AASHTOWare BrDR 7.5.0 3D FEM Analysis Tutorial Curved Steel 3D Example

Span 1 Span 2 Span 3 Radius Length Length Length Member (ft) (ft) (ft) (ft) 1 _____ ____ G4 716.50 163.77 214.95 163.77 G3 705.50 161.26 211.65 161.26 G2 694.50 158.74 208.35 158.74 683.50 156.23 205.05 156.23 G1 Structure Ref.Line 700.00 160.00 210.00 160.00

Contraction of the local division of the loc

Topics Covered

- 3D analysis of a three span curved steel rolled beam bridge
- Diaphragm definitions
- 3D analysis settings
- 3D model

This example describes entering a curved steel rolled beam structure in BrDR and performing a 3D FEM analysis.

3D analysis of a three span curved steel rolled beam bridge

From the **Bridge Explorer**, import the **3DFEM3-Curved-Steel- 3D-Example.xml** file provided with this tutorial into **BrDR**. This bridge is the I-Girder design example presented in the appendix of the AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges, 2003.

The partially expanded Bridge Workspace (BWS) tree is shown below.

Diaphragm Definitions

Under the **Diaphragm Definitions** node, double click on **X Frame** to open the **Diaphragm Definitions** window that shows a diaphragm definition that can be assigned to locations in the **Framing Plan Detail** window. No changes are required in this window.

X Frame		Diaphra	igm type	e: Type 1	~	Nu	mber of element	ts in fixed mem	iber: 1 🚿
phragm types:	Membe	r Shape		Section orientation	Section I	ocation	Material		
	> AB	L 6x6x0.4375	~	Vertical 🗸	Top Left	\sim	Grade 50 🗸		
	CD	L 6x6x0.4375	~	Vertical $$	Top Left	~	Grade 50 🗸	,	
C L D Type: 1	AD	L 6x6x0.4375	~	Vertical 🗸	Top Left	~	Grade 50 🗸	,	
	СВ	L 6x6x0.4375	~	Vertical $$	Top Left	\sim	Grade 50 🗸 🗸]	
		Support	Y	Measured					
		Support	Y	Measured					
A B C Type: 3	Connec	tion Support type	Y (in)	Measured from					
A B C Type: 3	Connec	tion Support type Pinned ~	Y (in)	Measured from Top of Web Top of Web	~				
A B C Type: 3	> Connec > A B C	tion Support type Pinned ~ Pinned ~	Y (in)	Measured from Top of Web Top of Web Bottom of Web	~ ~ ~				
A B C Type: 3	 Connect A B C D 	tion Support type Pinned × Pinned × Pinned × Pinned ×	Y (in)	Measured from Top of Web Top of Web Bottom of Web Bottom of Web	~ ~ ~				
A B C Type: 3	> A B C D	tion Support type Pinned ~ Pinned ~ Pinned ~ Pinned ~	Y (in)	Measured from Top of Web Top of Web Bottom of Web Bottom of Web	 > > > > 				
A B C Type: 3 A B Type: 4	> Connec > A B C D	tion Support type Pinned V Pinned V Pinned V Pinned V	Y (in)	Measured from Top of Web Top of Web Bottom of Web Bottom of Web	 <				
A B Type: 3 B Type: 4	Connec A B C D	tion Support type Pinned × Pinned × Pinned × Pinned ×	Y (in)	Measured from Top of Web Top of Web Bottom of Web Bottom of Web	 > > > > > 				
A B C Type: 3 A Type: 4	> A B C D	tion Support type Pinned V Pinned V Pinned V Pinned V	Y (in)	Measured from Top of Web Top of Web Bottom of Web					
A B C Type: 3 A Type: 4	> A B C D	tion Support type Pinned V Pinned V Pinned V Pinned V	Y (in)	Measured from Top of Web Top of Web Bottom of Web					

Note: Steel bridges may contain any of the 4 types of diaphragm definitions. Concrete bridges may only contain **Type 4** diaphragm definitions.

Girder System Superstructure Definition

Double click on the **Sample** superstructure definition to open the **Girder System Superstructure Definition** window. Only concentric girders with a constant deck width are supported and only steel member alternatives can be created for a curved superstructure. The **Horizontal curvature along reference line** section shows the controls to describe the curved geometry.

	Engine		
ame: Sample			Modeling
Manual do	s not specify the size of the beam in the end d	liaphragm so a W 6 x 9 was	Multi-girder system MCB
assumed. I	ikewise for angles in diaphragms, exact angle s	ize was not specified.	With frame structure simplified definition
escription:			Deck type:
			Concrete Deck \sim
efault units: US Customa	ry V Enter span lengths		For PS/PT only
umber of spans: 3 🗘	line:		Average humidity:
umber of girders: 4 🗘	Span Length (ft)		%
	> 1 160	<u>x</u>	Member alt. types
	2 210		Steel
	3 160		P/S
			K/C
			РЛ
Horizontal curvature along ref	rence line		
Horizontal curvature along ref	rence line Distance from PC to first support line	: ft	
Horizontal curvature along ref Horizontal curvature	erence line Distance from PC to first support line Start tangent length:	ft	
Horizontal curvature along ref Horizontal curvature Superstructure alignment C Curved	rence line Distance from PC to first support line Start tangent length: Radius:	: ft 0 ft 700 ft	
Horizontal curvature along ref Horizontal curvature Superstructure alignment Curved Tangent, curved, tang	erence line Distance from PC to first support line Start tangent length: Radius: ent Direction:	: ft 0 ft 700 ft Right →	
Horizontal curvature along ref Horizontal curvature Superstructure alignment Curved Tangent, curved, tang Tangent, curved	erence line Distance from PC to first support line Start tangent length: Radius: ent Direction: End tangent length:	ft 0 ft 700 ft Right \checkmark 0 ft	
Horizontal curvature along ref Horizontal curvature Superstructure alignment Curved Tangent, curved, tang Curved, tangent Curved, tangent	erence line Distance from PC to first support line Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT:	: ft 0 ft 700 ft Right ∨ 0 ft ft	
Horizontal curvature along ref Horizontal curvature Superstructure alignment Curved Tangent, curved, tang Curved, tangent	erence line Distance from PC to first support line Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT: Design speed:	s ft 0 ft 700 ft Right ∨ 0 ft ft 35 mph	
Horizontal curvature along ref Horizontal curvature Superstructure alignment Curved Tangent, curved, tang Curved, tangent Curved, tangent	erence line Distance from PC to first support line Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT: Design speed: Superelevation:	s ft 0 ft 700 ft Right ∨ 0 ft 35mph 5%	

The **Design speed** and **Superelevation** are used to compute the centrifugal force effects on the truck live load. The high side of the roadway is assumed to be at the outside of the curve.

The following types of horizontal alignments are supported.

The **Distance from PC to first support line** and **Distance from last support line to PT** are necessary to determine the member lengths when the first or last support line is skewed.

If the member starts before the defined PC location, that portion of the member is assumed to be tangent to the curve at the defined PC location. See Girder 4 in the following sketch.

If the member ends after the defined PT location, that portion of the member is assumed to be tangent to the curve at the defined PT location. See Girder 4 in the following sketch.

Navigate to the **Analysis** tab of this window. This tab contains the following settings to control the 3D analysis.

Navigate to the **Specs** tab of this window. The analysis of all member alternatives in the superstructure definition will use the following engines and specifications set on the this tab. An exception to this is LFR rating of curved systems. The LFR rating is performed in accordance with the "AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges 2003". Note: Currently BrDR doesn't support ASR analysis for horizontally curved structures.

efi	nition Analysis	Specs Engine				
	Analysis method type	Analysis module	Selection type	Spec version	Factors	
>	ASR	AASHTO ASR V	System Default 🗸 🗸	MBE 3rd 2023i, Std 17th 🛛 🗸	N/A v	
	LFR	AASHTO LFR V	System Default 🗸 🗸	MBE 3rd 2023i, Std 17th 🛛 🗸	2002 AASHTO Std. Specifications	
	LRFD	AASHTO LRFD ~	System Default 🗸 🗸	LRFD 9th \sim	2020 AASHTO LRFD Specifications	
	LRFR	AASHTO LRFR V	System Default 🗸	MBE 3rd 2023i, LRFD 9th 🗸	2018 (2022 Interim) AASHTO LRFR Spec. 🗸	

No changes are required in this window. Click **Cancel** to close this window without applying any changes if made erroneously.

Framing Plan Details

Double click on the **Framing Plan Details** node in the **BWS** tree. The **Layout** tab of this window displays how the girders are located in the **Structure Typical Section** window.

The highlighted fields is available for curved girder systems to locate the leftmost girder relative to the superstructure definition reference line. Enter a negative value if the leftmost girder is to the left of the superstructure definition reference line. This along with the entered girder spacing determines the computed radii of the girders.

			G	irder spa	cing orienta	ation	Dist refe	tance from rence line t	superstructu to the leftmo	ure definit ost girder:	ion -16.5	f	t		
	Support	Skew		Perpe	endicular to	girder	Def	ault membe	er bearing a	lignment:		Girc	ler radii:		
>	1	(degrees)						Support	Girder be	aring	Chord angle		Member	Radius (ft)	
	2	0			Girder s	spacing			alignmen	it type	(Degrees)	,	G4	716.5	
	3	0		Girder	(ft	t)	>	1	Tangent	~			G3	705.5	
	4	0		bay	Start of	End of		2	Tangent	~			62	694.5	
				1	11	11		3	Tangent	~			G1	683.5	
			ŕ	2	11	11		4	Tangent	~				/	
				2	11	11					_		\square		
								4			Comp valu	ies	5		

Bearings are oriented in a local coordinate system at each member support in curved girder systems. The user can enter default values for the orientation of the member Support constraints on this window and then apply them to all members. This is a shortcut feature to allow for ease of data entry. The constraints can be modified on the **Member Support** window as necessary. The constraint settings on this window are not used in the analysis, the constraint settings on the **Member Support** window are used instead.

Select **Tangent** if the local x axis for bearing alignment is parallel to the tangent of the member reference line at the support. Select **Chord** if the local x axis for the bearing alignment is parallel to a specified chord angle from the tangent of the member reference line at the support. The following sketch shows an example of defining a bearing alignment along a chord.

Navigate to the **Diaphragms** tab of this window to see how diaphragm definitions are assigned to the framing plan. The weight of the diaphragms will be computed by the software and applied to the 3D model.

Diaphragms in curved girder systems can be located by one of 3 methods:

- entering the spacing along both girders of the bay
- entering the spacing along the left girder of the bay
- entering the spacing along the right girder of the bay

The **Spacing reference type** – **Both Girders** must be used when the diaphragms are not radial to either girder. This spacing reference type may also be used when the diaphragms are radial as shown in this example.

If the diaphragms are located by entering the spacing along the left or right girder of the bay, the resulting diaphragm location on the alternate girder will be computed by the program by casting a line perpendicular to the tangent of the specified girder at each spacing interval.

Diaphrage	ns	Lateral	bracing range	<.										
ler bay: 1		~	Cop	y bay to	Dia; wi	phragm izard								
Spacing reference	s	Support	St dist (i	art ance ft)	Left diaphragm spacing	Right diaphragm spacing	Number of spaces	Left length	Right length	E dis	nd tance ft)	Load (kip)	Diaphrag	m
type			Left girder	Right girder	(ft)	(ft)		(tt)	(ft)	Left girder	Right girder			
Both Girders	/ 1	~	0	0	0	0	1	0	0	0	0		K Frame	~
Both Girders	/ 1	\sim	0	0	20.4714286	20.1571429	7	143.3000002	141.1000003	143.3	141.1		X Frame	~
Both Girders	/ 1	~	143.3	141.1	20.4714286	20.1571429	1	20.4714286	20.1571429	163.7714	161.257143		X Frame	~
Both Girders	/ 2	~	0	0	19.5409091	19.2409091	10	195.409091	192.409091	195.4090	192.409091		X Frame	~
Both Girders	/ 2	<u> </u>	195.409091	192.409091	19.5409091	19.2409091	1	19.5409091	19.2409091	214.95	211.65		X Frame	~
Both Girders	/ 3	× -	0	0	20.4714286	20.1571429	7	143.3000002	141.1000003	143.3	141.1		X Frame	~
Both Girders	/ 3	×	143.3	141.1	20.4714286	20.1571429	1	20.4714286	20.1571429	163.7714	161.257143		K Frame	~
Both Girders														
Left Girder														
Right Girder														
											Nev	/	Duplicate	Delete

A wizard is available to create the diaphragm locations for the user.

🕰 Diaphragm Wizard	×	Dia	phragm V	/izard			×
Select the desired framing plan system:		Re	eference Li	ine	line	iaphragm spacing Enter number of equa Enter equal spacing p Enter groups of equal	l spaces per spa er span spacing
			Leftmo Rightn	ost girder nost girder	Sup Inte	port diaphragm load: rior diaphragm load:	kip kip
			Span	Length (ft)	Number o equal space	f 25	
		>	1	160		_	^
			2	210			
			3	160			
							v
< Back Next >	Cancel					< Back Finish	Cancel

No changes are required in this window. Click **Cancel** to close the window without applying any changes made erroneously.

Bracing Spec Check Selection

Double click on the **Bracing Spec Check Selection** node in the **BWS** tree. This window is used to identify which diaphragms should be loaded for live load for both straight and curved girder systems.

This window contains a listing of each diaphragm location in the superstructure definition. The first number is the bay number, and the second number is the numerical id of the diaphragm starting with 1 for the diaphragm at the start of the bay. Selecting a diaphragm in this window will result in influence surfaces for the diaphragm members being generated and then loaded with the live load. Including a lot of diaphragms in the live load analysis can greatly affect the run time and amount of memory needed for the analysis. Note that the diaphragms are always included in the FE model. This checkbox only controls if the diaphragm members are loaded for live load and have specification checking performed.

Brac	ing Specifi	ication Che	eck Selecti	on				-	_		Х
Diap	hragms	Lateral b	racing								
Selec	ct diaphrag	gms for sp	ecification	checking	g in a 3D) analysis:					
S	elect all	Clea	r all								
	Bay 1	Bay 2	Bay 3								
>	1-1	2-1	3-1								î
	1-2	2-2	3-2								
	1-3	2-3	3-3								L
	1-4	2-4	3-4								•
	1-5	2-5	3-5								
	1-6	2-6	3-6								
	1-7	2-7	3-7								
	1-8	2-8	3-8								
	1-9	2-9	3-9								
							OK	Apply		Can	cel

No changes are required in this window. Click **Cancel** to close the window.

Structure Typical Section

Double click on the **Structure Typical Section** node in the **BWS** tree. The width of the deck must be constant along the length of the structure. The overhangs are computed based on the distance from the superstructure definition reference line to the leftmost girder and girder spacing entered on the **Framing Plan Detail** window and the deck width entered here.

A Structure Typical Section								_		×
Distance from left edge of deck to superstructure definition ref. line	Distance from ri superstructure (ight eo definiti	lge of deck I on ref. line	to						
Deck	Cuperstructu	ıre De .ine	finition	ſ						
Left overhang 📕 🚽			- <u> </u>		erhang					
Deck Deck (cont'd) Parapet Med	lian Railing	G	Generic	Sidewalk	Lane position	Striped lanes	Wearing surface			
Superstructure definition reference line is	within	`	√ the brid	dge deck.						
Distance from left edge of deck to superstructure definition reference line:	Start 20.25	ft	Er 20.25	ft						
Distance from right edge of deck to superstructure definition reference line:	20.25	ft	20.25	ft						
Left overhang:	3.75	ft	3.75	ft						
Computed right overhang:	3.75	ft	3.75	ft						
							ОК	Apply	Cance	el

No changes are needed in this window. Click Cancel to close the window.

Schematic – Structure Typical Section

With the **Structure Typical Section** node selected in the **BWS** tree click on the **Schematic** button from the **WORKSPACE** ribbon (or right click and select **Schematic**) to view the cross section of the superstructure definition.

Bridge Workspace - LFD Curve	ed Guide Spec	:1	ANALY	SIS	REPORTS		?	_		\times
BRIDGE WORKSPACE WORKSPACE	TOOLS	VIEW	DESIGN/	RATE	REPORTING					
A Check Out 💣 🔡 🍲 R A Check In Validate Save 🚳 R	estore 🔀 evert Close	Export 1	2 Refresh	Dpen (New Copy	Paste	Duplicate) Delete	Schemat	tic
Bridge					N	lanage				
Workspace	x &	Schem	iatic		\$ X	Repo	rt		ź	×
LEP Curved Guide Spec1 Components Components Diaphragm Definitions Diaphrag	s IS Allowance	Analys	sis						ير بر	××
Framing Plan Detail Ø Ø Bracing Deterioration									~	
BSC Bracing Spec Check Sel	ection n									
	 Den Analyz View S View D Schem Genera Close B 	e ummary R Detailed Re atic al Preferen Bridge Wo	Report eport nces rkspace							

Note in the schematic that for this example bridge, the travelway has been entered to the out to out deck width instead of between the parapets. This was done to match how the structure was loaded in the appendix of the AASHTO Guide Spec so that results of live loading could be compared between BrDR, and the results published in the AASHTO Guide Spec.

Schematic	- 🗆 ×
Bridge Typical Section	$\sim \times$
	÷
LFD Curved Guide Spec1 New Bridge - Sample 12/15/2023	
40'-6"	
40'-6"	
Deck Thickness 9 1/2" 3 5/16" Overlay Travelway 1	
Haunch Th. 4" Ha	Th. 4"
3"-9" 3@11'-0" = 33'-0" 3'-9"	

Supports

Double click on the **Supports** node under **MEMBERS** -> **G4** to open the **Supports** window and see how bearings can be oriented for curved girder systems. For curved girder systems bearings are oriented in a local coordinate system at each member support. Select **Tangent** if the local x axis for bearing alignment is parallel to the tangent of the member reference line at the support. Select **Chord** if the local x axis for the bearing alignment is parallel to a specified chord angle from the tangent of the member reference line at the support. The following sketch shows an example of defining a bearing alignment along a chord.

No changes are required in this window. Click **Cancel** to close the window.

It is not recommended that users launch an analysis during training because of the large number of degrees of freedom in this example. The analysis runtime will require a 64 bit PC and adequate memory that is likely not available on attendee laptops.

3D Analysis Settings

LRFD Design Review

From the **Analysis** group of the **DESIGN/RATE** ribbon, double click on the **Analysis Settings** button to open the window as shown below.

Select the following vehicles and settings for an HL-93 Design Review.

	Analysis Settings					-)
alysis type: 3D FEM Analysis option: DL, LL and Spec-Checking Apply preference setting: None Advanced Vehicles summary Advanced Vehicles summary Advanced Vehicles ummary Add to Add	O Design review Rating		Design me	thod:	LRFD	~	
he / Impact loading type: As Requested Apply preference setting: None Kehicles Utput Engine Description Traffic direction: Both directions Vehicle selection Ketresh Temporary vehicles Centremate Military Loading Vehicle summary Design vehicles Centremate Military Loading Vehicle summary Add to Add to Add to Add to Remove from <<	nalysis type: 3D FEM	~	Analysis op	ption:	DL, LL and Spec-Checkir	ng 🗸	
Vehicles Output Engine Description Traffic direction: Both directions Vehicle selection Vehicles Vehic	ane / Impact loading type: As Requested		Apply pref	erence setting:	None	~	
Traffic direction: Both directions Vehicle selection Vehicle summary Image: Vehicles Vehicles Ima	Vehicles Output Engine Description						
Vehicle selection Vehicles Standard -Atternate Military Loading -EV2 -EV3 -HL-93 (US) -HL-93 (US) -HL-93 (US) -HS 20 (SI) -HS 20 (SI) -H	Traffic direction: Both directions	\sim		Refresh	Temporary vehicles	Advanced	
I ^{III} → Vehicles I→Alternate Military Loading -EV2 -EV3 -HL-93 (US) -HS 20 (SI) -HS 20 (SI) -HS 20 (SI) -HS 20 (SI) -LSE7 Datigue Truck (US) -Agency -User defined -Temporary Remove from <<	Vehicle selection		V	ehicle summan	/		
	EI-Vehicles C+ Standard - Alternate Military Loading - EV2 - EV3 - HL-93 (SI) - HL-93 (US) - HS 20 (SI) - HS 20-44 - LRPD Fatigue Truck (SI) - LRPD Fatigue Truck (US) - Agency - User defined - Temporary		Add to >> Remove from <<	i⊟-Design veh i - Design I - HL-9 - Permit N - Fatigue - LRFE	cles oads 13 (US) oads 0 Fatigue Truck (US)		

Navigate to the **Output** tab and select the following output controls. Check the **Detailed influence line loading** to view the centrifugal force calculations.

With the **Sample** superstructure definition selected on the **BWS** tree, click the **Analysis** button from the Analysis group of the **DESIGN/RATE** ribbon.

Specification Check Detail - LRFD Design Review

Specification Cl	hecks for Plate	44 of 4078		- 1	
	P	Articles All articles V			
Properties	Generate	Bullet list V			
pecification filter		Report			
🔺 🚞 Superstructu	ure Component	Specification reference Limit State	Flex. Sense	Pass/Fail	
🕨 🚞 Stage 1		1.3.2.1 Design Philosophy - Limit State - General	N/A	General Comp.	
🕨 🚞 Stage 2		✓ 2.5.2.6.2 Criteria for Deflection	N/A	Passed	
🛯 🚞 Stage 3		4.6.2.7.1 I-Sections - Lateral Wind Load Distribution in Multibeam Bridges	N/A	General Comp.	
a 🚞 Plate		5.4.2.6 Modulus of Rupture	N/A	General Comp.	
🚞 Sp	oan 1 - 0.00 ft.	5.4.2.8 Concrete Density Modification Factor	N/A	General Comp.	
🚞 Sp	oan 1 - 10.08 ft.	6.10.1 Estimated Flange Lateral Bending Stress Proportioning	N/A	General Comp.	
Sp Sp	oan 1 - 16.13 ft.	6.10.1.1.1b Stresses for Sections in Positive Flexure	N/A	General Comp.	
Sp Sp	oan 1 - 20.16 ft.	6.10.1.10.1 Hybrid Factor, Rh	N/A	General Comp.	
Sp Sp	oan 1 - 30.24 ft.	6.10.1.10.2 Web Load-Shedding Factor, Rb	N/A	General Comp.	
Sp	oan I - 32.25 π.	✓ 6.10.1.6 Flange Stress and Member Bending Moments	N/A	Passed	
sp	oan I-40.31π.	✓ 6.10.1.7 Minimum Negative Flexure Concrete Deck Reinforcement	N/A	Passed	
sp	oan 1 - 40.50 ft.	6.10.1.9.1 Webs without Longitudinal Stiffeners	N/A	General Comp.	
i Sp	an 1 - 60.47 ft	✓ 6.10.11.1.2 Transverse Stiffeners - Projecting Width	N/A	Passed	
i Sp	an 1 - 6/ 50 ft	✓ 6.10.11.1.3 Transverse Stiffeners - Moment of Inertia	N/A	Passed	
i Sp	an 1 - 70 55 ft	✓ 6.10.2 Cross-Section Proportion Limits	N/A	Passed	
i Sp	oan 1 - 80.63 ft.	✓ 6.10.4.2.2 Flexure	N/A	Passed	
🛄 Sp	oan 1 - 90.71 ft.	✓ 6.10.5.3 Special Fatigue Requirement for Webs	N/A	Passed	
jan Sp	oan 1 - 96.75 ft.	6.10.6.2.2 Composite Sections in Positive Flexure	N/A	General Comp.	
🚞 Sp	oan 1 - 100.79 f	6.10.6.2.3 Composite Sections in Negative Flexure and Noncomposite Sections	N/A	General Comp.	
🚞 Sp	oan 1 - 110.86 f	NA 6.10.7.1.1 General	N/A	Not Applicable	
🚞 Sp	oan 1 - 112.88 f	NA 6.10.7.1.2 Nominal Flexural Resistance	N/A	Not Applicable	
🚞 Sp	oan 1 - 120.94 f	✓ 6.10.7.2.1 General	N/A	Passed	
🚞 Sp	oan 1 - 121.00 f	6.10.7.2.2 Nominal Flexural Resistance	N/A	General Comp.	
🚞 Sp	oan 1 - 129.01 f	✓ 6.10.7.3 Flexural Resistance - Ductility Requirement	N/A	Passed	
🚞 Sp	oan 1 - 131.02 f	NA 6.10.8.1.1 Discretely Braced Flanges in Compression	N/A	Not Applicable	
🚞 Sp	oan 1 - 141.10 f	NA 6.10.8.1.2 Discretely Braced Flanges in Tension	N/A	Not Applicable	
🚞 Sp	oan 1 - 141.16 f	NA 6 10 8 1 3 Continuously Braced Flanges in Tension or Compression	N/A	Not Applicable	

LFR Rating

In the Analysis Settings window select the following vehicles and settings for an LFR rating.

Design review 🔘 Rating		Rating method:	LFR	\sim	
alysis type: 3D FEM	~	Analysis option:	DL, LL and Spec-Checking	~	
ne / Impact loading type: As Requested		Apply preference setting	ng: None	~	
Vehicles Output Engine Description					
Traffic direction: Both directions	~	Refresh	Temporary vehicles	Advanced	
Vehicle selection		Vehicle sumn	hary		
- Alternate Military Loading - EV2 - EV3 - H 15-44 - H 20-44 - H 5 15-44 - H 5 20-44 - H 5 20-44 - H 5 20-44 - N H - SU5 - SU6 - SU7 - Type 3 - Type 33 - Type 33 - Type 32 - Agency - User defined - Temporary		Add to Perm Remove from <<	5 20-44 ating operating it inventory it operating		

The example in the AASHTO Guide Specification is for an HS25 loading. To produce this loading, enter a scale factor of 1.25 in the **Vehicle Properties** window as shown below.

Design review 🔾	Rating		Rating method:	LFR ~		
alysis type:	3D FEM	~	Analysis option:	DL, LL and Spec-Checking \sim		
e / Impact loading type:	As Requested		Apply preference setting:	None v		
Vehicles Output En	ngine Description	V		Refrach Tamporany vahirlas	Advanced	
/ehicle selection	ccuons	-		Vahiele summer	Havancea	
i≜-Vehicles i⊒-Standard	A Vehicle Properties					
Alternate Mili EV2 EV3	Vehicle Tand trai	em Scale n factor Impact	Single lane loaded			
H 15-44	> HS 20-44	1.25				
- HS 20 (5) - HS 20 (5) - SU4 - SU4 - SU5 - SU5 - SU5 - SU5 - SU7 - Type 3-3 - Type 3-3 - Type 3-2 - Agency - User defined - Temporary						
	Adjacent vehicle live	load factor:			OK	Cancel

Navigate to the **Output** tab and check the checkboxes shown below to generate detailed reports. Be sure to check the **Detailed influence line loading** to be able to view the centrifugal force calculations.

			Rating method:	LER	~	
Design review	Rating		hading method.			
alysis type:	3D FEM	~	Analysis option:	DL, LL and Spec-Checking	~	
ne / Impact loading typ	e: As Requested		Apply preference setting:	None	\sim	
/ehicles Output	Engine Description					
- Tabular results			AASHTO engine reports			_
Dead load actic	on report		Miscellaneous report	s:		
LFR critical load	ls report		Girder properties	5		
Live load action	report		Summary influer	ice line loading		
Truss panel poi	nt concurrent forces report		Detailed influence	e line loading		
Truss panel poi	nt maximum forces report		Capacity summa	ry		
and parter por	in maximum forces report		Capacity detailed	d computations		
			FE model for DL	analysis		
			FE model for LL a	analysis		
			LL influence lines	FE model		
			LL influence lines	FE actions		
			LL distrib. factor	computations		
			Regression data			
			Camber			
						_
Select all Clea	ar all		Select all Clear all			

This example shows the results from a 3D LFD rating. It is not recommended that users launch an analysis during training due to the large number of degrees of freedom in this example. The analysis runtime will require a 64 bit PC and adequate memory that is likely not available on attendee laptops.

The software develops the 3D model using the member alternative marked as **Existing** for each member. If the member does not have a member alternative marked as **Existing** and only has 1 member alternative, that member alternative is used for the 3D model. If the member has no member alternative marked as **Existing** and more than 1 member alternative, the analysis will not be performed.

When the analysis is launched for the superstructure definition, spec checking and rating is only performed for member alternatives marked as **Existing**. When the analysis is launched for a single member alternative (as shown below), the spec checking and rating will only be performed for that member alternative.

A feature for both straight and curved girder system FE analysis is the ability to reuse existing FEA results. The program will generate new dead load and live load influence surface FE models and compare the models to previous models. If the models compare exactly then the FEA results will be reused. The live load will be applied to the previous influence surfaces. This leads to a greatly reduced runtime on successive runs.

Engine Outputs – LFR Rating

From the **Engine Outputs** button on the **Results** group of the **DESIGN/RATE** ribbon, the following shows the output files created by the 3D LFR rating. Similar files are created for a 3D LRFD design review.

The **3D** Model files list the data for the models including nodes, members, properties, and loads. The **3D** Model Actions files list the FE results (reactions, element actions, displacements) for the models. The Model Graphics files can be opened to graphically view the FE models. The following shows the graphics for the Stage 1 model which contains the steel beams and diaphragms.

Node and element numbers can be turned on from the **Tools** menu. The mouse controls manipulation of the view. Zoom by rolling the mouse wheel. Translate by pushing down the mouse wheel. Rotate by pushing down the left mouse button.

The generated influence surfaces for the unit live loading can be viewed by selecting the Stage 3 Graphics model and then selecting **File** -> **Open** -> **Influence Surfaces.sur**. This opens the **Influence Surface** window as shown below. An influence surface for viewing can be chosen by selecting **Tools** -> **Change Influence Surface** and then selecting desired actions.

Bridge ID:	LFD Curved G	iuide Sp	ec1			
Bridge:	New Bridge					
Superstructure Definition	n: Sample					
User:	bridge					
NBI Structure ID:	LFD Curved G	iui1				
Bridge Alternative:						
-	-					
Date: ifluence Surface Selection	12/18/2023					
Date: fluence Surface Selection Girder:	12/18/2023 Deck Node:		Action:		Face:	
Date: fluence Surface Selection Girder: G4	12/18/2023 Deck Node: 497	^	Action: Moment-Z	^	Face:	
Date: fluence Suface Selection Girder: G4 G3	12/18/2023 Deck Node: 497 509	^	Action: Moment-Z Shear-Y	^	Face: Left Right	
Date: fluence Surface Selection Grder: G4 G3 G2	12/18/2023 Deck Node: 497 509 513	^	Action: Moment-Z Shear-Y Moment-Y	^	Face: Left Right	
Date: fluence Surface Selection Girder: G4 G3 G2 G1	12/18/2023 Deck Node: 497 509 513 525	^	Action: Moment-Z Shear-Y Moment-Y Moment-Y Top Flange	^	Face: Left Right	
Date: fluence Surface Selection Girder: G4 G3 G2 G1	12/18/2023 Deck Node: 497 509 513 525 537 537	^	Action: Moment-Z Shear-Y Moment-Y Moment-Y Top Flange Moment-Y Bottom Flange	^	Face: Left Right	

Tabular Results – LFR Rating

From the **Results** group of the **DESIGN/RATE** ribbon, click on **Tabular Results** to view the LFR rating results as shown below.

Specification Check Detail – LFR Rating

From the **Results** group of the **DESIGN/RATE** ribbon, click on **Specification Check Detail** to view the LFR spec check results as shown below.

A Specification Check	ks for Plate -	- 26 of	1644				-	×
		Article All a	tticles \checkmark					
Properties	Generate	Forma	at					
		Bulle	it list 🗸					
Specification filter		Rep	ort					
🔺 🚞 Superstructure (Component		Specification reference	Limit State	Flex. Sense	Pass/Fail		
🕨 🚞 Stage 1		- H	5.1 Flanges With One Web - General		N/A	General Comp.		
Stage 2		- H	NA 5.2.1 Compact Flanges		N/A	Not Applicable		
4 🚞 Stage 3		- H	5.2.2 Non-Compact Flanges		N/A	General Comp.		
a 🚞 Plate	4 🚞 Plate		5.3 Partially Braced Tension Flanges		N/A	General Comp.		
Span	Span 1 - 0.00 ft.	- H	5.4 Continuously Braced Flanges		N/A	General Comp.		
Span	1 - 10.08 ft.	-11	NA 6.2.1 Unstiffened Webs - Bending Stresses		N/A	Not Applicable		
Span	1 - 10.13 π.	- 1.	NA 6.2.2 Unstiffened Webs - Shear Stresses		N/A	Not Applicable		
Span	1 - 20.10 ft.		6.3 Transversely Stiffened Webs		N/A	General Comp.		
Span	1 - 50.24 ft.		6.3.1 Transversely Stiffened Webs - Bending Stresses		N/A	General Comp.		
Span	1 - 4031 0		6.3.2 Transversely Stiffened - Shear Stresses		N/A	General Comp.		
Span	1 - 48 38 ft		NA 6.4.1 Longitudinally and Transversely Stiffened Webs - Bending Stresses		N/A	Not Applicable		
Span	1 - 50.39 ft		NA 6.4.2 Longitudinally and Transversely Stiffened Webs - Shear Stresses		N/A	Not Applicable		
Span	1 - 60.47 ft.		9.5 I-Girders Permanent Deflection		N/A	General Comp.		
🚞 Span	1 - 64.50 ft.		✓ Bending Stress Rating		N/A	Passed		
🚞 Span	1 - 70.55 ft.		Depth of web in compression in the Elastic Range (Dc)		N/A	General Comp.		
🤖 Span	1 - 80.63 ft.		Depth of web in compression uncracked sections (Dc)		N/A	General Comp.		
🚞 Span	1 - 90.71 ft.		✓ Flange Bending Stress Rating		N/A	Passed		
🚞 Span	1 - 96.75 ft.		✓ Flange Overload Rating		N/A	Passed		
🚞 Span	1 - 100.79 ft	t.	📱 LFD General Steel Flexural Results		N/A	General Comp.		
🚞 Span	1 - 110.86 ft	t.	LFD Steel Elastic Section Properties		N/A	General Comp.		
🚞 Span	1 - 112.88 ft	t.	Steel Stresses for Sections in Positive Flexure		N/A	General Comp.		
🚞 Span	1 - 120.94 ft	t.	Steel Stresses for Uncracked Sections		N/A	General Comp.		
🚞 Span	1 - 121.00 ft	t.	Unbraced Length Calculations		N/A	General Comp.		
🚞 Span	1 - 129.01 ft	t.	× Web Bending Stress Rating		N/A	Failed		
🚞 Span	1 - 131.02 ft	t.	✓ Web Overload Rating		N/A	Passed		
🚞 Span	1 - 141.10 ft	t.	✓ Web Shear Rating		N/A	Passed		
🚞 Span	1 - 141.16 ft	t 🚽	-					

The centrifugal force effect calculations can be found in the detailed influence surface loading files found in the following folder (of the Documents folder).

3D Model

The modeling techniques used are the result of a survey of researchers and practitioners and review of several software packages.

Steel Members

The model for a girder system structure with steel girders is comprised of the following:

- Shell elements for the deck
- Beam elements for the top and bottom flanges.
- Shell elements for the web. Web shell elements are divided into equal segments for web shells. The shell nodes may be adjusted to match diaphragm connections.
- For curved structures, curvature is represented by straight elements with small kinks at node points instead of curved elements.
- Master-slave constraints that connect the top flange to middle of deck. The distance 'A' as shown in figure below is measured from the center of the deck to the center of gravity of the top flange (including cover plates) at the start of G1. The same value is used everywhere for all girders to maintain horizontal elements.

The moment at a beam cross section is calculated by solving the equilibrium equations at that section. This moment is then used in the specification check articles in the same way that it would for a line girder analysis.

Mesh Generation

The FE model created by BrDR will contain nodes at the following locations.

- Cross section property change points
- Span tenth points
- Support locations

- Diaphragm locations
- User defined points of interest

The user controls the mesh generation by the controls previously shown on the **Superstructure Definition: Analysis** tab. The software creates the mesh following the number of elements selected between beams or within the web of a steel beam and the target aspect ratio entered by the user. The presence of nodes at the locations listed above may result in some elements falling outside the target aspect ratio.

The following plan views show how the mesh for this example can be controlled by the user.

2 shells between beams, target aspect ratio = 4

4 shells between beams, target aspect ratio = 2

Loading

The program computes all the dead loads acting on the beam including the self-weight of the beam, user defined appurtenances on the structure typical section, wearing surfaces, diaphragms, and user defined member loads. Composite dead loads are applied directly to the deck shells in the 3D model in their actual location. They are not distributed to the girders based on the choices available in the Superstructure Loads window.

The Stage 3 FE model is loaded with unit loads at each deck node within the travelway to generate influence surfaces for the beam. Lane positions and combinations are determined based on the travelway and the transverse loading parameters set by the user on the Superstructure Definition: Analysis Settings tab. The influence surfaces are then loaded with the selected vehicles to find the maximum live load effects.