

LOAD RATING TIMBER BENT CAPS USING BrDR SOFTWARE (A WORKAROUND APPROACH)

Vinacs (Murugesu) Vinayagamoorthy, Caltrans AASHTOWare BrDR 7.4.0 August 8, 2023

OUTLINE

> Brief California Facts

- > Transverse Beam Cap Analysis Overview
- > Existing BrDR Floor System modules
- > Workaround to Floor System Modules to load rate Timber cap members
- > An Example
- Concluding Remarks

BRIEF CALIFORNIA FACTS

Caltrans Has 498 Timber Bridges

- ► 12 Timber Trusses
- ► 460 Timber Stringer Bridges (5 State Bridges)
- > 26 Bridges with Timber Approach Spans
- Most of them are Local Agency Bridges
- Load Rate Timber Stringers routinely

> Working Stress Method

- ► In House Excel software used for rating
- ► Just started to transition into LRFR

Bent Caps are rated only if,

- ► Deterioration is found, and/or
- Supporting piles are damaged
- ► MBE Article 6.1.5.2

BRDR TIMBER RATINGS' FEATURE

Introduction of AASHTOWare Timber Engine to BrDR version 7.3.

BrDR Timber Rating Capability

- Stringers
- X NO Bent Caps
- Developed a Workaround for Timber CAPs
 - have both Stringers and Caps rated by the same software
 - ► Will be going over the workarounds

Load Path of a typical Girder System

FLOOR BEAM vs BENT CAP ANALYSIS

 Note that, The load factors and resistance factors are the same of Floor beam and Bent cap members.

Establish Reaction at Cap

STEP 1: Using longitudinal analysis

Establish Demand on the Cap

STEP 2: Using transversely spanning analysis

GFS System

FS System

GF-System

FS (FLOOR BEAM STRINGER) SYSTEM

For Floor Beam Analysis

- Deck (Concrete/Corrugated steel)
- ► Steel Stringers
- Steel Floor beam (Transversely spanning)
- Multiple Supports for floor beams
- Hinges are allowed on the Floor Beam

For Bent Cap Analysis

- Supports will be Columns
- Floor Beams will be Bent Caps

LIMITATIONS

WORK ARÓUNDS

| ()

3. Shape

- Steel Member is I shape
- Timber is Rectangular Shape

4. Capacity

- Capacity based on steel specification is not applicable.
- ► Allowable stress F_b
- ► Shear capacity

3. Shape

- Enter Section as Plate Section
- Set web thickness equal to flange width
- 4. Capacity

Capacity Overwrite at Pt of Interest

- ► ALL 10th points
- Critical Shear locations
 - ▶ Within "d" distance pts,

Enter a very large shear capacity

WORK AROUNDS

A Point Of Interest Distance from Fraction: 0.321429 leftmost end Transverse stiffeners Other stiffeners Fatigue Bracing ASD Shear capacity Positive

Points of Interest

-O Span 1 - 0.950000 - Right

- Span 1 - 1.650000 - Right

- Span 1 - 2.000000 - Right

-Q Span 1 - 3.750000 - Right

LIMITATIONS

ASR CAPACITY OVERWRITE WORK AROUND

4. Capacity

 $F'_{v} = F_{v}C_{M}C_{D}$

 $V_{c} = (2/3) \text{ bd } f_{v}$

Capacity Overwrite at Pt of Interest

Inventory and Operating Flexural stress override

The allowable unit stress in bending shall be the tabulated stress adjusted by the applicable adjustment factors given in the following equation:

$$F_{b}' = F_{b}C_{M}C_{D}C_{F}C_{V}C_{L}C_{f}C_{fu}C_{r}$$
(13-2)

ASD			
✓ Override ASD ca			
Comment:			
ASD inv. tension:	1.128	ksi	
ASD inv. compr.:	1.128	ksi	
ASD oper. tension:	1.5	ksi	
ASD oper. compr.:	1.5	ksi	

► Inventory and Operating shear capacity override $f_v = \frac{3V}{2bd}$ (13-9)

(13-11)

ASD		
🗸 Override	e ASD capacity	,
Comment:		
ASD inv.:	4.08	kip
ASD oper.:	5.43	kip

. . . .

LRFR CAPACITY OVERWRITE WORK AROUND

- 4. Capacity
- Capacity Overwrite at Pt of Interest
 - Strength I and Strength II Flexural Capacities

(8.4.4.1-1)
(8.6.2-1)
(8.6.1-1)
$\phi = 0.85$ $\phi = 0.75$

Strength I and Strength II Shear Capacities

$F_{v} = F_{vo} C_{KF} C_{M} C_{i} C_{\lambda}$	(8.4.4.1-2)
$V_n = \frac{F_v bd}{1.5}$	(8.7-2)
$V_r = \phi V_n$	(8.7-1)

Positive flexural capacity Negative flexural capacity												
✓ Override LRFR capacity												
	Limit state	Over- ride	Moment capacity (kip-ft)		Tension capacity (ksi)	Compr. capacity (ksi)	Phi					
Þ	STRENGTH-I	\checkmark	54.	43	3.318	3.318	0.85					
	STRENGTH-II	\checkmark	54.43		3.318	3.318	0.85					
	SERVICE-II											
	FATIGUE											
	Shear capac	ity										
	Limit state	•	'Over- ride		Capacity (kip)	Phi						
₽	STRENGTH-I		\checkmark		13.6	0.75						
	STRENGTH-II		\checkmark		13.6	0.75	13					
	SERVICE-II											
	FATIGUE											

BRIEF DETAILS OF THE BRIDGE.

- Year Built Date Unknown approx. 1943
- Posted for 10, 16, and 20 Tons for Type 3, Type 3S2, and Type 3-3 respectively based on Stringer Capacity
- Inspection Cycle is set at 12 months
- ► AC Overlay 3" at edge and 4" at CL of the bridge
- ► 2 Simple Spans
- ► 15 Stringers
- Bent Cap (Bent 2) is supported by 5 Timber Piles
- Recent Inspection showed that Bent Caps have 'core rot' and load rating is needed

BRIEF DETAILS OF THE BRIDGE.

- Bent Cap is supporting stringers of Span 1 and Span 2
- Bent cap beam is discontinuous at Column 3
- Recent Inspection showed that Bent Cap has 'core rot' and load rating is needed
 - Original Size is 12" x 12"
 - ▶ 1.5" outside core is intact
 - ► For Modeling purposes,
 - ► Top and bottom flange dimension is taken as 12" x 1.5"
 - ► Web dimension is taken as 3"(w) x 9" (depth)
 - ► This ensures reasonable stiffness is used in the analysis

Load Rating of Timber Stringers

1000

Live Load

HS 20-44

HS 20-44

HS 20-44

HS 20-44

Type 3

Type 3-3

Type 3S2

 Stringers of Span 1 and Span 2 are load rated using BrDR Girder System Approach

	- E 🔁) SUPE	RSTRU	ICTURE DEFINITIONS
		Ind S	pan 1 i pan 2 i	(MDL 1 of 1) (MDL 1 of 1)
				Span 1 (MDL 1 of 1) Hind Span 1 (MDL
Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	I G3 (G2) I G4 (G2)
Axle Load		Inventory	7.72	I G6 (G2)
Lane	ASR	Inventory	10.54	I G7 (G2)
Axle Load		Operating	11.93	I G8 (G2) I G9 (G2)
Lane	ASD	Operating	16.28	I G10 (G2)
Axle Load	ASD	Operating	10,19	I G11 (G2)
Ayle Load		Operating	19.80	I G12 (G2) I G13 (G2)
Axle Load	ASD	Operating	16.10	I G14 (G2) I G15 (G1)

Cap is cut into two pieces, so It will be treated as a hinge

A New Superstructure Definition × Girder system superstructure Superstructure definition wizard Girder line superstructure Floor system superstructure Floor line superstructure Truss system superstructure Truss line superstructure Reinforced concrete slab system superstructure Concrete multi-cell box superstructure Girder Floorbeam Stringer Floorbeam Stringer Girder Floorbeam

OK

Cancel

Only (FB Stringer) FS can accept hinge when the floor beam FS is chosen

SELECTION OF FLOOR SYSTEM SUPERSTRUCTURE 17

 Once the software creates the entire tree, the User needs to enter appropriate data within each GUI.

 A few important data entries are discussed next

CREATE A FS MODEL

> Analysis Tab of Floor System Superstructure Definition

- Vehicle increment in Lane and Lane Increment for transverse loading need adjustments
- > Default values of 2 ft and 4 ft are too large for a Timber bridge where stringers are spaced less than 2 ft.
 - If axles are moved greater than stringer spacing, loads demands will not correctly be established
 - > But, Analysis time will increase with a smaller increment

> Impact/DLA to be 0.0

- > Std Spec. Article 3.8.1
- > LRFD Article 3.6.2.3

	Chandrand incore the star		
	Standard Impact factor		
	For structural components where impact is	s to	be included per
	AASHIO 3.8.1, choose the impact factor to	o be	e used:
	50		
	Standard AASHTO impact: I = ———		
	L + 125		
	O Modified impact: 0]	times AASHTO impact
		1	
	Constant impact override: 0	%	
l		-	
[LRFD dynamic load allowance		
	,		1
	Fatigue and fracture limit states:		%
	All other limit states: 0		%
- 1			

Definition Analysis Engine
Structural slab thickness Consider structural slab thickness for rating Consider structural slab thickness for design
Wearing surface Consider wearing surface for rating Consider wearing surface for design
Consider striped lanes for rating Transverse loading Vehicle increment in lane: 0.5 ft Lane increment: 1

CREATE A FS MODEL

> Hinge Location

			4				

CREATE A FS MODEL

Point of Interest Within Floor Beam Definitions (For ASR)

- ► All 10th points
- Critical Shear Location
- ► Overwrite the Capacity.
 - Typically, flexural capacity will be the same at ALL points
 - shear capacity needs not to be done within "d" distance from the support. Enter a larger capacity so that shear analysis will NOT control

CREATE A FS MODEL

Point of Interest Within Floor Beam Definitions (For LRFR)

- ► All 10th points
- Critical Shear Location
- ► Overwrite the Capacity.
 - Typically, flexural capacity will be the same at ALL points
 - shear capacity needs not to be done within "d" distance from the support. Enter a larger capacity so that shear analysis will NOT control

CREATE A FS MODEL

25

Phi

0.75

0.75

Tension

capacity

(ksi)

3.31

3.31

ANALYSIS RESULTS

> CAP Rating Results

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)
HS 20-44	Axle Load	ACD	Inventory	2.85
HS 20-44	Axle Load	AJK	Operating	6.11
HS 20-44	Lane	ASD	Inventory	3.02
HS 20-44	Lane	ASD	Operating	6.47
Туре 3	Axle Load	ASD	Operating	5.19
Type 3-3	Axle Load	ASD	Operating	10.33
Type 3S2	Axle Load	ASD	Operating	7.72

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)
HL-93 (US)	Truck + Lane		Inventory	5.56
HL-93 (US)	Truck + Lane	LKFK	Operating	7.21
HL-93 (US)	Tandem + Lane	LKFK	Inventory	5.05
HL-93 (US)	Tandem + Lane	LRFR	Operating	6.55
Lane-Type Legal Load	Truck + Lane	LRFR	Legal	3960.00
Туре 3	Axle Load	LRFR	Legal	7.31
Type 3-3	Axle Load	LRFR	Legal	14.53
Type 3S2	Axle Load	LRFR	Legal	10.86

28

When placing the wheels on Cap directly, ASR load rating produces 3, 3, 5 Tons for Type 3, 3S2, and 3-78 respectively. Bridge is currently posted for 3, 3, 5 Tons.

Support/Column Reactions

🗛 Analysis F	Results - I	Bent 2	Cap									Support	HS20	Type 3	Type 3S2	Type 3-3
Print												Column 1	11.56	9.44	9.14	7.59
Print Report type:			St	tage				ive Load		Live Lo	ad Type	Column 2	29.84	24.35	23.59	19.59
Live Load Actions Composite (short term) (Stage 3) V HS 20-44 V Axle Load					oad	Column 3	25.84	21.09	20.43	16.97						
Span Loc	cation	%	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Nega	tive	Column 4	29.82	24.34	23.58	19.58
1	(ft) S	pan 0.0	(kip-ft) 0.00	(kip-ft) 0.00	(kip) 11.56	(kip) -1.87	(kip) 0.00	(kip) 0.00	(kip) 11.56	(kip	») -1.87	Column 5	11.56	9.44	9.14	7.59

CONCLUDING REMARKS

- No workaround is needed to load Steel Bent Cap, except treating the Floor beam as Cap.
- This workaround will work for Timber Floor Beams
 - Steel Truss bridges with Timber deck / Stringer / Floor beam System
 - Suspension bridges with Timber Deck

Limitations of this workaround

- 1. Number of Stringers in both spans must be the same (BrDR Limitation)
- 2. Capacity needs to be established outside of the BrDR software
 - ► A girder line model within the BrDR can be used to establish Capacity

CONCLUDING REMARKS

Possible Enhancements

- Modify the software so that GFS and FS floor systems accept "Timber" stringers and Floor beams
- > Allow different number of Girders in each Structural Unit
- Modify the Substructure Module so that it analyzes Timber Caps

1. DETAILED STEP BY STEP MODELING PROCESS (SLIDES 34 THROUGH 71) 2. ESTABLISHING CAP CAPACITY USING BRDR SOFTWARE (SLIDES 72 THROUGH 76)

ANY QUESTIONS?

THANK YOU!

STEP BY STEP MODELING PROCESS

MODELING THE CAP

- ► 1. Generate "User Defined" Material Properties
 - ▶ 1.1 Steel Girder Material is changed to match the Timber material properties.

The allowable stress of the Timber Cap can be left as it.

However, It is recommended to enter the "inventory" allowable stress of the timber material

Bridge Mat	terials - Structural Steel			
Name:	Timber 1500 psi (50pcf)			
Description:	Timber Properties			
Material prop	perties			
Specified mir	nimum yield strength (fy):	1.5		ksi
Specified mir	nimum tensile strength (Fu):	1.5		ksi
Coefficient of	f thermal expansion:	0.0000	0065	1/F
Density:		0.05		kcf
Modulus of e	elasticity (E):	1600		ksi

- ► 1. Generate "User Defined" Material Properties (Cont'd)
 - ► 1.2 Create Concrete Material to handle Timber planks

The software will NOT allow the user to enter 50 pcf density concrete

As a result, a concrete deck with 150 pcf density concrete will be generated. The deck thickness will be adjusted to handle the difference in weight.

NOTE: Deck is used to establish the dead weight of the spans only.

Be sure to change the Name to reflect the properties used. Since we are only interested in density, name is set as **TimberPlank (150 pcf)**

Name: TimberPlank (150pcf)		
Description: Equivalent Concrete is	used	
Compressive strength at 28 days (f'c)	1.8	ksi
Initial compressive strength (f'ci):	1.8	ksi
Composition of concrete:	Normal 🗸	
Density (for dead loads):	0.15	kcf
Density (for modulus of elasticity):	0.15	kcf
Poisson's ratio:	0.2]
Coefficient of thermal expansion (α):	0.000006	1/F
Splitting tensile strength (fct):		ksi
Comput	e	
Std modulus of elasticity (Ec):	2572.095449	ksi
LRFD modulus of elasticity (Ec):	3277.960311	ksi
Std initial modulus of elasticity:	2572.095449	ksi
LRFD initial modulus of elasticity:	3277.960311	ksi
Modulus of rupture:	0.3219938	ksi
Shear factor:	1]

> 2. Create a FS Model

- Double click on SUPERSTRUCTURE DEFINITIONS
- Choose Floor system superstructure
- Select Floorbeam Stringer (FS) Picture
- ► Click OK

NS.	SUPERSTRUCTURE DEFINITIONS Superstructure DEFINITIONS Span 1 (MDL 1 of 1) Span 2 (MDL 1 of 1)	
	A New Superstructure Definition	×
	Girder system superstructure	1
	O Girder line superstructure Superstructure definition wizard	
	Floor system superstructure	
	Floor line superstructure	
	O Truss system superstructure	
	Truss line superstructure	
	 Reinforced concrete slab system superstructure 	
	Concrete multi-cell box superstructure	
	Girder Floorbeam Stringer	
	OK Cancel	

- > 2.1 Create an FS Model Cont'd
 - 1. Name = Timber Cap (MDL 1 of 1)
 - 2. Deck Type = Concrete Deck
 - 3. Member Alt Types = Steel
 - 4. Number of support line = 3
 - 5. Number of Stringers = 15
 - 6. Stringers frame into floorbeam = NO (uncheck)
 - 7. Number of Stringer units = 2
 - 8. Span Lengths = 17ft, 17ft
 - 9. Description

Note: Once the user clicks the OK button, most of the selection cannot be modified

Name: Description:	Timber Cap (MDL 1 of 1)		
Description:	Conclouer the Abutment1 P		
	as I section. While the mom established outside of the sc	ent 2, Abutment 3 have core rot, as a result, ent capacity can be established correctly, sh ftware and entered at "user defined" analys	section is entered lear capacity is is points.
	Original cap size is 12" x 12"	, Only 1,5" of outside core is in good shape.	
Default units:	US Customary	Span lengths	Deck type: Concrete Deck
Number of support lines:	3 🗘	between floorbeams along the ref. line:	Member alt. types
Number of stringers:	15 🗘	Length	✓ Steel

> 2.1 Create an FS Model <u>Cont'd</u>

2.1.0 Analysis Tab

🗛 Floorbeam Stringer Floor System Superstructure Definition

Definition	Analysis	Engine					
Structural slab thickness Consider structural slab thickness for rating Consider structural slab thickness for design							
Wearing Consid Consid	Wearing surface Consider wearing surface for rating Consider wearing surface for design						
Consid Transvers Vehicle in	der striped la e loading crement in l	anes for rating					
Lane incre	ement:	1 ft					

🕨 🞰 🛄 Timber Cap (MDL 1 of 1)
🔤 🚥 📑 Impact/Dynamic Load Allowance
🚥 🛲 Framing Plan Detail
Structure Typical Section
🚥 💥 Superstructure Loads
📁 Shear Connector Definitions
🖶 📴 Stiffener Definitions
···· 📁 Transverse
🔤 📂 📁 Bearing
ML Floorbeam Member Locations
📁 STRINGER GROUP DEFINITION GEOMETRY
🖶 📴 MEMBER DEFINITIONS
📁 FLOORBEAM DEFINITIONS
🗭 STRINGER DEFINITIONS
□- F80 Floor System Geometry
🛱 🖞 🗁 STRINGER UNIT LAYOUT
🔍 SUL Stringer Unit 1 Layout
····· CSR Computed Stringer Reactions
🗈 🧭 STRINGER MEMBERS
SUL Stringer Unit 2 Layout
CSR Computed Stringer Reactions
E. STRINGER MEMBERS
FLOORBEAM MEMBERS
I Floorbeam 1
FSR Floorbeam Stringer Reactions
FLOORBEAM MEMBER ALTERNATIVES
Floorbeam 2
FSR Floorbeam Stringer Reactions
H Floorbeam 3
FSK Floorbeam Stringer Reactions
- FLOORBEAM MEMBER ALTERNATIVES

> 2.1 Create an FS Model <u>Cont'd</u>

 BrDR tree for GFS is shown here. The user needs to enter data from top to bottom.

► 2.1.1 Impact/DLA

For structural componer AASHTO 3.8.1, choose th	nts where impa he impact facto	ct is to be included per or to be used:
◯ Standard AASHTO imp	act: I = 50 L + 12	25
O Modified impact:	0	times AASHTO impact
Constant impact overri	ide: 0	%

► 2.1.2 Load Case Description

	Load case name	Description	Stage	Туре	
₽	DC1	DC acting on non-composite section	Non-composite (Stage 1) *	D,DC	Ŧ
	DC2	DC acting on long-term composite section	Composite (long term) (Stage 2) 🔹	D,DC	Ŧ
	DW	DW acting on long-term composite section	Composite (long term) (Stage 2) 🍷	D,DW	Ŧ

> 2.1 Create an FS Model <u>Cont'd</u>

2.1.3 Framing P	lan Details				
Structure Framing Plan Details Number of stringers: 15 Layout					
Support skew: Support Skew (degrees)	Member spacing orientation St Perpendicular to member Along support	ringer spacing	: Stringe	er spacing (ft)	
▶ <u>1</u> <u>0</u> 2 0		bay	Start of stringer	End of stringer	
3 0		1	2	2	-
	_	2	2	2	
		3	2	2	
		4	2	2	
		6	2	2	
		7	2	2	
		8	2	2	
		9	2	2	
		10	2	2	
		11	2	2	
		12	2	2	
		13	2	2	
		14	2	2	1

► Stringers have to be parallel to each other.

A Structure Typical Section

deck to first

Superstructure definition reference line is within

Distance from left edge of deck to

Left edge of deck to first stringer:

superstructure definition reference line: Distance from right edge of deck to

superstructure definition reference line:

Distance from left edge of deck to Distance from right edge of deck to superstructure definition ref. line

> Superstructure Definition Reference Line

> > ft

ft

Start

14.25

14.25

Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface

the bridge deck

End

14.25 ft

14.25 ft

0.25 ft

> 2.1 Create a FS Model Cont'd

► 2.1.4 Structure Typical Section

	Locate	first	stringer	relative	to ec	lge of	deck
--	--------	-------	----------	----------	-------	--------	------

- ► 2.1.4.1 Deck
 - Equivalent concrete deck for 4.5" Timber deck
 - ► = 4.5" x 50pcf /150pcf = 1.5 inches
 - Select "user defined" equivalent Deck Concrete

Deck Deck (cont'd) Parap	oet Median	Railing Generic	Sidewa
Deck concrete:	TimberPlank	(150pcf)	~
Total deck thickness:	1.5	in	
Load case:	Engine Assign	ned 🗸	
Deck crack control parameter:		kip/in	
Sustained modular ratio factor:	3		

> 2.1 Create a FS Model Cont'd

► 2.1.4 Structure Typical Section, Cont'd

► 2.1.4.2 Barrier (Generic)

D	eck	Deck (cont'd)	Parapet	Median	Railing	6	Generic	Sid	ewalk Lan	e po	sition Strip	ed lanes	Wearing s	urface	2
			Name		Load c	ase	Measu	re to	Edge of de dist. measu from	ck red	Distance at start (ft)	Distance at end (ft)	Front f orienta	face ition	
		MBGR (Sgl Rail,WI	D 6x8 POST)	Ŧ	DC2	*	Front	*	Left Edge	*	0.25	0.25	Right	*	
	I	MBGR (Sgl Rail,WI	D 6x8 POST)	*	DC2	*	Front	*	Right Edge	-	0.25	0.25	Left	*	

► 2.1.4.3 Lane Position

D	eck	Deck (co	nt'd)	Parapet	Median	Railing	Generic	Sidewa	lk	Lane position	Striped	lanes	Wearing surface	
		Travelway	Distance from left edge of travelway to superstructure definition reference line			Distance travelwa definit	Distance from right edge of travelway to superstructure definition reference line			Distance from left edge of travelway to superstructure definition reference line			Distance from right edge of travelway to superstructure definition reference line	
		- Harriber	at start (A) (ft)			at start (B) (ft)		at end (A) (ft)			at end (B) (ft)			
	▶ 1 -14				14			-14			14			

- ► 2.1.4 Structure Typical Section, Cont'd
- ► 2.1.4.3 Wearing Surface

Deck	Deck (cont'd)	Parapet	Median	Railing	Generic	Sidewalk	Lane position	Striped lanes	Wearing surface
Wearin	ng surface materia	I: AC							
Descri	ption:	AC Ove	erlay						
Wearin	ng surface thickne	ss: 3.5	in		[Thickness	field measured (D	W = 1.25 if check	ed)
Wearin	ng surface density:	144	pcf						
Load o	ase:	DW			~		Copy from library	/	

- ► 2.1.5 Superstructure Loads
 - No temperature and wind loads
 - DL distribution use to the default settings

iform ten	nperature	Gradie	nt tempera	ature	Wind	DL di
Stage 1	dead load	distributio	on			
🖲 By tri	butary are	а				
⊖ By tra	ansverse si	mple-bea	m analysis			
O By tra	ansverse co	ontinuous	-beam ana	lysis		
() Ву ре	ercentage					
Stri	inger Per	centage (%)				
Þ						
O User-	defined de	ad load				
Stage 2	dead load	distributio	on			
Unifo	ormly to all	girders				
~		_				

- ► 2.16 Shear Connector definition
 - Since deck, stringers, and caps are timber elements there is no need to define these
- ► 2.1.7 Stiffener Definition
 - Since capacities will be overwritten at user-defined pt of interests, there is not to define any stiffeners

- ► 2.1.8 Floorbeam Member Locations
 - Software fills in most of the information needed, however, the user needs to modify it to match the as-built plans.
 - Make sure the Perpendicular distance from the left edge of the deck to the left edge of the floorbeam is correctly entered.
 - Open the GUI and Rename the software defined name to match actual support names.

	Floorbeam name	Reference distance (ft)	Offset (ft)	Location (ft)	Skew (degrees)	Perpendi distance left edge of de left edge of floorbe (ft)	cular from eck to of am	
Þ	FloorbeamMbrLocation1	0	0	0	0			
	FloorbeamMbrLocation2	17	0	17	0			
	FloorbeamMbrLocation3	34	0	34	0			
						(14)		
	Abutment 1	0	0	0	0		0	
	Bent 2	17	0	17	0		0	
	Abutmen 3	34	0	34	0		0	

- ► 2.1.9 STRINGER GROUP DEFINITION GEOMETRY
 - Software fills in most of the information needed, however, the user needs to verify and adjust them if needed.
 - Typically, timber stringers are simply supported at bents, so "Stringer support" will be simple.
 - Name is assigned as Stringer Arrangement

A Stringer Group Definition Geometry								
Name: Stringer Arragement Description:	rs ai	re NOT contin	uous					
Number of floorbeams that support this stringer All floorbeams are perpendicular to the structure	gro e de	oup definition: finition refere	2 O) • Yes	⊖ No			
Floorbeam spacings Select the floorbeam spacings which can be used to define the stringer span lengths in this stringer group definition:		Floorbeam spacing (ft)	Skev angl (degre	v e :es)	Stringer s	upport	Offset/ cantilever length (ft)	
Possible floorbeam spacing (ft)	Þ	0	0.000 0.000	* *	Simple Simple	*	0	
17 Computed resulting stringer span lengths								
		Span	(ft)	sp	an			
		1	17					

- ► 2.1.10 FLOORBEAM DEFINITIONS
 - Note: For this bridge Floorbeam is "Abutment / Bent Cap"
 - Create NEW Floorbeam (rightmouse & new)

A New Floorbeam Definition								
Material type:	Girder type:							
Steel	Built-up							
	Detailed Steel Truss							
	Plate							
	Rolled							

- Floor beam is supported by 5 columns and spacing between the supports are: 7ft, 7ft, 7ft, and 7ft
- ▶ Floor beam is extended 6" beyond the CL of column support (Cantilevered)
- ▶ Name: Timber Cap (12x12) with Cor Rot

Description Specs Factors Engi	ne Control options			
Description: Orignial Cap is 12 x 12. How	vever, because of core rot obse	ved, it is entered as	Material type	Ste
an I sahped			Floorbeam ty	pe: Pla
			Default units:	US
Floorbeam property input method	Self load			
Schedule-based	Load case:	Engine Assigned \sim		
Cross-section based	Additional self load:	kip/ft		
	Additional self load:	%		
Default rating method: LFR	V Number of Floorbeam s	upports: 5	Floorbeam le supports	ngth be
	Cantilever		Span	Length (ft)
	Left: 0.25	ft	2	7.00
tent let	Right: 0.25	ft	3	7.00

> 2.1 Create a FS Model Cont'd

- ► 2.1.10 FLOORBEAM DEFINITIONS
 - Change the Control Options to load rate only at the user defined points

		ļ.	- 🗁 FL	OORBEAM DEFINITI	IONS	
Name: Timber CAP (12x12) with Core Rot			<u>⊨</u> … I	Timber Cap (12x12	2) with Core Rot	
Description Specs Factors Engine Control options				+++ Floorbeam Def	finition Loads	eactions
LRFD	LRFR			Supports		
Points of interest	Points of interest			Default Materia	als	eactions
Generate at tenth points	Generate at tenth points			📑 Impact/Dynam	ic Load Allowance	e
Generate at section change points	Generate at section change points			🕂 Hinge Location	ns	
Generate at diffeners	Generate at user-defined points			Splice Location	15	
					-Ela	eactions
Use Appendix A6 for flexural resistance	Use Appendix A6 for flexural resistance			FIGORDearn Pro	, inc	R ALTERNATIVES
Allow plastic analysis	Allow plastic analysis			Lateral Suppor	t	
Ignore long. reinf. in negative moment capacity	Evaluate remaining fatigue life			🞞 Stiffener Range	es	eactions
Consider deck reinf. development length	Ignore long. reinf. in negative moment capacity			Points of Interest	est	K ALTERNATIVES
Distribution factor application method	Consider deck reinf. development length				Floorbeam 3	
O By axle	Distribution factor application method				FSR Floorbeam Stringe	er Reactions
By POI	○ By axle				····· 💋 FLOORBEAM MEN	IBER ALTERNATIVES
	By POI					
LFD	ASD					
Points of interest	Points of interest					
Generate at tenth points	Generate at tenth points					
Generate at section change points	Generate at section change points					
✓ Generate at user-defined points	 Generate at user-defined points 					
Allow moment redistribution	Ignore long. reinf. in negative moment capacity					50
Allow plastic analysis of cover plates	Consider deck reinf. development length					

HITIM Timber Cap (MDL 1 of 1)

Structure Typical Section Superstructure Loads Shear Connector Definitions Stiffener Definitions

> 📁 Transverse 📁 Bearing

FML Floorbeam Member Locations

FLOORBEAM DEFINITIONS

MEMBER DEFINITIONS

MEMBER DEFINITIONS

STRINGER GROUP DEFINITION GEOMETRY

d Impact/Dynamic Load Allowance 냆 Load Case Description 뮫 Framing Plan Detail

- ► 2.1.10 FLOORBEAM DEFINITIONS Cont'd
 - 2.1.10.1: Loads: If any additional loads are directly placed on the bent cap enter it using Fl beam Definition Loads

				,					
Unif	Uniform Distributed Concentrated								
	Loa ni	d case ame	Uniform Ioa (kip/ft)	d					

- 2.1.10.2: View the supports conditions and adjust if needed
- 2.1.10.4 Ensure that DLA is set to zero for Timber CAP

- > 2.1 Create a FS Model Cont'd
 - ► 2.1.10 FLOORBEAM DEFINITIONS Cont'd
 - 2.1.10.8 Lateral Support
 - ► Since capacity overwrite is used, it can be left blank

- ► 2.1.10.9 Transverse Stiffeners
 - ► Again, Since capacity overwrite is used, it can be left blank

b.

b.

> 3.1 Establish ASR Flexure and Shear Capacity

Capacity needs to be established outside of the software

Inventory and Operating Flexural stress override

The allowable unit stress in bending shall be the tabulated stress adjusted by the applicable adjustment factors given in the following equation:

$$F_{b}' = F_{b}C_{M}C_{D}C_{F}C_{V}C_{L}C_{f}C_{fu}C_{r}$$
(13-2)

Inventory and Operating shear capacity override

$f_v = \frac{3V}{2bd}$	(13 - 9)
$F'_{v} = F_{v}C_{M}C_{D}$	(13-11)

 V_{c} = (2/3) bd f_{v}

Alternatively, By generating a girder line member using timber member, capacity 54 could be established

> 3.2 Establish LRFR Flexure and Shear Capacity

- Capacity needs to be established outside of the software
 - Strength I and Strength II Flexural Capacities

$F_b = F_{bo} C_{KF} C_M (C_F \text{ or } C_v) C_{fl} C_i C_d C_\lambda$	(8.4.4.1-1)
$M_n = F_b SC_L$	(8.6.2-1)
$M_r = \phi M_n$	(8.6.1-1)
Flexure	$\phi = 0.85$ $\phi = 0.75$

Strength I and Strength II Shear Capacities

$F_{v} = F_{vo} C_{KF} C_{M} C_{i} C_{\lambda}$	(8.4.4.1-2)
$V_n = \frac{F_v b d}{1.5}$	(8.7-2)
$V_r = \phi V_n$	(8.7-1)

> 2.1 Create a FS Model cont'd

- ► 2.1.10.10 Floorbeam Points of Interest:
 - Create one analysis point and overwrite the capacities for ASR and OR LRFR
 - ► FOR ASR method, the user needs to enter inventory and Operating Capacities for Shear, Positive Flexure and Negative Flexure

A Point Of Interest		
Distance from 2.25 ft or Spa	n: Span 2 V Fraction: 0.250000 Side	Right
Transverse stiffeners Other stiffeners Fation	ue Bracing ASD Shear capacity Positive flexural capacit	y Negative flexural capacity Engine
ASD Override ASD capacity	LRFD	LRFR
ASD	ASD	ASD
	✓ Override ASD capacity	Override ASD capacity
	Comment: ASR PM	Comment: ASR NM
Comment:	ASD inv. tension: 1.128 ksi	ASD inv. tension: 1.128 ksi
ASD inv.: 4.08 kip	ASD inv. compr.: 1.128 ksi	ASD inv. compr.: 1.128 ksi
	ASD oper. tension: 1.5 ksi	ASD oper. tension: 1.5 ksi
ASD oper.: 5.43 kip	ASD oper. compr.: 1.5 ksi	ASD oper. compr.: 1.5 ksi

Points of Interest

÷

- > 2.1 Create a FS Model cont'd
 - ► 2.1.10.10 Floorbeam Points of Interest:
 - FOR LRFR method, the user needs to enter Strength I and Strength II Capacities for Shear, Positive Flexure and Negative Flexure. User need to enter flexural capacity in terms of capacity and maximum stress.

	Point Of Interest Distance from leftmost end: Transverse stiffener ASD Override AS	2.25 rs Other : D capacity	ft or Span: stiffeners Fatigue	Span 2 [Bracing / LRFD	Fraction: 0.250000 ASD Shear capacity Po erride LRFD capacity	ositive flexu	-Side O Left I Rig	Negative flexural ca	pacity Engine		Image: Provide the second
	Shear capacity	LRI	FR Shear		Positive flexu LRFR Override L	ral cap RFR ca	pacity	Negative fl	exural cap	bacity	FLOORBEAM MEMBERS I Floorbeam 1 FSR Floorbeam Stringer Reactions Ø FLOORBEAM MEMBER ALTERNATIVES I Floorbeam 2 FSR Floorbeam Stringer Reactions
	Limit state	ride	(kip)	Phi	Limit state	Over-	Moment capacity	Tension capacity	Compr. capacity	Phi	FLOORBEAM MEMBER ALTERNATIVES Floorbeam 3 FSR Floorbeam Stringer Reactions
÷.	STRENGTH-I	\checkmark	13.6	0.75			(kip-ft)	(ksi)	(ksi)		FLOORBEAM MEMBER ALTERNATIVES
	STRENGTH-II	\checkmark	13.6	0.75	STRENGTH-I	V	54.43	3.318	3.318	0.85	
					STRENGTH-II	~	54.43	3.318	3.318	0.85	57
	FATIGUE				FATIGUE		LRFR	PM and			

÷

🔁 Points of Interest

Span 2 - 1.750000 - Right

Himber Cap (MDL 1 of 1)

H Load Case Description Framing Plan Detail

H Superstructure Loads Shear Connector Definitions

Transverse
Bearing

ML Floorbeam Member Locations STRINGER GROUP DEFINITION GEOMETRY

- Impact/Dynamic Load Allowance

- ▶ 2.1.10.10 Floorbeam Points of Interest:
 - Typically, timber member capacity remains the same for the entire length.
 - Once first user-defined points is created and capacities are overwritten, Create Additional Points of Interest, by copy/paste or drag/drop approach and modify the analysis point locations to cover
 - ► ALL 10th points
 - Critical Shear locations
 - Shear Capacity for Caps are established at L/4 (7ft/4 = 1.75ft) or 3.0d = 3ft from face of support
 - Column Support is 12" x 12" therefore, critical shear analysis points will be 1.75ft from CL of supports (girders)
- ► Within "d" distance pts from support,
 - Enter a very large shear capacity so that shear will NOT control the rating.
 - ► This is because, per the Specification, no analysis is needed.

🖃 🗁 Points of Interest	☐- ☐- Imber Cap (MDL 1 of 1) ☐- ☐ ☐
Span 2 - 1.250000 - Right	Load Case Description
Span 2 - 2.100000 - Right	III Framing Plan Detail
Span 2 - 2.800000 - Right	🎹 Structure Typical Section
🔤 🗖 🖓 🖓 🖓 🖓 🖓 🖓	💾 Superstructure Loads
🗝 Span 2 - 4.200000 - Right	📁 Shear Connector Definitions
Span 2 - 5.250000 - Right	En Stiffener Definitions
📭 Span 3 - 1.750000 - Right	I ransverse
Span 3 - 2.100000 - Right	Mu Floorbeam Member Locations
	STRINGER GROUP DEFINITION GEOMETRY
Span 3 - 3.500000 - Right	🛱 🗁 MEMBER DEFINITIONS
	💋 FLOORBEAM DEFINITIONS
	STRINGER DEFINITIONS
	FSG Floor System Geometry
	B. SUI Stringer Unit 1 I avout
	- CSR Computed Stringer Reactions
	🕮 📁 🌮 STRINGER MEMBERS
	SUL Stringer Unit 2 Layout
	CSR Computed Stringer Reactions
- Span 4 - 4 900000 - Right	
Span 4 - 5 250000 - Right	E- T Electream 1
	FSR Floorbeam Stringer Reactions
- Span 5 - 1.750000 - Right	📁 FLOORBEAM MEMBER ALTERNATIVES
- Cras 5 2 200000 - Right	Floorbeam 2
- Come 5 - 2.800000 - Right	FSR Floorbeam Stringer Reactions
	FLOORBEAM MEMBER ALTERNATIVES
F Span 5 - 4.200000 - Right	Hoorbeam 3
Span 5 - 4.900000 - Right	FIN FIND FOR FIND FIND FIND FIND FIND FIND FIND FIND

- > 2.1 Create a FS Model Cont'd
 - ► 2.1.11 Create STRINGER DEFINITIONS
 - Generate Plate Girder
 - Create NFW
 - Pick the Girder Type Plate
 - Enter the Name (Span 1 Stringer)

่่่่⊡…

B STRINGER DEFINITIONS

I Span 1 Stringer

Supports

T Default Materials

Splice Locations

Stringer Profile

Lateral Support The Stiffener Ranges

Deck Profile Haunch Profile

H Stringer Definition Loads

- Impact/Dynamic Load Allow

Bearing Stiffener Locations Points of Interest

- ► Number of Span = 1
- ► Span Length = 17ft
- End bearing = 4 in

- 2.1.11.1 Stringer Name: Span 1 Stringer
 - ► Follow the tree and enter the required data.
 - ► In general, no change is needed **except for the stringer profile**.
- ► 2.1.11.7 Stringer Profile:
 - Generate the "Plate Section" that produces a rectangular Timber section (5.75" x 11.00")
 - BrDR software requires web thickness to be less than flange width
 - ► As a result, the flange width will be increased by 0.005 inches

Type:	Plate Girder									Туре:	Plate Gird	er								
We	b Top flange	Bottom flange	e							We	b Top fla	ange Bo	ottom flange							
	Begin depth (in)	Depth vary	End depth (in)	Thickness (in)	Start distance (ft)	Length (ft)	End distance (ft)	Material	Weld at right		Begin width (in)	End width (in)	Thickness (in)	Start distance (ft)	Length (ft)	End distance (ft)	Material	Weld	Weld at right	
X	9	9 None 🔹	9	5.75	0	17	17	Timber 1500 psi (50pcf)	* None *	I	5.755	5.755	1	0	17	17	Timber 1500 psi (50pcf) 🔹	None 🔹	None	-
										Wet	b Top fla	ange Bo	ottom flange							
											Begin width (in)	End width (in)	Thickness (in)	Start distance (ft)	Length (ft)	End distance (ft)	Material	Weld	Weld at right	
										►	5.755	5.755	1	0	17	17	Timber 1500 psi (50pcf) 🔹	None 🔹	None	-

- > 2.1.11.2 Create the Stringer Definition for Span 2 Stringer
 - Duplicate Stringer Definition Span 1 Stringer and rename to generate Span 2 Stringer profile
 - Adjust the width and depth to match the Stringer size 5.50" x 11.75"
 - Steel Material will be Timber 1500 psi (50 pcf)

Web	Top flan	ge Bottom f	lange						
	Begin depth (in)	Depth vary	End depth (in)	Thickness (in)	Start distance (ft)	Length (ft)	End distance (ft)	Material	
•	9.75	None -	9.75	5.5	0	17	17	Timber 1500 psi (50pcf)	*

١	Veb	Top fla	inge Bo	ttom flange					Web	Top fla	nge Bo	ttom flange				Lateral Sup Stiffener R
		Begin width (in)	End width (in)	Thickness (in)	Start distance (ft)	Length (ft)	End distance (ft)	Material		Begin width (in)	End width (in)	Thickness (in)	Start distance (ft)	Length (ft)	(ft)	Bearing St Points of International Statement
	•	5.505	5.505	1	0	17	17	Timber 1500 psi (50pcf) 👻	▶	5.505	5.505	1	0	17	17	Timber 1500 p

- ► 2.1.12 FSG Floor System Geometry
 - Open the GUI and define the stringer groups that define the flooring arrangements
 - > Software produces the following GUI:

Δ.	Floor System Geometry						
	Include floorbeams in unit re	ferences					
	Stringer unit number	Stringer group definition	Unit referenced fr left end of superstru or end of previous	om icture unit	Distance to stringer group definition workpoint (ft)	Mirror group definition	Include in analysis
Þ	Unit 1	None	Left end of structure	*		None *	
	Unit 2	None -	Left end of structure	-		None *	

- > The user needs to update it as follows:
 - > Do not include in analysis (unchecked)

۵	Floor System Geometry						
	Include floorbeams in unit re	eferences					
	Stringer unit number	Stringer group definition	Unit referenced fr left end of superstru or end of previous	om icture unit	Distance to stringer group definition workpoint (ft)	Mirror group definition	Include in analysis
	Unit 1	Stringer Layout	Left end of structure	*	0	None -	
Þ	Unit 2	Stringer Layout	End of Previous Unit	•	C	None *	

- > 2.1 Create a FS Model Cont'd
 - 2.1.12 FSG Floor System Geometry, Cont'd
 - ► 2.1.12.1 STRINGER MEMBERS
 - Update Uniter Stringer Data
 - ► Open the Unit 1 Stringer 1
 - ► Ensure the "include in analysis" unchecked.

🗛 Stringer Member		_	\times
Name:	Unit1 Stringer1)	
Description:			
	Existing Current Member alternative name Description		
			^
5			

NOTES: The bent cap modeling is a workaround to load rate the bent caps, stringers should **NOT** be included in the analysis.

- Software defaults to an "unchecked" case and as a result, the user needs not to visit each stringer GUI.
- Leave the "include in analysis" unchecked.
- Ensure the "include in analysis" is unchecked for all stringer units

MODELING THE TIMBER CAP ÷ FSG Floor System Geometry STRINGER UNIT LAYOUT SUL Stringer Unit 1 Layout **CSR** Computed Stringer Reactions > 2.1 Create a FS Model Cont'd STRINGER MEMBERS I Unit1 Stringer1 I Unit1 Stringer2 2.1.12 FSG Floor System Geometry, Cont'd I Unit1 Stringer3 I Unit1 Stringer4 2.1.12.2 Expand the Tree and enter data for each stringer I Unit1 Stringer5 I Unit1 Stringer6 STRINGER UNIT LAYOUT I Unit1 Stringer7 SUL Stringer Unit 1 Layout I Unit1 Stringer8 **CSR** Computed Stringer Reactions I Unit1 Stringer9 STRINGER MEMBERS I Unit1 Stringer10 I Unit1 Stringer1 I Unit1 Stringer11 STRINGER MEMBER Unit1 Stringer2 I Unit1 Stringer12 Unit1 Stringer3 - Analyze I Unit1 Stringer13 Unit1 Stringer4 General Preferences I Unit1 Stringer14 Unit1 Stringer5 Unit1 Stringer6 🔯 Close Bridge Workspace Unit1 Stringer15 ÷ SUL Stringer Unit 2 Layout ▶ Name the Stringer as Exterior Stringer, Interior Stringer, etc. CSR Computed Stringer Reactions STRINGER MEMBERS I Unit2 Stringer1 Example: Select the stringer definition Span 1 Stringer, since span 1 I Unit2 Stringer2 stringers are defined here. A Stringer Member Alternative I Unit2 Stringer3 Unit2 Stringer4 ~ Stringer definition: Span 1 String Name: Exterior Stringe I Unit2 Stringer5 I Unit2 Stringer6 Analysis locations Live load distribution Web loss Top flange loss Bottom flange loss Unit2 Stringer7 Distance from I Unit2 Stringer8 left end Side I Unit2 Stringer9 I Unit2 Stringer10 I Unit2 Stringer11 NO additional data are to be entered I Unit2 Stringer12 I Unit2 Stringer13 I Unit2 Stringer14

I Unit2 Stringer15

 LLDF, Web loss, etc. are not necessary since stringers are NOT load rated.

- ► 2.1.12 FSG Floor System Geometry, Cont'd
- ► 2.1.12.3 Repeat and generate data for all stringers in

- Drag and drop the Stringer Member Alternatives of Stringer 2 to all interior stringers may be the faster way to complete this process.
- NOTE: Each Member alternative be opened, Click OK to Close if drag and drop process is used to ensure data is copied over.
 - This will ensure that existing (E) and current(C) will be assigned to each alternative.

> 2.1 Create a FS Model Cont'd

- ► 2.1.12 FSG Floor System Geometry, Cont'd
- 2.1.12.4 Repeat the same process of Stringer Unit 2, where Span 2 stringer be linked.

Name:	Exterior Stringe	er		String	ger definition: Spa	n 2 Stringer 🗸 🗸 🗸
Anal	ysis locations	Live load di	stribution	Web loss	Top flange loss	Bottom flange loss
	Distance from left end (ft)	Side				

Exterior Strnger (E) (C)
SUL Stringer Unit 2 Layout
CSR Computed Stringer Reactions
🖃 🗁 STRINGER MEMBERS
🖕 📕 Unit2 Stringer1
CSR Computed Stringer Reactions
🖃 🗁 STRINGER MEMBER ALTERNATIVES
I Exterior Stringer (E) (C)
🖕 🗴 Unit2 Stringer2
···· CSR Computed Stringer Reactions
🖮 🗁 STRINGER MEMBER ALTERNATIVES
Interior Strnger (E) (C)
🖃 📕 Unit2 Stringer3
···· CSR Computed Stringer Reactions
🖮 🔚 STRINGER MEMBER ALTERNATIVES
Interior Strnger
🗐 📃 Unit2 Stringer4
CSR Computed Stringer Reactions
E STRINGER MEMBER ALTERNATIVES
····· Interior Strnger
🖣 🔤 📕 Unit2 Stringer5
CSR Computed Stringer Reactions
STRINGER MEMBER ALTERNATIVES
····· I Interior Strnger
□ I Unit2 Stringer6
CSR Computed Stringer Reactions
STRINGER MEMBER ALTERNATIVES
I Interior Strnger
Unit2 Stringer/
CSR Computed Stringer Reactions
STRINGER MEMBER ALTERNATIVES
Interior Stringer
COD Comparison Department
CSR Computed Stringer Reactions
Interior Strager
T Unit2 Stringer
SR Computed Stringer Reactions
STRINGER MEMBER ALTERNATIVES
Interior Strater
□ I Unit2 Stringer10
CSR Computed Stringer Reactions
STRINGER MEMBER ALTERNATIVES
Interior Stringer

- ► 2.1.13 FSG Floor System Members
 - Expand the BrDR Tree
 - User needs to enter Floorbeam member alternatives for Abutment 1, Bent 2 and Abutment 3 by selection Floor beam definitions
 - ► Create New Alternative

ame: Abut 1 CAP			Floorbeam definition:	Timber Cap (12x12) wit 🗸
Analysis locations	Web loss	Top flange loss	Bottom flange loss)
Distance from left end	Side			
Name: Bent 2 CAP			Floorbeam definition:	Timber Cap (12x12
Analysis locations	Web loss	Top flange loss	Bottom flange loss	
Distance from left end (ft)	Side			
lame: Abut 3 CAP			Floorbeam definition	n: Timber Cap (12x12) wit
Analysis locations	Web loss	Top flange los	s Bottom flange loss	
Distance from left end	Side			

- 2.1.13 FSG Floor System Members
 - ► Open the Bent CAP
 - ► Ensure Analysis of CAP is turned ON.

D	FLOORBEAM MEMBERS I Abutment 1 FSR Floorbeam Stringer Reactions FSR Floorbeam Stringer Reactions FSR Floorbeam Stringer Reactions FSR Floorbeam MEMBER ALTERNATIVES I Abutment 3 FSR Floorbeam Stringer Reactions FSR Floorbeam Stringer Reactions FSR Floorbeam Stringer Reactions FSR Floorbeam MEMBER ALTERNATIVES
Floorbeam Member Name: Bent 2 Description	Abutment I CAP (E) (C) I Bent FSR F Collapse Branch Collapse Branch Abut Open I Abut I nclude in analysis
Description: Existing	Current Floorbeam member alternative name Description Image: Construction of the second seco

> 4. Bent Cap Analysis

- "Equivalent" steel girders are used to define the Timber Caps.
- The ASR and LRFR capacity overwrites are included at each points of interests and there fore, ASR and/or LRFR analysis can be performed.
 - ► If only the ASR capacity overwrites are entered, only the ASR analysis can be performed.
 - Similarly, if only the LRFR capacity overwrites are entered only the LRFR analysis can be performed
- Analysis Settings:
 - Analysis setting should be very similar the one shown here:

Design review Rating Analysis type: Line Girder	~	Rating method: Analysis option:	DL, LL and Spec-Checking
Lane / Impact loading type: As Requested Vehicles Output Engine Description	~	Apply preference setting	None
Traffic direction: Both directions Vehicle selection B: Vehicles G: Standard →Alternate Military Loading C: C: C	^	Refresh Vehicle summa ⊟-Rating vehi ⊟-Invento 	Temporary vehicles Advanced ry vicles vy 20-44 inter
- EV3 - EV3 - H 15-44 - H 20-44 - H 5 20 (50) - H 5 20 (50) - H 5 20-44 - NRL - SU4		Add to	
SU5 SU6 SU7 Type 3 Type 3-3 Type 3S2		Remove from	Split (LFD -48kips)

ption:	DL, LL and Spec-Checking	9 ~
ference setting:	None	~
Refresh	Temporary vehicles	Advanced
/ehicle summary	(
Rating vehic	les	
Desig	gn load rating ventory HL-93 (US) operating HL-93 (US) tigue I load rating outine Type 3-3 Type 3-3 Type 3-3 Type 3S2 pecialized hauling -EV2 -EV3 NRL SU4 SU5 SU6 SU7	•

 \sim

- > 4. Bent Cap Analysis, Cont'd
- ► With settings, analyze the superstructure
 - Select the Bent 2 CAP member alternative,
 - ► Rightclick and choose ANALYZE
- Load rating based on ASR or LRFR analysis will be performed depending on analysis setting.

> 5. Analysis Results

> 1. Create Girder Line CAP

> Choose Timber.

·Y	SUPERSTRUCTURE DEFINI Span 1 Span 2 Collapse Merry New CA BRIDGE ALL Girder Girder	TIONS Branch Branch uperstructure Definition system superstructure line superstructure
Girder Line Superstruct Definition Analysis	ure Definition : O Floor s	ystem superstructure
Name: Description:	Timber CAP Model for Capacity	Deck type: Concrete For PS/PT only Average humidity: %
Default units: Reference line length: Live load lanes Multi-lane Single lane	US Customary IT IT ILRFD fatigue Truck lanes: Override Truck fraction:	Member alt. types

> 1. Create Girder Line CAP Cont'd

- Tough the CAP has two cantilever portions, the length of cantilever is less than the "d" of the member, it need not be considered
- > So, number of span for this model is 4
- > Span lengths are:
 - > 7 ft, 7 ft, 7 ft, and 7ft,
 - Girder spacing = 17 ft (bridge span)

Member name:	Be	ent 2 CAP								
Description:										
		Existing	Curr	ent	Member	r alternative name	Desc	ription		
	Þ	1	\checkmark]	Bent 2 C	AP				
Number of span Girder spacing:	17	4	ft		Span no.	Span length (ft)		Deck contro Deck	concrete crack ol parameter (Z) exposure factor	
				►	1	1		M	ember location -	
					2		,	۲	Interior	
					4	7	7	0	Exterior	
						,				
										73

> 1. Create Girder Line CAP Cont'd

- Create Member Alternative
 - Create Timber Rectangular Sawn Timber Stringer
 - Enter Beam Size, 12 x 12 (original)
 - Enter the Adjustment Factors
 - Enter Bracing Ranges (typically, CAP is braced at timber stringer location by NAILS
 - > Bracing plays a role in flexural capacity.

۵	B	rac	ing Ranges	5					-
		4	itart Distanc	e Spac	ing 🕨				
-	D	iap	ohragms						
			Support number	Start distance (ft)	Spacing (ft)	Number of spaces	Length (ft)	End distance (ft)	Load (kip)
		Þ	1 *	0	2	14	28	28	

BRIDGE AL

> 1. Create Girder Line CAP Cont'd

Finally, enter a LLDF of 1.0 for Standard and LRFD

- This will allow the software to trigger Specification articles so that capacity will be established.
- > RF established based on this analysis is NOT correct.

Standard LRFD

1 Lane

Multi-lane

Ac	Allow dist	ection v	be used to compute	effects of permit loads w	ith routine traffic	
	Support	Start distance	Length	End distance	Distributio (lane	n factor :s)
	number	(ft)	(1)	(11)	1 lane	Multi-lane
Þ	1 -	0	28.5	28.5	1	
	Support	Start distance	Length	End distance	Distribution (lanes	factor)
	namber	(ft)	(14)	(14)	1 lane	Multi-lane
	1 *	0	28.5	28.5	1	1
/ Acti	Allow distri	bution factors to b	e used to compute e	ffects of permit loads wi	ith routine traffic	
	Support	Start distance	Length (ft)	End distance (ft)	Distribution (lane	n factor s)
	number					
	number	(ft)			1 lane	Multi-lane

- [Distribution f	actor input n	nethod					
Use simplified method								
	Allow distrib	ution factors	s to be used to co	mpute effects of p	permit loads wit			
	Lanes loaded		Distribu (wł	tion factor neels)				
		Shear	Shear at supports	Moment	Deflection			

1

> 1. Create Girder Line CAP Cont'd

Review the Analysis Output and obtain the capacities established by the software.

