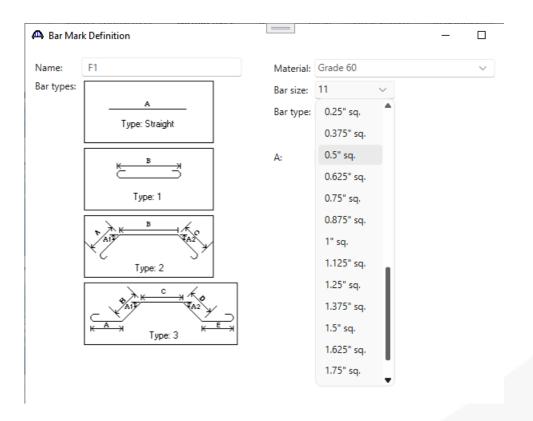
Positive moments shall be adjusted to account for the changes in negative moments to maintain equilibrium of loads and force effects.


UG3: Culvert Design Tool Final Iteration

- Depth of fill not adjusted based on top slab design
- Reinforcement development handling
- Consider cutoff bars for final design
- Consider horizontal joint for design
- Horizontal leg of interior wall consideration for top slab

UG4: Precomputed Data Window Filter

Filtering option in all columns of the Maintain tab



UG5: Square Rebars

Consider square rebars with nominal diameter

M1: BrDR Database Maintenance

- Database connection pooling
- Reconnect to database automatically
- Encrypt database connection
- Additional Azure connection type
 - Azure MFA
 - Azure Integrated Active Directory

M2: Rating Method Rename

Rename ASD rating to ASR rating, LFD rating to LFR rating

- AASHTO engine names
- Manual for Bridge Evaluation UI notations
- Method of Solution names
- Domain API property and method names
- Analysis API System type constants
- Does not impact UI notations from ASD or LFD Spec

Factors

2002 AASHTO Std. Specifications

Analysis module

AASHTO LFR

AASHTO LRFD

type ASR

LFR

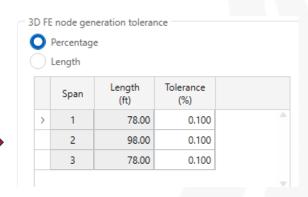
LRFD

LRFR

Selection type

System Default

System Default

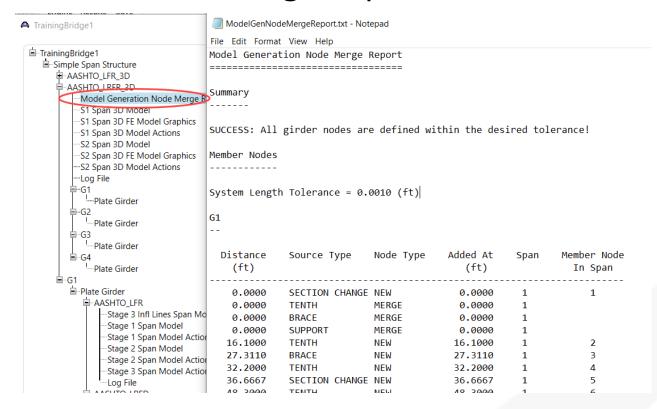

System Default

System Default

Spec version

M3: 3D Mesh Generation Improvements

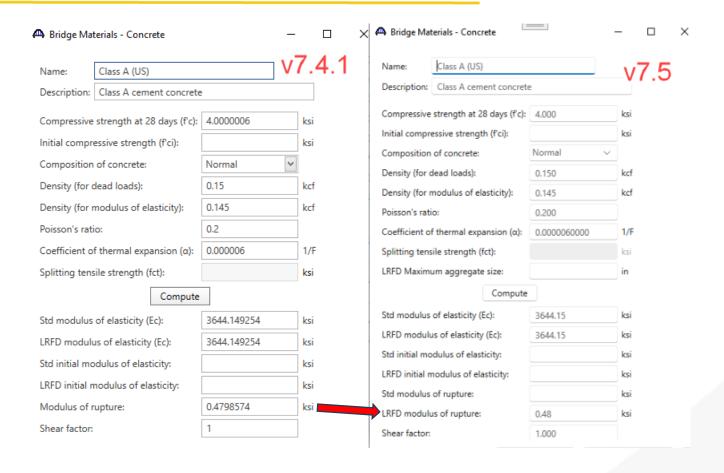
- Limit small elements
- Node merging percentage or length tolerance by span instead of hardcoded 0.1% for all spans



M3: 3D Mesh Generation Improvements

Model Generation Node Merge Report

M4: LRFD Maximum Aggregate Size Input


• Default value is 1.0

A Bridge Ma	terials - Concrete	L		– 🗆 X	
Name:	Class A (US)				
Description: Class A cement concrete		e			
Compressive strength at 28 days (f'c): 4.0		4.000	ksi		
Initial compressive strength (f'ci):			ksi		
Composition of concrete:		Normal V			
Density (for dead loads):		0.150	kcf		
Density (for modulus of elasticity):		0.145	kcf		
Poisson's ratio:		0.200			
Coefficient of thermal expansion (α):		0.0000060000	1/F		ng parameter as influence
Splitting tensile strength (fct):			ksi	aggregate size, s _{xe} , sha	If be determined as:
LRFD Maxim	um aggregate size:		in	5 = 5 1.38	/ ·
	Compute			$s_{xe} = s_x \frac{1.38}{a_g + 0.63}$	(5.7.3.4
Std modulus of elasticity (Ec):		3644.15	ksi		
LRFD modulus of elasticity (Ec):		3644.15	ksi		
Std initial modulus of elasticity:			ksi		
Sta initial me			ksi		
	modulus of elasticity:				
	_		ksi		
LRFD initial r	_	0.48	ksi ksi		

M5: LRFD Modulus of Rupture Input

M6: Variable Axle Spacing for Permit Trucks

- Evaluate variable axle spacing for permit trucks
- Applicable to both LFR and LRFR
- LRFR permit live load factor based on maximum axle spacing

M7: Use Concurrent Moments in Cb Calculations

- New LRFR and LRFD control options "Consider concurrent moments in Cb calculation"
- Use concurrent moments along unbraced length
- Based on LRFD C6.10.8.2.3

Strict application of the C_b provisions would require the consideration of the concurrent moments along the unbraced length. This would necessitate the calculation of:

- (1) the maximum possible value of f_2 at the brace point with the higher compressive stress using the critical moment envelope value, along with calculation of f_{mid} and f_0 using the concurrent moments, and
- (2) the maximum possible compressive value of f_{mid} using the critical moment envelope value, along with the calculation of f_0 and f_2 using the concurrent moments.

M8: Net Area Deduction for Truss LRFR

- Add new input for truss net area deduction
- For existing models
 - Use LFR effective area deduction with a warning

SU1: General Preference Additions

- LRFR Condition Factor
- LRFR System Factor
- Additional self load
 - As load per unit length
 - As percentage

