

Midwest Bridge Element Deterioration TPF-5(432)

Philip Meinel Structures Asset Management Engineer

****\$|)

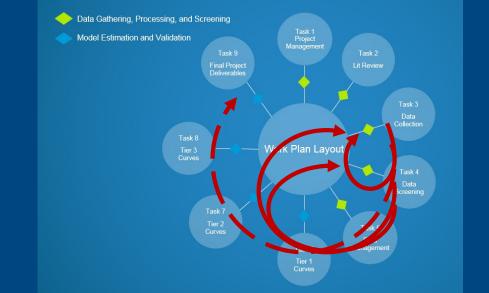
September 20, 2023 – BrMUG Meeting

Participating State DOTs

- Twelve Midwest State DOTs
 ND, SD, MN, NE, KS, IA, WI, IL, MI, IN,OH, KY
- Principal Investigator
 WSP

Research Objective

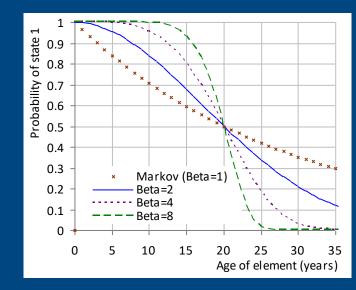
- DOTs pool resources and historic bridge data
- Develop reliable deterioration curves
 - Component NBI ratings
 - NBE, BME, and ADE
- Improve accuracy of various bridge management systems
 (AASHTO BrM, Agile Assets, and in-house developed applications).



Research Approach

• List of tasks

- Literature Review
 - Select Deterioration Methods
- Raw Dataset
 - Data and Policy Gathering
- Analysis Dataset
 - Data Processing and Screening
- Model Estimation
 - including Statistical Validation
- Expert Review
 - Review Models and Final Report



Literature Review Types of forecasting models

Onset of Deterioration

 Markovian models have fairly rapid initial deterioration

- Weibull curve
- Protection factor
- Environment Factors

Comparison of shaping parameters

Literature Review Model estimation methods

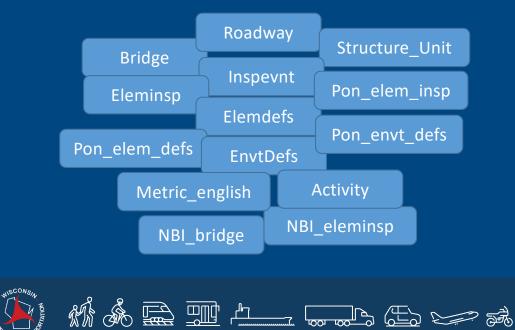
- Linear regression
 - Estimating transition probability matrix [P] by: [P] = [XX]⁻¹[XY]
- Maximum likelihood estimation
 - Ability to estimate protection factors and Weibull model shaping parameters
 - Using statistical packages such as "R" or Excel's Solver

- Florida one-step method
 - Estimating *p_{ij}* using single-year transitions and multivariate linear equations

 $y_1 = x_1 p_{11} p_{11}$

- $y_2 = x_1 p_{11} p_{12} + x_1 p_{12} p_{22} + x_2 p_{22} p_{22}$
- $y_{3} = x_{1}p_{12}p_{23} + x_{2}p_{22}p_{23} + x_{2}p_{23}p_{33} + x_{3}p_{33}p_{33}$
- $y_4 = x_2 p_{23} p_{34} + x_3 p_{33} p_{34} + x_3 p_{34} p_{44} + x_4 p_{44} p_{44}$

Raw Dataset Data Gathering

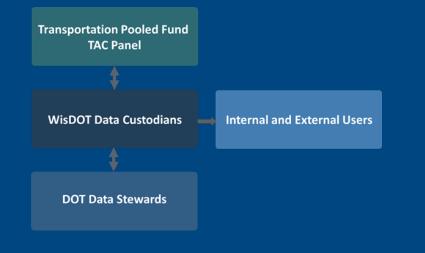

- Shared Data
 - 219,383 Bridges
 - 1,778,813 Routine inspections
 - 387,248 Routine inspections with AASHTO Elements
 - 96,954 Routine inspections with AASHTO Element Defects
 - 198,341 Construction Activity entries
 - 9,112 NDE inspections
 - 399 ADEs

Analysis Database Data Screening

• Tables needed

• Filtering

- A guidance to discern if inspection data is inappropriate for use in modeling
- Adding a column in each spreadsheet to mark if a record is valid or not
- Validation focuses on missing records, non-standard environment class, negative condition state quantities.



Analysis Database Data Governance

• Objective

 Create a framework to ensure the security and accessibility of analysis database

- Data Principles
 - Quality
 - Security
 - Accessibility
 - Retention

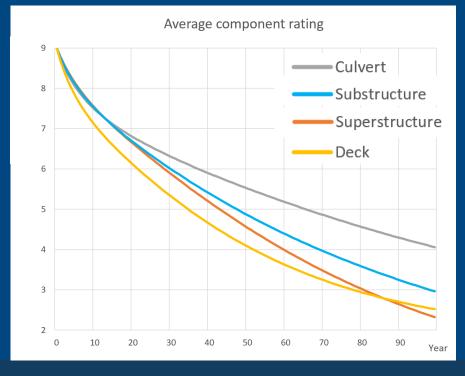
- Three basic formats:
 - Markov Closed-form solution, pivot tables to investigate strata
 - Estimation and validation data sets side-by-side, final result a combination
 - Graphs to compare models
 - Weibull Maximum likelihood shape parameter
 - Onset of deterioration of newer bridges where no action is taken
 - Uses Excel Solver to find optimal parameter
 - Action effectiveness Maximum likelihood estimation
 - Finds the transition probability matrix that best explains improvement in RC Deck condition after major preservation
- Each task has one or more separate spreadsheets

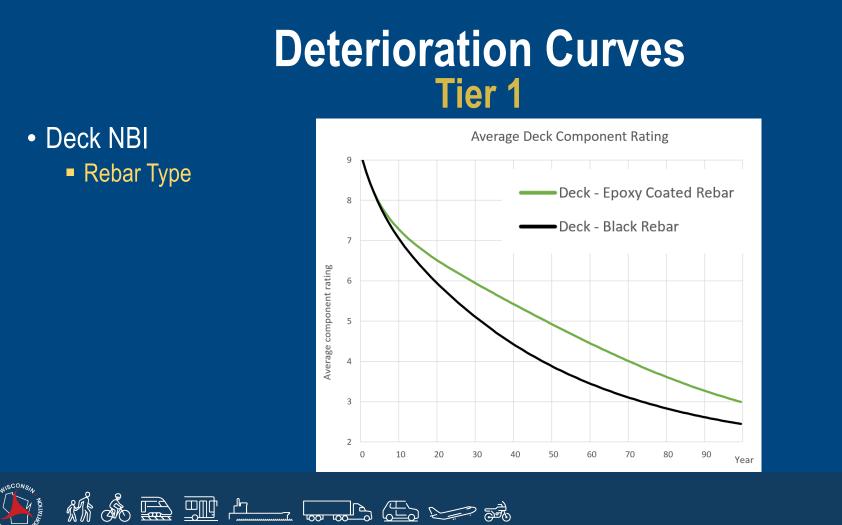
Markov Procedure

- Refine dataset by selecting specific element or component
- Create tables of inspection pairs using SQL
- Incorporate work activities
- Stratify data set with specific inventory values
- Create Excel spreadsheets to perform analysis and validation

• Tier 1

- Component NBI Ratings
- NBE RC Deck, RC Slab
- RC Deck after Major Preservation


- Tier 2
 - Wearing Surfaces
 - Joints
 - Paint
 - Defect progression
 - Substructure elements

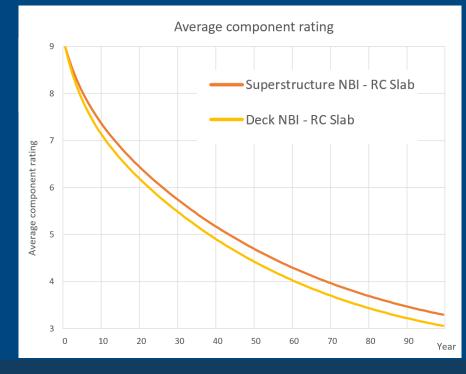


Component NBI

- Random Sample
- State-owned
- Bridges with traffic
- Non-buried structures

Superstructure NBI

Span Type



• RC Slab Ratings

- Deck NBI
- Superstructure NBI

M& E II L_ E > 3

• RC Deck Element

Statistical validation is strong:

Row L 🔻	Рор	Pop4	T12	T23	T34	ActHI	PreHI	r-Sq
1	12,970	593	43.2	18.9	27.9	94.87	94.98	0.7981
2	12,794	559	43.9	20.6	22.3	94.97	95.04	0.8086
Grand Tot	25,764	1,152	43.6	19.7	24.8	94.92	95.01	0.8032

Construction era:

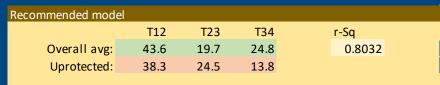
ow Lab 🔻	Рор	Pop4	T12	T23	Т34
<1960	4,925	258	29.4	17.5	45.6
1960-84	11,767	743	39.1	18.6	18.6
1985+	9 <i>,</i> 073	151	68.2	31.2	12.7
Grand Tot	25,764	1,152	43.6	19.7	24.8

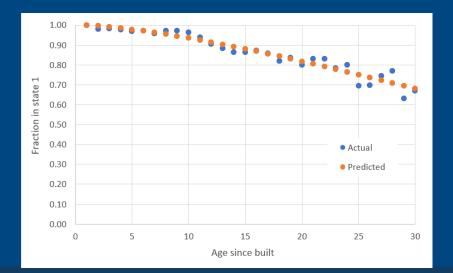
Traffic volume:

ow Lab 🔻	Рор	Pop4	T12	T23	Т34
0	51	0	47.7	21.2	999.0
1 (<1k)	6,246	186	40.8	20.0	38.5
2 (<10k)	10,918	451	50.8	19.5	30.6
3 (>=10k)	8,550	515	38.4	19.7	12.0
Grand Tot	25,764	1,152	43.6	19.7	24.8

Individual states uneven, especially for condition 3->4

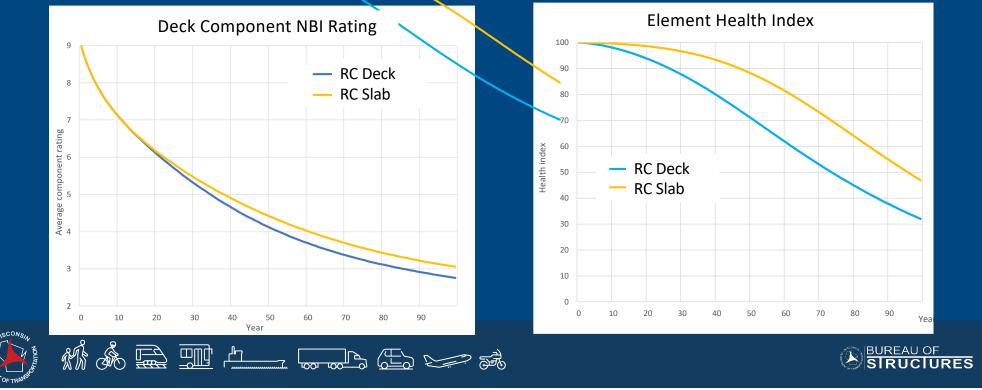
ow Lab 🔻	Рор	Pop4	T12	T23	Т34
IA	4,073	82	247.2	39.8	61.7
IL	2,129	557	20.8	20.9	2.3
IN	244	1	187.7	101.0	999.0
KS	1,462	7	260.3	51.4	127.7
КҮ	878	12	13.4	19.8	33.1
MI	3,411	63	21.5	19.3	182.5
MN	2,550	97	41.4	15.3	51.8
ND	1,041	31	33.1	24.1	42.0
NE	2,236	18	78.8	14.5	999.0
он	1,733	206	49.6	27.6	38.1
SD	1,300	15	30.8	14.4	132.4
WI	4,706	63	69.3	19.8	27.6
Grand Tot	25,764	1,152	43.6	19.7	24.8

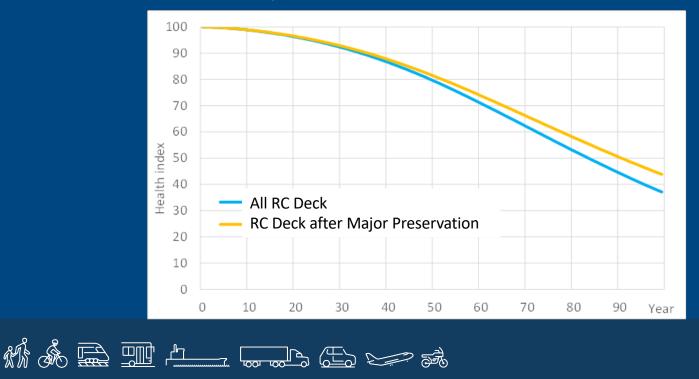

Recommended model				
	T12	T23	T34	r-Sq
Overall avg:	43.6	19.7	24.8	0.8032
Uprotected:	38.3	24.5	13.8	



• RC Deck Element

Weibull factor = 1.58

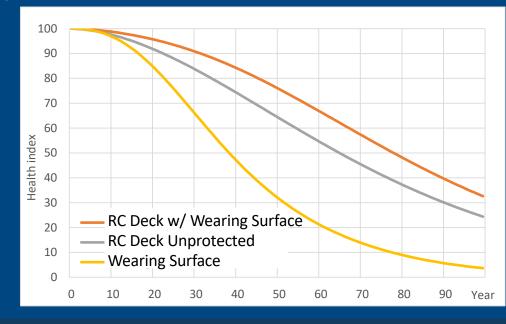

Markov mod	lel transition	times
1->2	2->3	3->4
43.6	19.7	24.8
Weibull mod	lel	
Scale	e parameter	54.97
Shape	e parameter	1.58
Model diagn	ostics	
Total lo	g likelihood	-569
Min lo	g likelihood	-640
	p-Stat	0.0000
Me	an of actual	0.93
Mean	of predicted	0.93
	R-squared	0.3777


• RC Slab Element

	Health Index	
Recommended model	100	
T12 T23 T34 r-Sq Overall avg: 66.8 17.6 49.3 0.8781 Uprotected: 43.7 21.5 28.3	100 90 80 70 60 50 40	
	30 20 10 0 0 10 1	
	Year	BUREAU OF SIRUCIURES

Compare Deck NBI Rating and Element Deterioration

• RC Deck Element after major preservation

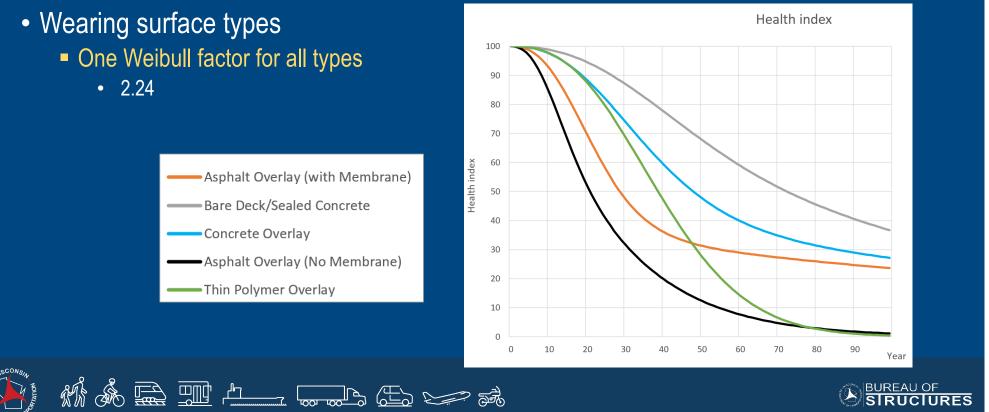

Deterioration Curves Tier 2 – Mentality – Diving Deeper

- Bridge Components help us with a vague idea of structure condition
 - Focus has been on communication and funding

- Bridge Elements help us understand where we need to work
- Element Defects help us understand what work needs to be done
 - Specific defects are the key to an automated BMS optimizer that is focused on bridge preservation

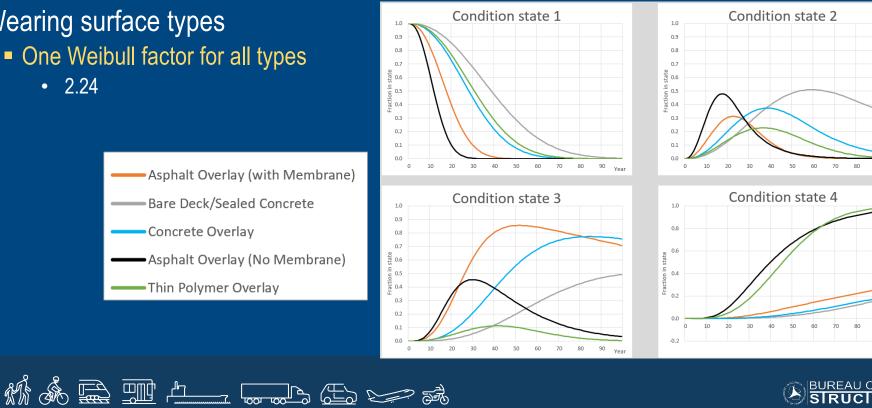
/Slab	NBI Item 58	Top Deck Element Distress Area (%)	Bottom Deck Element Distress Area (%)	Preservation Activity	
Deck/		8513 CS3 + CS4 > 15% (reapplication)	1080 < 1%	Thin Polymer Overlay	
		>20% (3220 OR 8911 CS3 + CS4) OR			
rete	6	>15% 3210 (applied to bare deck)	1080 < 5% OR 1130 CS3 + CS4 < 25%	Concrete Overlay	
Concr		>20% (3210 OR 8911 CS3 + CS4) OR	1080 < 5% OK 1150 C55 + C54 < 25%	Concrete Overlay	
S		>50% 3220 (reapplication)			

• Effect of wearing surfaces on deck element deterioration


• Wearing surface types

Research Groupings from ADEs and... Translated from NBI item 108

	-											
Row Labels	Рор	Pop4	T12	T23	Т34	Type of wearing surface	-	Рор	Pop4	T12	T23	T34
Asphalt Overlay (No Membrane)	2,585	213	11.6	7.8	14.1	0 None		105	3	57.1	30.7	135.8
Asphalt Overlay (with Membrane)	367	13	17.4	5.7	143.1	1 Monolithic Concrete		5,900	105	35.2	27.6	46.2
Bare Deck/Sealed Concrete	5,605	91	38.4	31.5	71.0			,				
Concrete Overlay (Latex Modified)	348	8	28.3	15.1	559.0	2 Integral Concrete		270	9	18.2	7.7	282.9
Concrete Overlay (Low Slump)	3,847	94	22.7	11.7	130.9	3 Latex Concrete or similar		352	8	27.2	15.4	559.9
		7		20.2		4 Low Slump Concrete		4,516	103	31.2	11.7	107.9
Concrete Overlay (Silica Fume)	1,157		89.6		264.3	5 Epoxy Overlay		1,091	369	36.2	6.0	2.4
Gravel Overlay	546	23	12.2	3.8	1.9			2,810	221	11.7	7.7	15.0
Not Applicable	33	1	38.3	999.0	999.0	6 Bituminous		,				
Other Wearing Surface	18	2	77.4	42.5	285.2	7 Wood or Timber		63	8	30.8	56.1	16.6
Polyester Polymer Overlay (PPC)	365	74	56.8	2.0	0.5	8 Gravel		562	23	12.4	4.0	1.9
Thin Polymer Overlay (2 Layer Epoxy)	838	322	30.5	6.6	3.2	9 Other		51	3	31.7	12.2	999.0
Timber	44	5	33.0	51.7	8.2	N Not Applicable		33	1	38.3	999.0	999.0
Grand Total	15,753	853	24.6	11.1	13.0	Grand Total		15,753	853	24.6	11.1	13.0


- Wearing surface types
 - One Weibull factor for all types

Bare Deck/Sealed Concrete

Concrete Overlay

Thin Polymer Overlay

• 2.24

• Joint deterioration is faster than expected

Joint type	Population	1->2	2->3	3->4
300 Strip Seal Expansion Joint	9,896	4.8	11.5	4.8
301 Pourable Joint Seal	8,797	5.2	3.4	6.7
302 Compression Joint Seal	3,250	10.2	4.3	5.3
303 Assembly Joint With Seal	565	8.5	6.9	6.8
304 Open Expansion Joint	949	8.3	10.6	8.3
305 Assembly Joint Without Seal	859	9.4	5.7	4.9
306 Other Joint	462	15.6	5.2	4.4
All	24,778	5.8	5.9	6.0

Delamination defect development

- Use "Health Index" to stratify effect of cracking defect 1130
 - Index = CS1 + (2/3)CS2 + (1/3)CS3
- Vast majority of decks without delaminations stayed in that condition
 - Slow development
- Relationship with deck cracking behaved as expected
 - As cracking increases, likelihood of delamination increases

Transition times for defect 1080, as affected by the status of defect 1130 (years)

Defect 1130	Population	1->2	2->3	3->4
Up to 0.80	545	12.3	35.8	80.2
Up to 0.98	2,509	15.1	29.4	66.9
Up to 1.00	5,425	30.9	16.5	52.6
No defect record	1,498	17.1	17.0	35.1
All	9,980	25.6	23.2	59.8

Delamination defect development

Example using CS2 Cracking (Defect 1130)

Up to 1.00

= 0 - 6 % of element has CS2 cracking

 Least likely to develop delamination (Defect 1080)

Up to 0.98 = 6 - 60% of element has CS2 cracking

 2 times more likely to develop delamination (Defect 1080) Transition times for defect 1080, as affected by the status of defect 1130 (years)

Defect 1130	Population	1->2	2->3	3->4
Up to 0.80	545	12.3	35.8	80.2
Up to 0.98	2,509	15.1	29.4	66.9
Up to 1.00	5,425	30.9	16.5	52.6
No defect record	1,498	17.1	17.0	35.1
All	9,980	25.6	23.2	59.8

• Paint system defects

 Paint has big effect on steel deterioration

Coating condition index	Population	1->2	2->3	3->4
0.00	592	6.8	19.9	53.5
up to 0.80	3,355	15.6	26.7	98.7
up to 0.98	1,864	24.2	21.6	23.0
up to 1.00	4,169	33.8	17.4	49.2
All	9,980	25.6	23.2	59.8

- Steel girder corrosion
 - Paint has big effect on steel deterioration

Defect 1000	Population	1->2	2->3	3->4
up to 0.80	545	12.3	35.8	80.2
up to 0.98	2,509	15.1	29.4	66.9
up to 1.00	5,425	30.9	16.5	52.6
No defect record	1,498	17.1	17.0	35.1
All	9,980	25.6	23.2	59.8

RC Substructures

Transition times by element

Element type	Population	1->2	2->3	3->4
Pier caps	25,320	69.4	12.4	68.0
Abutments	33,799	40.9	16.6	47.6
Pier walls	8,172	50.3	15.6	25.4
Columns	19,334	23.8	11.3	80.5

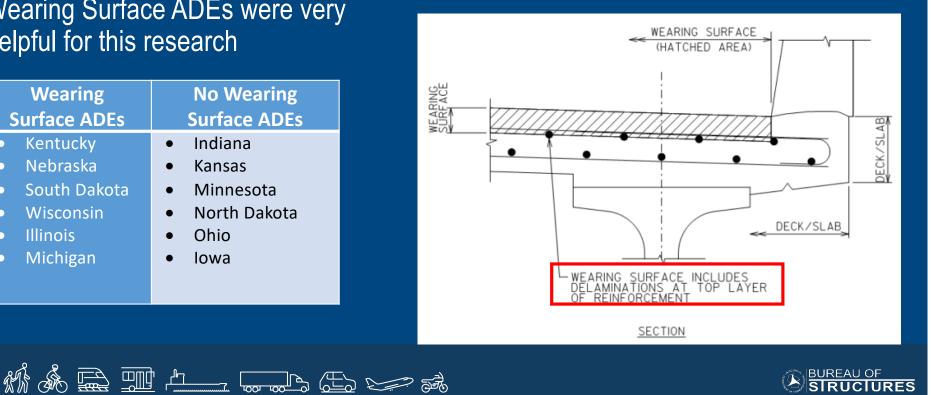
Column data collected by "each"

ADT under is a significant factor for Pier Caps

Row L	Рор	Pop4	T12	T23	T34
0	16,939	173	92.8	15.7	72.3
1 (<1k)	1,032	25	86.3	9.1	71.9
2 (<10k)	2,225	39	67.4	10.4	89.4
3 (>=10k)	5,125	87	37.1	7.8	52.4
Grand Tot	25.320	324	69.4	12.4	68.0

 ADT > 10,000 could be considered a "harsh" environment

• Scope

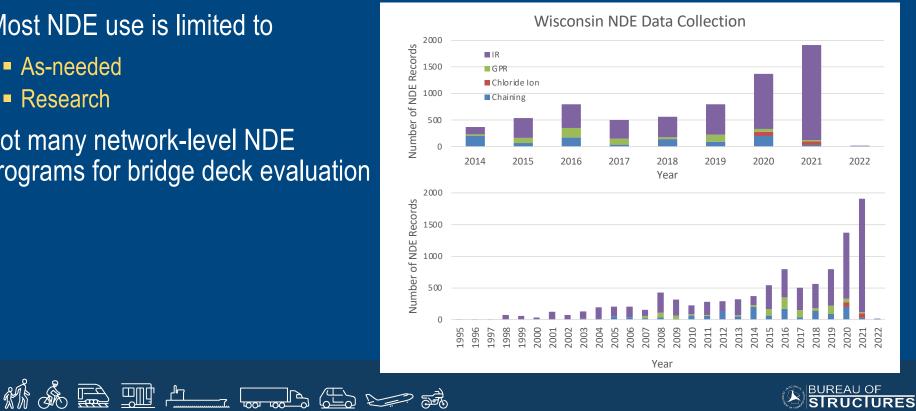

- Identify useful agency-defined elements (ADE)
- Determine which elements to advance further
- Provide guidance on data collection, gathering, and formatting
- Determine the status of NDE efforts/programs
- NDE translation to concrete bridge deck inspections

• Wearing Surface ADEs were very helpful for this research

Wearing Surface ADEs	No Wearing	
	Surface ADEs	
Kentucky	 Indiana 	
 Nebraska 	Kansas	
 South Dakota 	 Minnesota 	
Wisconsin	North Dakota	
• Illinois	Ohio	
 Michigan 	• Iowa	

Deterioration Curves Tier 3 - Inspection Practice

• Element-Level Defect Data by Midwest State DOTs


Element-Level	No Element-Level
Defect Data	Defect Data
Kentucky	 Indiana
 Nebraska 	 Kansas
• South Dakota	 Minnesota
Wisconsin	 North Dakota
• lowa	Ohio
	 Illinois
	 Michigan

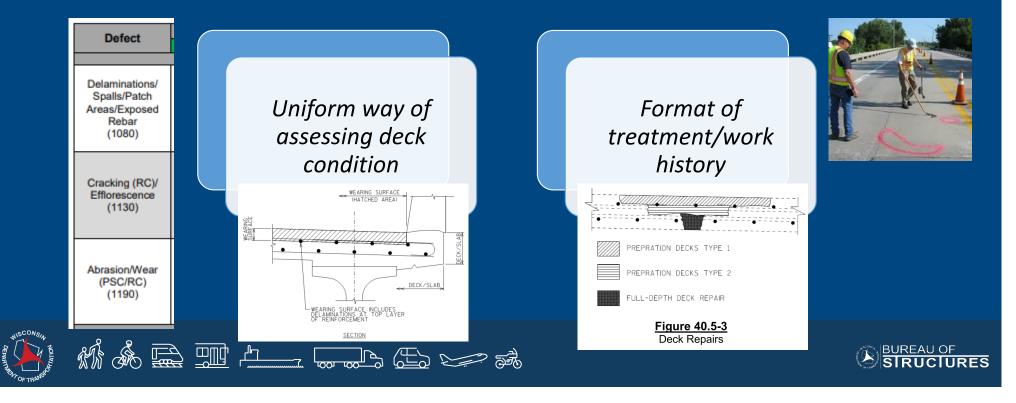
Defent	CS 1	CS 2	CS 3	
Defect	Good	Fair	Poor	
		Materia	al Defects	
Delaminations/ Spalls/Patch Areas/Exposed Rebar (1080)	None.	Delaminated. Spalls 1 in. or less deep or less than 6 in. diameter. Reinforcement may be exposed. Corrosion may be present, but without section loss. Patched area that is sound.	Spalls greater than 1 in. deep or greater than 6 in. diameter. Patched area that is unsound or showing distress. Reinforcement present with measurable section loss. Does not warrant structural review.	
Cracking (RC)/ Efflorescence (1130)	No cracks. Hairline cracks not requiring sealing, or cracks that have been sealed. No efflorescence present.	Unsealed cracks of narrow width, or unsealed minor to moderate pattern/map cracking. Efflorescence is present; it's minor with no evidence of rust staining.	Unsealed cracks of medium to wide width, or extensive pattern map cracking. Efflorescence is present; there is heavy build-up and/or rust staining.	s
Abrasion/Wear (PSC/RC) (1190)	No abrasion.	Abrasion has exposed coarse aggregate but the aggregate remains secure in the concrete.	Coarse aggregate is loose or has popped out of the concrete matrix due to abrasion.	s

- Most NDE use is limited to
 - As-needed
 - Research
- Not many network-level NDE programs for bridge deck evaluation

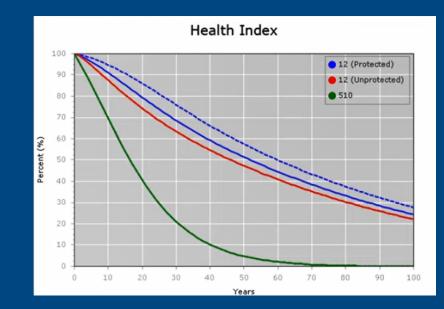
• NDE defects related to Bridge Element Condition States

NDE Method	NDE Defect Quantities*	NDE to Element	
		Condition Mapping	
Visual	Spall	Defect 3210, CS3	
	Asphalt Patching	Defect 3210, CS3	
	Concrete Patching	Defect 3210, CS2	
IR or Sounding	Delamination	Defect 3210, CS2	
IR or Sounding	Debonding	Defect 3210, CS2	
GPR	Contamination/Deterioration	NA**	
Chloride Ion Testing	Avg Chloride Concentration	Defect 8905***	
	(per wt of concrete)		
	at rebar level		

Table 40. Wisconsin DOT NDE Data Items for Deck Evaluation


*Additional NDE data is recorded in the WI Highway Structures Information System (HSIS) according to the <u>Deck Scanning Policy</u> located in Appendix A of the WI Structures Inspection Manual.

GPR results have no direct correlation to AASHTO element defects. WI is evaluating results for predictive ability of future defects. *Even though defect 8905 is available for use in the Field Inspection Manual, but it is not actively being used and not typically recorded. Chloride ion test results are stored in HSIS by other means.



• Main Recommendations

Implementation

- Mainly geared towards BrM users, but compatible with other BMS software
- Some results too advanced for current BMS software
- Models may be stratified with care
- Model data can be updated
- Additional element models can be generated
- Compare to existing BMS settings

Implementation: BrM Specific

- Create separate TPF deterioration profile to compare against existing results
- GCR deterioration rates assigned to each individual structure based on inventory filtering
- Element deterioration rates can be set for all structures based on overall average deterioration
- Element deterioration rates need to utilize a formula factor if tailored to a specific subset of the inventory
- Can create separate protective wearing surface elements for deck/slab

Implementation: Proposed Enhancements

- Allow element deterioration by inventory data
 - Example: RC Cap deterioration varies by ADT under
- Automatically assign initial deterioration curve based on inventory data
 - Example: A redeck is performed on a structure, which updates the rebar type from black steel to epoxy coated. BrM automatically selects the correct Deck NBI deterioration based on rebar type.

Implementation: Proposed Enhancements

- Update inventory data (and deterioration curve) based on recommended treatments within an optimization run
 - Example: Concrete overlay recommended
 - Replace original wearing surface (WS) with Conc Ovly WS element
 - Utilize Conc Ovly deterioration for WS and deck protection

Future Research

- Updating data and refine deterioration models.
- Additional data cleaning efforts and alignment of data collection practices.
- Improved understanding of the differences among the twelve agencies in their element deterioration rates.
- Improvements in the quality and consistency of construction activity data collected by agencies.
- Further development of defect data and associated models.
- Best practice guidance and implementation.

Philip Meinel Structures Asset Management Engineer

Philip.Meinel@dot.wi.gov

September 20, 2023