
AASHTOWare BrDR 7.5.0 3D FEM Analysis Tutorial 3DFEM4 – Curved Steel Multi-Span 3D Example

3DFEM4 – Curved Steel I Beam Using BrDR LRFD Engine

This example details the data input of a curved composite steel plate girder structure in BrDR and performing a 3D FEM analysis. This example is an I-Girder Bridge, SR 302, from the Mississippi DOT inventory.

Structure Typical Section

N		ladius (ft)		Span 2 Length (ft)			
Mer	mber -	(16)	(16)	(10)	(16)	(15)	
	G1 3	243.7	152.33	219.95	192.21	132.51	
0	52 3	252.9	152.76	220.57	192.75	132.89	
0	53 3	262.0	153.19	221.19	193.29	133.26	
0	54 a	271.1	153.61	221.81	193.83	133.63	
c	G5 3	280.2	154.04	222.42	194.37	134.01	
Stri	ucture						
Ref.	Line 3	274.0	153.75	222.00	194.00	133.75	
						YY	

Structure Framing Plan

Topics Covered

- Comments and assumptions
- Data entry of a four-span curved steel plate girder bridge
- Diaphragm definitions
- 3D analysis settings
- 3D model
- Analysis and results

Comments and assumptions

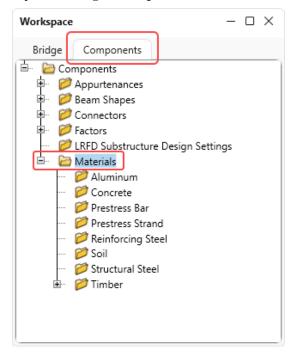
- Per the design plans, the following material strengths were used:
 - \circ Structural steel yield strength = 50 ksi (girders, stiffeners and splices)
 - Structural steel yield strength = 36 ksi (diaphragms)
 - \circ Concrete compressive strength = 4.0 ksi (Class AA)
 - \circ Reinforcing steel yield strength = 60 ksi
- District, County and Owner information is not populated
- Traffic data and design speed for LRFR analysis
 - \circ Assumed ADTT = 1000
 - \circ Design speed = 50 mph
- ¹/₄" Integral Wearing Surface
- HL93 will be vehicle used for LRFR ratings and HS-20 scaled to HS-25 will be vehicle used for LFR ratings.
- An additional self-load of 0.01 kip/ft was applied to each beam/girder to account for bolts, stiffeners, diaphragm connections, etc.

- BrDR 7.5.0 does not handle staggered bolt patterns for girder splices. Bolt patterns are entered as nonstaggered.
- Splice gap = 3/8" at field splices.
- Approximate values of "Y" Distance were input for all Diaphragm Definitions.

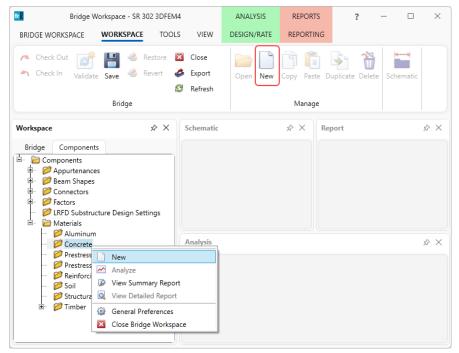
Data entry of a four-span curved steel plate girder bridge

From the **Bridge Explorer**, create a new bridge using the **New** button from the **BRIDGE** ribbon.

Br 🖁	AASHTOWare Bridge Design and Rating	?	_	×
BRIDGE EXPLORER BRID	GE FOLDER RATE TOOLS VIEW			
New Open C Batch V	Image: Second system Image: Second system <th></th> <th></th> <th></th>			
Bridge	Manage			


Enter the following bridge description data.

Bridge ID: SR 302 3DFEM4		NBI structure ID (8): 12345			Template Bridge comp	Bridge Workspace View Superstructures Culverts Substructures	
Description Desc	ription (cont'd) A	ternatives Glob	al reference point	Traffic Cust	om agency fie	elds	
Name:	SR 302 EAST RAMP			Ye	ar built:	1999	
Description:	Continuous curved Four spans Marshall County	plate girder					
Location:	Mississippi			Le	ingth:		ft
Facility carried (7):	SR 302 EAST RAMP			R	oute number:	302	
Feat. intersected (6):	US 72			M	i. post:		
Default units:	US Customary	~					


Click **OK** to apply the data and create the new bridge.

Bridge Materials – Concrete

Navigate to the **Components** tab in the **Bridge Workspace** tree. Expand the **Materials** folder. The partially expanded **Bridge Workspace** tree is shown below.

To add a concrete material for the deck, click on the **Concrete** node in the **BWS** tree and select **New** from the **WORKSPACE** ribbon (or double click on **Concrete** or right click and select **New**).

The window shown below opens.

Bridge Materials - Concrete		- □ >
Name:		
Description:		
Compressive strength at 28 days (f'c):		ksi
Initial compressive strength (f'ci):		ksi
Composition of concrete:	Normal	×
Density (for dead loads):		kcf
Density (for modulus of elasticity):		kcf
Poisson's ratio:	0.2	
Coefficient of thermal expansion (α):	0.000006	1/F
Splitting tensile strength (fct):		ksi
LRFD Maximum aggregate size:		in
Compute		
Std modulus of elasticity (Ec):		ksi
LRFD modulus of elasticity (Ec):		ksi
Std initial modulus of elasticity:		ksi
LRFD initial modulus of elasticity:		ksi
Std modulus of rupture:		ksi
LRFD modulus of rupture:		ksi
Shear factor:	1	

Enter data in the fields above the **Compute** button and click the **Compute** button to calculate the remaining properties. See image below.

Bridge Mat	terials - Concrete			-	>
Name:	Class AA (US)				
Description:	Class AA cement concre	ete			
Compressive	strength at 28 days (f'c):	4.0000006	ksi		
Initial compre	essive strength (f'ci):		ksi		
Composition	of concrete:	Normal ~			
Density (for c	lead loads):	0.15	kcf		
Density (for r	modulus of elasticity):	0.145	kcf		
Poisson's rati	0:	0.2			
Coefficient of	f thermal expansion (α):	0.000006	1/F		
Splitting tens	ile strength (fct):		ksi		
LRFD Maximu	um aggregate size:		in		
	Compute				
Std modulus	of elasticity (Ec):	3644.147704	ksi		
LRFD modulu	us of elasticity (Ec):	3986.548657	ksi		
Std initial mo	dulus of elasticity:		ksi		
LRFD initial n	nodulus of elasticity:		ksi		
Std modulus	of rupture:	0.474342	ksi		
LRFD modulus of rupture:		0.48	ksi		
Shear factor:		1			

Click **OK** to save the concrete material and close the window.

Bridge Materials – Structutral Steel

To add a structural steel material for the girder, click on **Structural Steel** in the **BWS** tree and select **New** from the **WORKSPACE** ribbon (or double click on **Structural Steel** or right click and select **New**). The window shown below opens. Enter the details shown below.

ksi
kei
K3I
065 1/F
kcf
ksi
065 1/F kcf

Click **OK** to save the steel material and close the window.

Bridge Mat	terials - Structural Steel				_	
Name:	ASTM A36					
Description:	ASTM A 36					
Material prop	perties					
Specified mir	nimum yield strength (Fy):	36	ksi			
pecified minimum tensile strength (Fu):		58	ksi			
Coefficient of	f thermal expansion:	0.0000065	1/F			
Density:		0.49	kcf			
Modulus of e	elasticity (E):	29000	ksi			
	Copy to library	Copy from lib	rary	OK	Apply	Cancel

Similarly, add another structural steel material for stiffeners and diaphragms, using 36ksi strength as shown below.

Click **OK** to save the steel material and close the window.

Bridge Materials – Reinforcing Steel

To add a reinforcing steel material for the girder, click on **Reinforcing Steel** in the **BWS** tree and select **New** from the **WORKSPACE** ribbon (or double click on **Reinforcing Steel** or right click and select **New**). The window shown below opens. Click on the **Copy from library...** button to open **the Library Data: Materials – Reinforcing Steel** window.

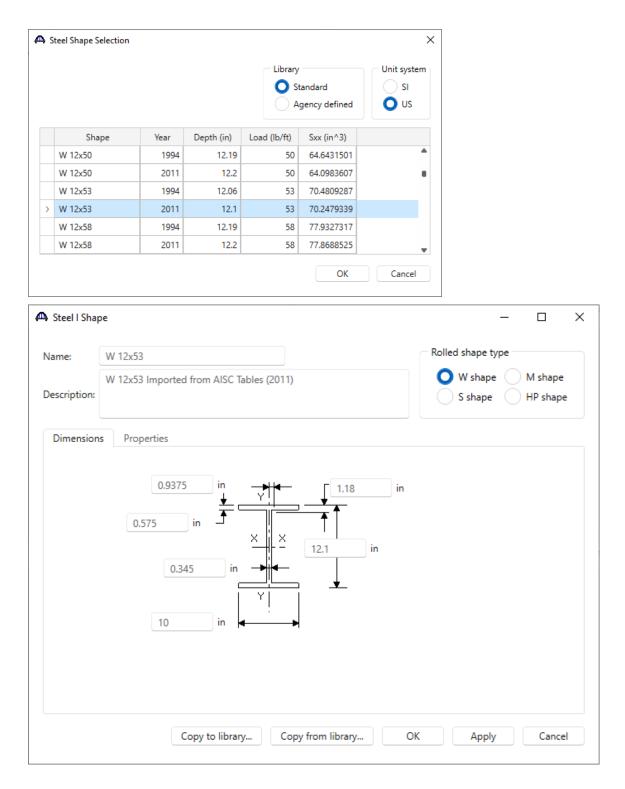
Bridge Materials - Reinforcing Steel			
Name:			
Description:			
Material properties			
Specified yield strength (fy):	ksi		
Modulus of elasticity (Es):	ksi		
Ultimate strength (Fu):	ksi		
Туре			
O Plain			
Ероху			
Galvanized			
Copy to library	Copy from library OK A	pply	Cancel

Select **Grade 60** from the window shown below and click **OK** to close this window and populate the selected steel material in the **Bridge Materials - Reinforcing Steel** window.

	Name	Description	Library	Units	Fy	Fu	Es	
	Grade 300	300 MPa reinforcing steel	Standard	SI / Metric	300	500	199948	
	Grade 350	350 MPa reinforcing steel (rail-steel)	Standard	SI / Metric	350	550	199948	
	Grade 40	40 ksi reinforcing steel	Standard	US Customary	40.0000058	70.0000102	29000.004206	
	Grade 400	400 MPa reinforcing steel	Standard	SI / Metric	400	600	199948	
	Grade 50	50 ksi reinforcing steel (rail-steel)	Standard	US Customary	50.000073	80.0000116	29000.004206	
	Grade 500	500 MPa reinforcing steel	Standard	SI / Metric	500	700	199948	
>	Grade 60	60 ksi reinforcing steel	Standard	US Customary	60.000087	90.0000131	29000.004206	
	Grade 75	75 ksi reinforcing steel	Standard	US Customary	75.0000109	100.0000145	29000.004206	
	Structural or unknown grade prior 1954	Structural or unknown grade prior to 1954	Standard	US Customary	33.0000048	60.000087	29000.004206	

🕰 Bridge Mat	terials - Reinforc	ing Steel						_		×
Name:	Grade 60									
Description:	60 ksi reinforci	ng steel]					
Material prop	perties									
Specified yie	ld strength (fy):	60.000087		ksi						
Modulus of e	Modulus of elasticity (Es):		5	ksi						
Ultimate stre	ngth (Fu):	90.0000131		ksi						
Type	n									
Epo										
Galv	vanized									
	Copy t	o library	Copy fr	om library		ОК	A	oply	Cano	el

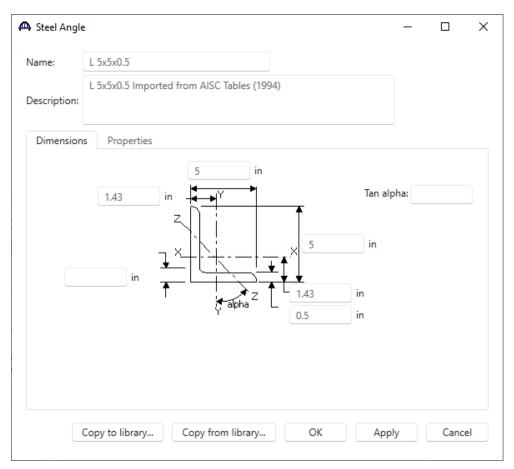
Click **OK** to save the steel material and close the window.


Beam Shapes – Steel I Shape

To enter a steel shape to be used in the bridge, expand the **Beam Shapes**, **Steel Shapes** nodes in the **BWS** tree and select **I Shapes**. Click on **New** from the **Manage** group of the **WORKSPACE** ribbon (or right click and select **New**, or double click) to open the **Steel I Shape** window as shown below.

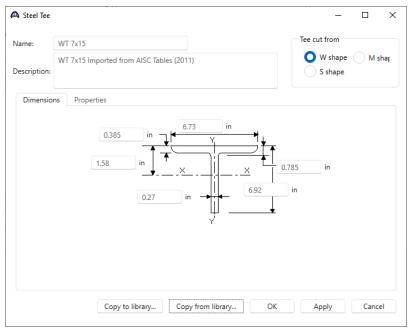
Bridge Workspace - SR 302 3DFEM4 BRIDGE WORKSPACE WORKSPACE TOOLS	ANALYSIS VIEW DESIGN/RATE	REPORTS		? – 🗆 X
	Export Refresh	New Copy F	aste Duplicate Delete	
Bridge		Mar	age	
Workspace ☆ × Sc Bridge Components Image: Components Image: Components	chematic 🗛 Steel Shape) (× K
Components Appurtenances Beam Shapes Beam Sha	Name: Description: Dimensions	Properties	in in in in in in in in	Rolled shape type W shape M shape S shape HP shape K Apply Cancel

Click on the **Copy from library...** button. Select the **W12x40** (**Year 2011**) from the library. Similarly add another Steel I shape, **W12x53** (**Year 2011**) from the library. See images below.


m, s	Steel Shape Se	election					>	<			
					Library	,	Unit system				
					O S	tandard	🔵 si				
					A	gency defined	O us				
	Shaj	pe	Year	Depth (in)	Load (lb/ft)	Sxx (in^3)					
	W 12x35		1994	12.5	35	45.6	•				
	W 12x35		2011	12.5	35	45.6					
>	W 12x40		2011	11.9	40	51.5966387					
	W 12x40		1994	11.94	40	51.9262982					
	W 12x45		2011	12.1	45	57.5206612					
	W 12x45		1994	12.06	45	58.0431177					
						ОК	Cancel				
n,	Steel I Shap	e							_		×
Na	ame:	W 12x40)					Rolled	shape type		
De	escription:	W 12x40) Imported	I from AISC Ta	ables (2011)				W shape S shape	M shape HP shap	
	Dimension	s Prop	perties								
		0.	0.875 515 0.29 8.01			1.02	in in				
			C	Copy to librar	y Cop	y from library.	ОК		Apply	Cance	el

Beam Shapes – Steel Angles

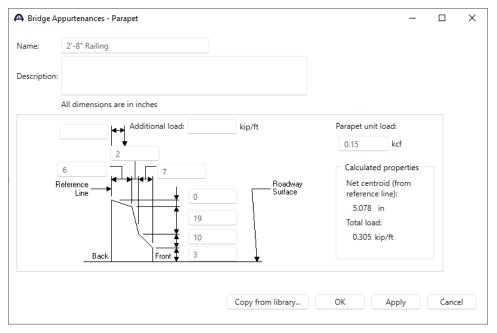
Similar to adding steel I shapes, add the following angles to be used in the bridge. Expand the **Beam Shapes**, **Steel Shapes** nodes in the **BWS** tree and select **Angles**. Click on **New** from the **Manage** group of the **WORKSPACE** ribbon (or right click and select **New**, or double click) to open the **Steel Angle** window as shown below. Use the **Copy from library...** button and add the **L 5x5x0.5** angle.


					andard gency defined	Unit system SI US
	Shape	Year	Depth (in)	Load (lb/ft)	Sxx (in^3)	
	L 5x5x0.4375	1994	5	14.3	2.7855153	
	L 5x5x7/16	2011	5	14.3	2.7777778	
>	L 5x5x0.5	1994	5	16.2	3.1652661	
	L 5x5x1/2	2011	5	16.2	3.1564246	
	L 5x5x0.625	1994	5	20	3.8636364	
	1 5050570	2011	5	20	2 0526012	

Click **OK** to save the steel angle and close the window.

Beam Shapes – Tees

Similarly, add the following tee shape to be used in the bridge. Expand the **Beam Shapes**, **Steel Shapes** nodes in the **BWS** tree and select **Tees**. Use the **Copy from library...** button and add the **WT 7x15** (2011) tee shape.



Click **OK** to add the tee shape and close the window.

Bridge Appurtenances – Parapet

To enter appurtenances to be used within the bridge, expand the node labeled **Appurtenances**. To define a parapet, double click on **Parapet** in the **BWS** tree (or right click and select **New** or select **New** from the **WORKSPACE** ribbon). The following window appears. Enter parapet dimensions as shown.

Bridge Workspace - SR 302 3DFEM4 BRIDGE WORKSPACE WORKSPACE TOOLS VIEW	ANALYSIS DESIGN/RATE	REPORTS		?	- (X
A Check Out Check In Validate Save Bridge	3		Duplicate Delete			
Workspace ☆ × Schem Bridge Components Image: Components Image: Image: Components Image: Components Image: Components	ntic Bridge Appurtena Name:	inces - Parapet	☆ × Report		- 0	× & ×
Parape Parap	Description: All dime Reference Line		Poad Surfac	Parapet unit load: kcf Calculated prope Net centroid (fro reference line): 0.000 in Total load: 0.000 kip/ft	rties	
			Copy from librar	y OK Apply	/ Ca	ancel

Click **OK** to save the parapet and close the window.

Connectors – Bolt Definitions

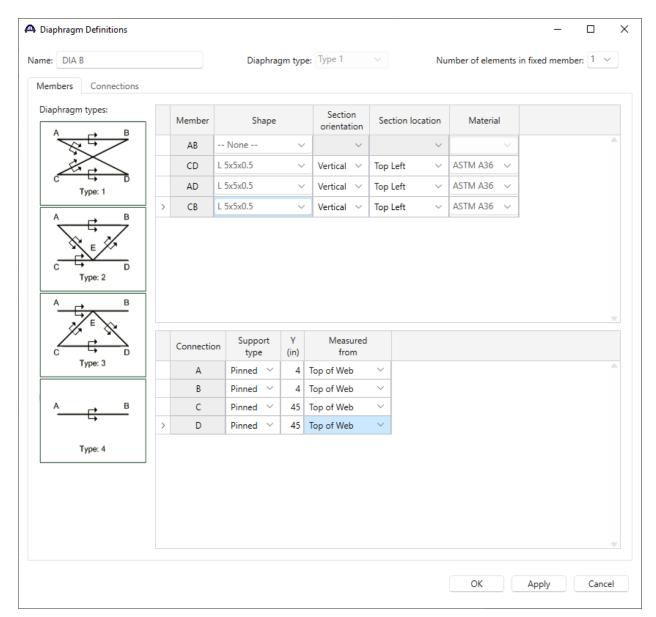
To enter a bolt definition, expand the **Connectors** node and select **Bolt**. Click **New** from the **WORKSPACE** ribbon (or right click and select **New**, or double click) to open the **Structure Definition Connectors** – **Bolt** window. Enter the details for a 7/8" diameter high strength bolts as shown below and click the **Compute from library...** button. Note: Select **ASTM F3125 Grade A325** from the **Library designation** menu.

Bridge Workspace - SR 302 3DFEM4	ANALYSIS REPORTS		? – 🗆 ×
BRIDGE WORKSPACE TOOLS	VIEW DESIGN/RATE REPORTING		
Check Out 💣 💾 🚳 Restore 🗙	Export Refresh	Paste Duplicate Delete Schematic	
Bridge	A Structure Definition Connectors - Bo	lt	X
Workspace Image: Components Image: Components Imag	Description: Library designation: ASTM F3125 Gra Bolt diameter: 0.875 Connection type H	in De size Load direction Surfa Standard Any direction Oversize Transverse Short slot Parallel	Bolt threads excluded from shear plane Hole diameter: 0.9375 in cc class A Planched full size Class A Drilled full size Class C Subpunched and reamed to size
	ASD Allowable shear stress: 19 Nominal slip resistance: 15 LRFD Minimum tensile strength, Fub Required tension, Pt:	ksi ksi Design slip resistance: 21 a 120 ksi Kh: 1 Ka: 0.3 39 kip	

Click **OK** to save the bolt definition and close the window.

Diaphragm Definitions

Navigate back to the **Bridge** tab of the **Bridge Workspace** tree. Double click on the **Diaphragm Definitions** node (or click **New** from the **WORKSPACE** ribbon, or right click and select **New**) to add a new diaphragm definition with the input as shown below.


Bridge Workspac	e - SR	302 3DFEM	4	AN	ALYSIS	REPC	ORTS		?	_		×			
BRIDGE WORKSPACE WORK	SPACE	TOOL	S VIEW	DESI	GN/RAT	E REPOR	TING								
 ∧ Check Out ∧ Check In ∨alidate Save 			🛛 🎸 Iose Expor	Refresh	0	pen New	Copy F	aste	Duplicate) Delete	Schemat	ic			
	Bridg	e					Mar	nage							
Workspace	ŵ	X Sc	hematic			\$? ×	Rep	port				\$ ×			
Bridge Components ➡ SR 302 3DFEM4 ➡ Components ▲ 2-8" Railing ■ W 12x40 ■ W 12x53 ■ 7/8" dia bolts ■ Grade 60 ■ ASTM A70 G50 ■ ASTM A36		Ar	nalysis									\$ ×			
 Diaphragm Definitions Diaphragm Definitions Lateral Bracing Definit 		New													
BRIDGE ALTERNATIVE		Analyze View Summ View Detail General Pre Close Bridg	ed Report		-										
<u>[</u>		close bridg	e workspace	-											
🕰 Diaphragm Definitions													-		Х
Name: DIA C				Diaphrag	gm typ	e: Type 3				Numb	er of elen	nents i	in fixed memb	er: 1	~
Members Connections															
Diaphragm types:	1	Membe	r	Shape		Sectio orientat		Secti	on locatio	on	Materia	il			
		AB	W 12x5	3	~	Vertical	~			~ A	STM A36	~			
		CD	L 5x5x0	.5	~	Vertical	~ T	op Le	eft	~ A	STM A36	~			
Type: 1		CE	L 5x5x0		~	Vertical		op Le			STM A36	~			
A B C Type 2		ED	L 5x5x0	.5	~	Vertical	~ T	op Le	eft	~ <u>A</u>	STM A36	~			
															-
C Type: 3		Connec		ipport type	Y (in)	Meas fro									
Type, 5		A	Pinr			Top of Wel		~							
A _ B		B	Pinr		16 60	Top of Wel		<u> </u>							
<u> </u>		D	Pinr		60	Top of Wel		~							
Type: 4		E	Pinr	ed 🗸				~							
															÷
											OK		Apply	Cano	el

Click **OK** to save the diaphragm definition and close the window.

Steel bridges may contain any of the 4 types of diaphragm definitions. Straight concrete bridges may only contain Type 4 diaphragm definitions. Similarly add 2 more diaphragm definitions – **DIA A** and **DIA B** as shown below.

lame: DIA A			Diaphrag	gm type	Type 3	\sim	Nu	mber of elements i	in fixed member	1 v
Members Connections										
Diaphragm types:	Men	nber	Shape		Section	Sec	tion location	Material		
	A	AB V	/ 12x40	~	Vertical V		~	ASTM A36 $\!$		
	С	D L	5x5x0.5	~	Vertical 🗸	Тор	Left 🗸	ASTM A36 V		
C G D Type: 1	C	E L	5x5x0.5	~	Vertical 🗸	Тор	Left 🗸	ASTM A36 🗸		
	> E	D L	5x5x0.5	~	Vertical 🗸	Тор	Left 🗸 🗸	ASTM A36 🗸		
$\overline{\mathcal{I}}_{F}$										
	Con	nection	Support type	Y (in)	Measured from					
C Type: 3	Con	nection A	Support type Pinned ~	(in)		~				•
, v	Con		type	(in) 14	from					•
		A B C	type Pinned ~ Pinned ~ Pinned ~	(in) 14 14 60	from Top of Web Top of Web Top of Web	> > >				*
Type: 3	Con	A B C D	type Pinned × Pinned × Pinned × Pinned ×	(in) 14 14 60	from Top of Web Top of Web	> > > >				•
Type: 3		A B C	type Pinned ~ Pinned ~ Pinned ~	(in) 14 14 60	from Top of Web Top of Web Top of Web	> > >				•
A B		A B C D	type Pinned × Pinned × Pinned × Pinned ×	(in) 14 14 60	from Top of Web Top of Web Top of Web	> > > >				*
A B		A B C D	type Pinned × Pinned × Pinned × Pinned ×	(in) 14 14 60	from Top of Web Top of Web Top of Web	> > > >				* *
A B		A B C D	type Pinned × Pinned × Pinned × Pinned ×	(in) 14 14 60	from Top of Web Top of Web Top of Web	> > > >				*
A B		A B C D	type Pinned × Pinned × Pinned × Pinned ×	(in) 14 14 60	from Top of Web Top of Web Top of Web	> > > >				* *

Click **OK** to save the diaphragm definition and close the window.

Click **OK** to save the diaphragm definition and close the window.

Lateral Bracing Definitions

To add a lateral bracing definition, double click on the **Lateral Bracing Definitions** node in the **BWS** tree. Enter data as shown below.

Bridge Workspace	- SR 302 3DFEM4		ANALYSIS	REPORTS	?	-		\times
	PACE TOOLS	VIEW	DESIGN/RATE	REPORTING				
▲ Check Out Image: Check In ▲ Check In Validate	A	3 🎸 ose Export	Refresh Oper	New Copy	Paste Duplicate) Delete	Schematic	
E	Bridge			N	lanage			
Workspace	\$ X	Schematic		\$ ×	Report		Ś	×
Diaphragm Definitions DIA C S DIA A DIA B DIA B								
BRIDGE ALTERNATIVES	Analyze	nary Report					Ŷ	> X
	Q View Detail	led Report						
	General PreClose Bridg	eferences je Workspac	e					
								_

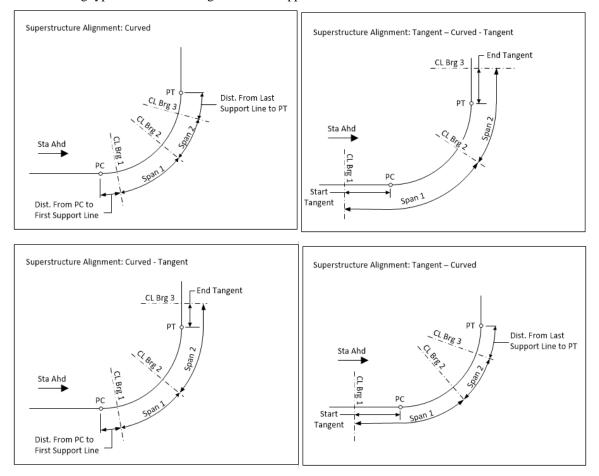
🗛 Lateral Bracing Definition				_		×
Name:	DIAGONAL	BRACING				
Steel shape type:	T-Shape		~			
Shape:	WT 7x15		~			
Material:	ASTM A36		~			
Support Type:	Pinned		~			
Member Connection Type:	Bolt		~			
Bolt definition:	7/8" dia bolt	s	~			
Number longitudinal bolt lines:						
Bolt per line:						
Bolt line spacing (trans.):		in				
Bolt line spacing (long.):		in				
Start work point offset:		in				
End work point offset:		in				
Girder attachment area deduction:		in^2				
		OK		Apply	Cance	el

Click **OK** to apply the data and close the window.

The default LRFD dynamic load allowance and default LRFD factors will be used.

SUPERSTRUCTURE DEFINITIONS

Double click on SUPERSTRUCTURE DEFINITIONS (or select SUPERSTRUCTURE DEFINITIONS and


select New from the WORKSPACE ribbon, or right click and select New) to create a new superstructure definition.

Bridge Workspace - SR 30	02 3DFEM4	ANALYSIS	REPORTS	?	_		\times
BRIDGE WORKSPACE WORKSPACE	TOOLS VIEW	DESIGN/RATE	REPORTING				
A Check In Validate Save 🖑 R	estore 🔀 🎸 evert Close Export	Refresh Open		Paste Duplicate) Delete	Schematic	
Bridge			M	anage			
Workspace	☆ × Schematic		\$ ×	Report		ź	$> \times$
Bridge Components Image: Components Image: Compone	s New					2	> ×
	 View Summary R View Detailed Re Wizard Import Design To General Preferen Close Bridge Wo 	port ool File				بر ا	
A New Superstructure Defin	ition						Х
 Girder system superstructu Girder line superstructu Floor system superstructure Floor line superstructure Truss system superstructure Truss line superstructure Reinforced concrete slai Concrete multi-cell box Advanced concrete multi- 	re ture ture e b system supers superstructure		Superst	ructure defin	ition	wizard]
				ОК		Cancel	

Select **Girder system superstructure** and the **Girder System Superstructure Definition** window appears. Enter the data as shown below.

	vsis Specs Eng	ine		
ame:	AS-BUILT CURVED			Modeling
				Multi-girder system MCB With frame structure simplified definition
escription:				Deck type:
				Concrete Deck 🗸 🗸
efault units: lumber of spans:	US Customary ~	Enter span lengths along the reference line:		For PS/PT only Average humidity:
umber of girders:		Span Length (ft)		%
		> 1 153.75		Member alt. types
		2 222		Steel
		3 194		P/S
		4 133.75		R/C
				Dimber
Horizontal curvati	ure along reference li	ine		
Horizontal curvati	-	ine Distance from PC to first support line:	0 ft	
_	urvature		0 ft 0 ft	
Horizontal co Superstructur Curved	urvature re alignment	Distance from PC to first support line:		
Horizontal co Superstructur Curved Tangent	urvature re alignment ;, curved, tangent	Distance from PC to first support line: Start tangent length:	0 ft	
Horizontal co Superstructur Curved Tangent Tangent	urvature re alignment ;, curved, tangent ;, curved	Distance from PC to first support line: Start tangent length: Radius:	0 ft 3274.04 ft	
Horizontal co Superstructur Curved Tangent	urvature re alignment ;, curved, tangent ;, curved	Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length:	0 ft 3274.04 ft Left v	
Horizontal co Superstructur Curved Tangent Tangent	urvature re alignment ;, curved, tangent ;, curved	Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length:	0 ft 3274.04 ft Left ~ 0 ft	

The **Design speed** and **Superelevation** are used to compute the centrifugal force effects on the truck live load. The high side of the roadway is assumed to be at the outside of the curve.

The following types of horizontal alignments are supported.

The **Distance from PC to first support line** and **Distance from last support line to PT** are necessary to determine the member lengths when the first or last support line is skewed.

If the member starts before the defined PC location, that portion of the member is assumed to be tangent to the curve at the defined PC location.

If the member ends after the defined PT location, that portion of the member is assumed to be tangent to the curve at the defined PT location.

Navigate to the **Analysis** tab of this window. This tab contains the following settings to control the 3D analysis. Enter the information as shown below.

Definition Analysis Specs Engine			
Structural slab thickness Number of shell elements			
Consider structural slab thickness for rating O In the deck between girders			
Consider structural slab thickness for design			
Slower Faster Wearing surface More accurate Less accurate			
Consider wearing surface for rating			
Consider wearing surface for design			
Consider striped lanes for rating			
Default analysis type: Line Girder V Slower Faster More accurate Less accurate			
Longitudinal loading			
Vehicle increment: 6 ft			
Transverse loading			
Vehicle immediate land			
Lane increment: 6 ft			
Span Length Tolerance			
→ 1 153.75 0.1			
LFR: Model non-composite regions as non-composite 2 222 0.1			
LRFD: Model non-composite regions as non-composite 3 194 0.1			
LRFR: Model non-composite regions as non-composite 4 133.75 0.1			
3D bracing member end connection analysis			
Calculated factored member force effects Maximum of average (stress + strength) and 75% resistance			
Bracing member LRFR factors			
Condition factor: Good or Satisfactory \lor			
Field measured section properties			
ОК Ар	oly	Canc	21

Navigate to the **Specs** tab of this window. The analysis of all member alternatives in the superstructure definition will use the following engine and specification set this tab. An exception to this is LFR rating of curved systems. The LFR rating is performed in accordance with the "AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges 2003". Note: ASR is not available for horizontally curved girders.

	Analysis method type	Analysis module	Selection type	Spec version	Factors	
>	ASR	AASHTO ASR	System Default ~	MBE 3rd 2023i, Std 17th \sim	N/A ~	1
	LFR	AASHTO LFR	✓ System Default ~	MBE 3rd 2023i, Std 17th 🗸 🗸	2002 AASHTO Std. Specifications \sim	
	LRFD	AASHTO LRFD	✓ System Default <	$^{\prime}$ LRFD 9th \sim	2020 AASHTO LRFD Specifications \vee	
	LRFR	AASHTO LRFR	✓ System Default ~	MBE 3rd 2023i, LRFD 9th $$	2018 (2022 Interim) AASHTO LRFR Spec. $$	

Click **OK** to apply the data and close the window.

Load Case Description

Double click on Load Case Description node in the Bridge Workspace tree and enter the following load cases.

	Load case name	Description	Stage		Туре	Time* (days)	
	DC1	DC acting on non-composite section	Non-composite (Stage 1)	D,DC	~		
	DC2	DC acting on long-term composite section	Composite (long term) (Stage 2)	D,DC	~		
>	DW	DW acting on long-term composite section	Composite (long term) (Stage 2)	D,DW	~		
	tressed members only	Add default load case descriptions		Ne	u Dop	licate Del	lete

Click OK to apply the data and close the window.

Bridge Alternatives

Double click on the Bridge Alternatives node in the BWS tree. Enter the data as shown below.

A Bridge Alternative			_	
Alternative name: AS BUILT				
Description Substructures				
Description:				
Horizontal curvature		Global positio	oning	
Reference line length:	ft	Distance: 0) ft	
O Start bearing	End bearing	Offset: 0) ft	
Starting station:	ft	Elevation:	ft	
Bearing: N	90^ 0' 0.00" E			
Bridge alignment		Start tangent ler	ngth:	ft
O Curved		Curve length:		ft
Tangent, curved, tang	gent	Radius:	3274.04	ft
Tangent, curved		Direction:	Left	~
Curved, tangent		End tangent len	ath:	ft
Superstructure			-	
wizard	ulvert wizard			
		ОК	Apply	Cancel

Click **OK** to apply the data and close the window.

Expand the newly added bridge alternative – **AS BUILT** and double click on **SUPERSTRUCTURES** node in the tree. Enter data as shown below.

Superstructure						-	>
uperstructure name	AS BUILT						
Description A	lternatives	Vehicle path	Engine	Substructures			
Description:							
Reference line	2						
Distance:	0	ft					
Offset:	0	ft					
Angle:	0	Degrees					
Starting static	on:	ft					

Click **OK** to apply the data and close the window.

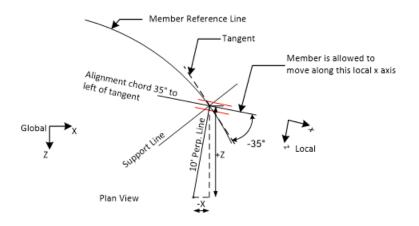
Expand the newly added superstructure definition, double click on **SUPERSTRUCTURE ALTENRATIVES**. Enter the data as shown below.

A 5	Superstr	ucture Alte	ernativ	e						_	
Alte	rnative	name:		AS	BUILT						
Des	cription	:									
Sup	erstruct	ure definit	ion:	AS-E	BUILT C	URVE	D		~		
Sup	erstruct	ure type:		Giro	der						
Nun	nber of	main mem	bers:	5							
	Span	Length					Support	Bearing of cur			
		(ft)					1	N 90^ 0' 0.00" E	: ^		
	1	153.75					2	N 87^ 18' 33.74	" Е		
	2	222					3	N 83^ 25' 27.72	" E		
	3	194					4	N 80^ 1' 45.70"	E		
	4	133.75					5	N 77^ 41' 19.44	" Е		

Click **OK** to apply the data and close the window.

The partially expanded **BWS** tree is shown below.

Vorkspac Bridge							
Bridge	e			-			
	Com	oonents					
🗛 SR	R 302 3D						
🕂 🖗	🕽 Compa	nents					
	Diaphr						
			Definitions				
			Presence Factors				
	Design		Conditions				
			URE DEFINITIONS				
	AS-						
ė. 🖻	BRIDGE	ALTERN	VATIVES				
	🕰 AS						
6							
[🖚 AS B	SUPERSTRUCTURE ALTE	RNIATIVES			
			AS BUILT (E) (C) (AS		FD)		
			s Analysis	DOILI COIVI			
		PIERS	,				
	-						
SR 302 31	DFFM4						- 0 >
							Dideo Medera View
						Template	Bridge Workspace View
Bridge	ID: SR 3		MA NBI struc	ture ID (8): 12	2345	Bridge completely defined	Superstructures
bridge		02 301 20	inter indistruct			Bhage completely defined	Culverts
							Substructures
Des	cription	Descrip	otion (cont'd) Alternativ	es Global re	eference point Tr	affic Custom agency fields	
	Existin	Curren	Bridge alternative name	Description			
	9	t	-	beschption			
>	\checkmark	\sim	AS BUILT				
							~
							Ŧ
							V
	Bridge	associatic	on	rD BrM			Ŧ
	Bridge	associatic	20 V BrR V B	rD BrM			Ψ.
	Bridge	associatic	את שוויים שוויים	rD BrM			Ψ.
	Bridge	associatic	ял V BrR V Br	rD BrM		OK	Apply Cancel


Framing Plan Detail

Navigate back to the Superstructure definition – **AS BUILT CURVED.** Expand this node, and double click on the **Framing Plan Detail** node to open the **Structure Framing Plan Details** window. The **Layout** tab of this window shows how the girders are located in the structure typical section. The following options are available for curved girder systems to locate the leftmost girder relative to the superstructure definition reference line. Enter a negative value if the leftmost girder is to the left of the superstructure definition reference line. This along with the entered girder spacing determines the computed radii of the girders.

Struct	ture Framin	ig Plan Details													-		
ımber	r of spans:	4	Number of gir	ders:	5												
Layou	ut Diapl	nragms															
						ing orient					superstructure definiti to the leftmost girder:	on -30.25	ft	:			
	Support	Skew		9	5 i i	ndicular to	girder		Defa	ault membe	er bearing alignment:		Gird	er radii:			
>	1	(degrees) 0			Along	support				Support	Girder bearing alignment type	Chord angle		Member	Radius (ft)		
	2	0				Girder s			>	1	Tangent V	(Degrees)	>	G1	3243.79	-	
	3	0			Girder bay	Start of	End of			2	Tangent V			G2	3252.915		
	4	0				girder	girder			3	Tangent 🗸			G3	3262.04		
	2	0			1	9.125	9.125			4	Tangent 🗸			G4	3271.165		
					2	9.125	9.125			5	Tangent 🗸			G5	3280.29		
					3	9.125	9.125								1		
			v	,	4	9.125	9.125		4	▲ Apply to all	members	Con	nput	ed			
			Ŧ					v	4	Apply to all	members		0	K	Apply	С	and

Bearings are oriented in a local coordinate system at each member support in curved girder systems. The user may enter default values for the orientation of the member support constraints on this window and then apply them to all members. This is a shortcut feature to allow for ease of data entry. The constraints can be modified on the member **Support** window as necessary. The constraint settings on this window are not used in the analysis, the constraint settings on the member **Support** window are used instead.

Select **Tangent** if the local x axis for bearing alignment is parallel to the tangent of the member reference line at the support. Select **Chord** if the local x axis for the bearing alignment is parallel to a specified chord angle from the tangent of the member reference line at the support. The following sketch shows an example of defining a bearing alignment along a chord.

Navigate to the **Diaphragms** tab of this window to see how diaphragm definitions are assigned to the framing plan. The weight of the diaphragms will be computed by the software and applied to the 3D model. Diaphragms in curved girder systems can be located by one of 3 methods:

- entering the spacing along both girders of the bay
- entering the spacing along the left girder of the bay
- entering the spacing along the right girder of the bay

The spacing reference type **Both** must be used when the diaphragms are not radial to either girder. This spacing reference type may also be used when the diaphragms are radial as shown in this example.

If the diaphragms are located by entering the spacing along the left or right girder of the bay, the resulting diaphragm location on the alternate girder will be computed by the program by casting a line perpendicular to the tangent of the specified girder at each spacing interval.

Enter the following data for each girder bay. These values can be copied from the provided spreadsheet with this tutorial to save time. To copy from spreadsheet, follow these steps:

- 1. Open the given **3DFEM4-Diaphragms.xslx** file in Microsoft Excel. Data for each bay is provided in separate sheets named after the bay numbers. For bay 1, navigate to sheet **Bay 1**.
- 2. Use the keyboard shortcut Ctrl+A to select all cells and use Ctrl+C to copy to the clipboard.
- 3. Navigate back to BrDR -> Structure Framing Plan Details window -> Diaphragms tab -> Girder bay
 - 1. Use Ctrl+V to paste the clipboard items in this window. Repeat the process for each girder bay.

Each girder bay with completed data entry is shown below.

Bay 1

	Diaphragms					Diar	bhragm								
d	er bay: 1		\sim	Cop	by bay to		zard								
	Spacing reference		pport	dist	tart ance ft)	Left diaphragm	Right diaphragm	Number	Left length	Right length	dist	nd ance ft)	Load	Diaphragm	
	type	nu	imber	Left girder	Right girder	spacing (ft)	spacing (ft)	of spaces	(ft)	(ft)	Left girder	Right girder	(kip)		
>	Both Girders 🗸	1	~	0	0	0	0	1	0	0	0	0		DIA C	~
	Both Girders V	1	~	17.957537	18.008053	0	0	1	0	0	17.957537	18.008053			_
	Both Girders ~	1	~	37.153524	37.25804	0	0	1	0	0	37.153524	37.25804			_
	Both Girders ~	1	~	56.349512	56.508027	0	0	1	0	0	56.349512	56.508027			_
	Both Girders ~	1	~	75.5455	75.758014	0	0	1	0	0	75.5455	75.758014			_
	Both Girders V	1	~	94,741487	95.008001	0	0	1	0	0	94.741487	95.008001			~
	Both Girders	1	~	113.937475	114.257989	0	0	1	0	0	113.9374	114.257989			~
	Both Girders	1	~	133.133462	133.507976	0	0	1	0	0	133.1334	133.507976			~
	Both Girders	2	~	0	0	0	0	1	0	0	0	0			~
	Both Girders V	2	~	22.003143	22.065039	0	0	1	0	0	22.003143	22.065039			_
	Both Girders V	2	~	43.995965	44.119729	0	0	1	0	0	43.995965	44.119729		5	_
	Both Girders ~	2	~	65.988787	66.174418	0	0	1	0	0	65.988787	66.174418			_
	Both Girders V	2	~	87.98161	88.229108	0	0	1	0	0	87.98161	88.229108			_
	Both Girders ~	2	~	109.974432	110.283798	0	0	1	0	0	109.9744	110.283798			
	Both Girders	2	~	131.967255	132.338487	0	0	1	0	0	131.9672	132.338487			_
	Both Girders V	2	~	153.960077	154.393177	0	0	1	0	0	153.9600	154.393177			_
	Both Girders	2	~	175.952899	176.447867	0	0	1	0	0	175.9528	176.447867		2000	~
	Both Girders	2	~	197.945722	198.502556	0	0	1	0	0	197.9457	198.502556			~
	Both Girders	2	~	219.948864	220.567595	0	0	1	0	0	219.9488	220.567595			~
	Both Girders	3	~	19,237269	19.291385	0	0	1	0	0	19.237269	19.291385		0.000	-
	Both Girders V	3	~	38.453898	38.562071	0	0	1	0	0	38.453898	38.562071			~
	Both Girders V	3	~	57.670526	57.832757	0	0	1	0	0	57.670526	57.832757			-
	Both Girders V	3	~	76.887155	77.103443	0	0	1	0	0	76.887155	77.103443		2000	_
	Both Girders V	3	~	96.103783	96.37413	0	0	1	0	0	96.103783	96.37413		DIRD	
	Both Girders V	3	~	115.320412	96.37413	0	0	1	0	0	96.103783	115.644816			<u> </u>
	both Girders V	1.0	Ŷ	115.520412	115.044610	U	U		U	U	113.5204	115.044610		DIAD	·
	Both Girders $\ \ \lor$	3	\sim	134.53704	134.915502	0	0	1	0	0	134.53704	134.915502		DIA A	~
	Both Girders $\ \ \lor$	3	\sim	153.753668	154.186188	0	0	1	0	0	153.7536	154.186188		DIA B	~
	Both Girders $\ \lor$	3	\sim	172.970297	173.456874	0	0	1	0	0	172.9702	173.456874		DIA A	~
	Both Girders $\ \lor$	4	\sim	0	0	0	0	1	0	0	0	0		DIA B	~
	Both Girders $\ \lor$	4	\sim	22.292115	22.354824	0	0	1	0	0	22.292115	22.354824		DIA A	~
	Both Girders $\ \lor$	4	\sim	44.584229	44.709648	0	0	1	0	0	44.584229	44.709648		DIA B	~
	Both Girders $\ \lor$	4	\sim	66.876344	67.064472	0	0	1	0	0	66.876344	67.064472		DIA A	~
	Both Girders $\ \ \lor$	4	\sim	89.168459	89.419295	0	0	1	0	0	89.168459	89.419295		DIA B	~
	Both Girders $\ \ \lor$	4	\sim	111.460573	111.774119	0	0	1	0	0	111.4605	111.774119		DIA A	~
	Both Girders $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4	\sim	132.514237	132.887008	0	0	1	0	0	132.5142	132.887008		DIA C	~
													New	Duplicate	Delete

Bay 2

	er bay: 2	;	~	Cop	by bay to		ohragm izard								
	Spacing reference		Support	dist	art ance ft)	Left diaphragm	Right diaphragm	Number	Left length	Right length	dist	nd ance ft)	Load	Diaphragm	
	type	"	number	Left girder	Right girder	spacing (ft)	spacing (ft)	of spaces	(ft)	(ft)	Left girder	Right girder	(kip)		
,	Both Girders 🗸	1	~	0	0	0	0	1	0	0	0	0		DIA C ~	
	Both Girders 🗸	1	\sim	18.008053	18.058568	0	0	1	0	0	18.008053	18.058568		DIA A V	,
	Both Girders 🗸	1	\sim	37.25804	37.362555	0	0	1	0	0	37.25804	37.362555		DIA B ~	,
	Both Girders 🗸	1	\sim	56.508027	56.666542	0	0	1	0	0	56.508027	56.666542		DIA A	,
	Both Girders 🗸	1	\sim	75.758014	75.970529	0	0	1	0	0	75.758014	75.970529		DIA B ~	,
	Both Girders 🗸	1	\sim	95.008001	95.274516	0	0	1	0	0	95.008001	95.274516		DIA A V	,
	Both Girders 🗠	1	\sim	114.257989	114.578502	0	0	1	0	0	114.2579	114.578502		DIA B ~	,
	Both Girders 🗠	1	\sim	133.507976	133.882489	0	0	1	0	0	133.5079	133.882489		DIA A ~	,
	Both Girders $\ \lor$	2	\sim	0	0	0	0	1	0	0	0	0		DIA B	,
	Both Girders 🗠	2	\sim	22.065039	22.126935	0	0	1	0	0	22.065039	22.126935		DIA A V	,
	Both Girders 🗠	2	\sim	44.119729	44.243492	0	0	1	0	0	44.119729	44.243492		DIA B ~	,
	Both Girders $\ \lor$	2	\sim	66.174418	66.360049	0	0	1	0	0	66.174418	66.360049		DIA A ~	,
	Both Girders 🗠	2	\sim	88.229108	88.476606	0	0	1	0	0	88.229108	88.476606		DIA B ~	,
	Both Girders 🗠	2	\sim	110.283798	110.593163	0	0	1	0	0	110.2837	110.593163		DIA A ~	,
	Both Girders 🗠	2	\sim	132.338487	132.70972	0	0	1	0	0	132.3384	132.70972		DIA B ~	,
	Both Girders $\ \lor$	2	\sim	154.393177	154.826277	0	0	1	0	0	154.3931	154.826277		DIA A ~	,
	Both Girders 🗠	2	\sim	176.447867	176.942834	0	0	1	0	0	176.4478	176.942834		DIA B ~	,
	Both Girders 🗠	2	\sim	198.502556	199.059391	0	0	1	0	0	198.5025	199.059391		DIA A V	·
	Both Girders $\ \ \lor$	2	\sim	220.567595	221.186326	0	0	1	0	0	220.5675	221.186326		DIA B ~	·
	Both Girders $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	3	\sim	19.291385	19.345501	0	0	1	0	0	19.291385	19.345501		DIA A	·
	Both Girders $\ \lor$	3	\sim	38.562071	38.670245	0	0	1	0	0	38.562071	38.670245		DIA B ~	·
	Both Girders $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	3	\sim	57.832757	57.994988	0	0	1	0	0	57.832757	57.994988		DIA A	·
	Both Girders $\ \smallsetminus $	3	\sim	77.103443	77.319732	0	0	1	0	0	77.103443	77.319732		DIA B	·
	Both Girders $\ \ \lor$	3	\sim	96.37413	96.644476	0	0	1	0	0	96.37413	96.644476		DIA A ~	,
	Both Girders $\ \smallsetminus $	3	\sim	115.644816	115.96922	0	0	1	0	0	115.6448	115.96922		DIA B ~	<u></u>
	Both Girders $~~$ \sim	3	\sim	134.915502	135.293964	0	0	1	0	0	134.9155	135.293964		DIA A ~	,
	Both Girders $\ \smallsetminus$	3	\sim	154.186188	154.618707	0	0	1	0	0	154.1861	154.618707		DIA B ~	,
	Both Girders \checkmark	3	\sim	173.456874	173.943451	0	0	1	0	0	173.4568	173.943451		DIA A ~	,
	Both Girders $\ \lor$	3	\sim	192.748259	193.288952	0	0	1	0	0	192.7482	193.288952		DIA B ~	·
	Both Girders $\ \ \lor$	4	\sim	22.354824	22.417533	0	0	1	0	0	22.354824	22.417533		DIA A V	·
	Both Girders $~~$ \sim	4	\sim	44.709648	44.835066	0	0	1	0	0	44.709648	44.835066		DIA B ~	,
	Both Girders \checkmark	4	\sim	67.064472	67.252599	0	0	1	0	0	67.064472	67.252599		DIA A ~	·
	Both Girders 🗠	4	\sim	89.419295	89.670132	0	0	1	0	0	89.419295	89.670132		DIA B ~	,
	Both Girders $\ \ \lor$	4	\sim	111.774119	112.087665	0	0	1	0	0	111.7741	112.087665		DIA A ~	·
	Both Girders $~~$ \sim	4	\sim	132.887008	133.25978	0	0	1	0	0	132.8870	133.25978		DIA C ~	·
													New	Duplicate	Delete

Bay 3

	er bay: 3	5	~	Cor	by bay to		phragm								
	Spacing	Su	pport	S: dist	tart ance	Left diaphragm	Right diaphragm	Number	Left	Right	dist	nd tance	Load	Disphrage	
	type	nu	imber	(Left girder	ft) Right girder	spacing (ft)	spacing (ft)	of spaces	length (ft)	length (ft)	Left girder	(ft) Right girder	(kip)	Diaphragm	
,	Both Girders 🗠	1	\sim	0	0	0	0	1	0	0	0	0		DIA C	~
	Both Girders 🗠	1	\sim	18.058568	18.109084	0	0	1	0	0	18.058568	18.109084		DIA A	~
	Both Girders 🗸	1	\sim	37.362555	37.467071	0	0	1	0	0	37.362555	37.467071		DIA B	~
	Both Girders 🗸	1	\sim	56.666542	56.825057	0	0	1	0	0	56.666542	56.825057		DIA A	~
	Both Girders 🗸	1	\sim	75.970529	76.183043	0	0	1	0	0	75.970529	76.183043		DIA B	~
	Both Girders 🗸	1	\sim	95.274516	95.54103	0	0	1	0	0	95.274516	95.54103		DIA A	~
	Both Girders 🗸	1	\sim	114.578502	114.899016	0	0	1	0	0	114.5785	114.899016			~
	Both Girders 🗸	1	\sim	133.882489	134.257003	0	0	1	0	0	133.8824	134.257003			~
	Both Girders 🗸	2	\sim	0	0	0	0	1	0	0	0	0			~
	Both Girders 🗸	2	\sim	22.126935	22.188832	0	0	1	0	0	22.126935	22.188832			~
	Both Girders 🗸	2	~	44.243492	44.367256	0	0	1	0	0	44.243492	44.367256			~
	Both Girders V	2	~	66,360049	66.54568	0	0	1	0	0	66,360049	66.54568			~
	Both Girders V	2	~	88.476606	88.724104	0	0	1	0	0	88.476606	88.724104		DIAB	~
	Both Girders V	2	\sim	110.593163	110.902529	0	0	1	0	0	110.5931	110.902529		0.110	~
	Both Girders V	2	\sim	132.70972	133.080953	0	0	1	0	0	132.70972	133.080953			_
	Both Girders V	2	~	154.826277	155.259377	0	0	1	0	0	154.8262	155.259377			_
	Both Girders V	2	\sim	176.942834	177.437801	0	0	1	0	0	176.9428	177.437801			-
	Both Girders V	2	~	199.059391	199.616226	0	0	1	0	0	199.0593	199.616226			_
	Both Girders V	2	\sim	221.186326	221.805057	0	0	1	0	0	221.1863	221.805057			_
	Both Girders V	3	~	19.345501	19.399617	0	0	1	0	0	19.345501	19.399617			-
	Both Girders V	3	~	38.670245	38.778418	0	0	1	0	0	38.670245	38.778418			-
	Both Girders V	3	~	57.994988	58.157219	0	0	1	0	0	57.994988	58.157219			_
	Both Girders V	3	~	77.319732	77.536021	0	0	1	0	0	77.319732	77.536021			~
	Both Girders V	3	~	96.644476	96.914822	0	0	1	0	0	96.644476	96.914822			~
	Both Girders V	3	~	115.96922	116.293624	0	0	1	0	0	115.96922	116.293624			-
		-				-									_
	Both Girders V	3	~	135.293964	135.672425	0	0	1	0	0	135.2939	135.672425			×
	Both Girders V	3	~	154.618707	155.051227	0	0	1	0	0	154.6187	155.051227			~
	Both Girders 🗸	3	~	173.943451	174.430028	0	0	1	0	0	173.9434	174.430028			~
	Both Girders ~	3	\sim	193.288952	193.829645	0	0	1	0	0	193.2889	193.829645			~
	Both Girders 🗸	4	~	22.417533	22.480242	0	0	1	0	0	22.417533	22.480242			~
	Both Girders 🗸	4	\sim	44.835066	44.960485	0	0	1	0	0	44.835066	44.960485		DIR D	<u> </u>
	Both Girders 🗸	4	\sim	67.252599	67.440727	0	0	1	0	0	67.252599	67.440727		Pinn	<u> </u>
	Both Girders 🗸	4	\sim	89.670132	89.920969	0	0	1	0	0	89.670132	89.920969		DIAD	<u> </u>
	Both Girders 🗸	4	\sim	112.087665	112.401211	0	0	1	0	0	112.0876	112.401211		DIAA	<u> </u>
	Both Girders 🛛 🗠	4	\sim	133.25978	133.632551	0	0	1	0	0	133.25978	133.632551		DIAC	~

Bay 4

	ut Diaphragms er bay: 4		~	Cop	y bay to		ohragm izard								
	Spacing reference	Supp		dist	art ance ft)	Left diaphragm	Right diaphragm	Number	Left length	Right length	dist	nd ance ft)	Load	Diaphragm	
	type	num	ber	Left girder	Right girder	spacing (ft)	spacing (ft)	of spaces	(ft)	(ft)	Left girder	Right girder	(kip)		
>	Both Girders 🗸	1	\sim	0	0	0	0	1	0	0	0	0		DIA C 🗸	
	Both Girders 🗸	1	\sim	18.109084	18.1596	0	0		0	0	18.109084	18.1596		DIA B ~	
	Both Girders V	1	~	37.467071	37.571586	0	0		0	0	37.467071	37.571586		DIA B ~	
	Both Girders 🗸	1	~	56.825057	56.983572	0	0	1	0	0	56.825057	56.983572		DIA A V	
	Both Girders 🗸		\sim	76.183043	76.395558	0	0	1	0	0	76.183043	76.395558		DIA B ~	
	Both Girders V		~	95.54103	95.807544	0	0	1	0	0	95.54103	95.807544			
	Both Girders V		~	114.899016	115.21953	0	0	1	0	0	114.8990	115.21953		DIA B V	
	Both Girders V	1	~	134.257003	134.631516	0	0	1	0	0	134.2570	134.631516		DIA A V	
	Both Girders 🗸	2	\sim	0	0	0	0	1	0	0	0	0		DIA B ~	
	Both Girders V		~	22.188832	22.250728	0	0	1	0	0	22.188832	22.250728		DIA A V	
	Both Girders V		~	44.367256	44.49102	0	0	1	0	0	44.367256	44.49102		DIA B V	
	Both Girders V		~	66.54568	66.731311	0	0	1	0	0	66.54568	66.731311		DIA A V	
	Both Girders V		~	88.724104	88.971603	0	0		0	0	88.724104	88.971603		DIA B ~	
	Both Girders V	2	~	110.902529	111.211894	0	0		0	0	110.9025	111.211894		DIA A V	-
	Both Girders V		~	133.080953	133.452186	0	0		0	0	133.0809	133.452186		DIA B V	
	Both Girders V	2	~	155.259377	155.692477	0	0		0	0	155.2593	155.692477		DIA A V	
			~	177.437801	177.932769	0	0		0	0	177.4378	177.932769		DIA B ~	-
		2	~			0	0		0	0	199.6162	200.17306			-
	both onders	2	~	199.616226 221.805057	200.17306 222.423788	0	0		0	0	221.8050	222.423788		DIA A V DIA B V	-
	Both Girders \checkmark	2	× ×	19.399617	19.453732	0	0		0	0	19.399617	19.453732			-
	Both Girders V	3	~	38.778418	38.886591	0	0		0	0	38.778418	38.886591			-
	Both Girders V	3	~	58.157219	58.319451	0	0		0	0	58.157219	58.319451			-
	Both Girders V	3	×	77.536021	77.75231	0	0	1	0	0	77.536021	77.75231			-
	Both Girders V	3	~	96.914822	97.185169	0	0	1	0	0	96.914822	97.185169			-
															-
	Both Girders 🗠	3	~	116.293624	116.618028	0	0	1	0	0	116.2936	116.618028		DIA B ~	
	Both Girders $\ \ \lor$	3	\sim	135.672425	136.050887	0	0	1	0	0	135.6724	136.050887		DIA A V	
	Both Girders $\ \smallsetminus $	3	\sim	155.051227	155.483746	0	0	1	0	0	155.0512	155.483746		DIA B 🗸	
	Both Girders $\ \ \lor$	3	\sim	174.430028	174.916605	0	0	1	0	0	174.4300	174.916605		DIA A 🗸 🗸	
	Both Girders $\ \ \lor$	3	~	193.829645	194.370338	0	0	1	0	0	193.8296	194.370338		DIA B ~	
	Both Girders $\ \lor$	4	~	22.480242	22.542952	0	0	1	0	0	22.480242	22.542952		DIA A V	
	Both Girders $\ \lor$	4	\sim	44.960485	45.085903	0	0	1	0	0	44.960485	45.085903		DIA B 🗸	
	Both Girders $\ \lor$	4	\sim	67.440727	67.628855	0	0	1	0	0	67.440727	67.628855		DIA A 🗸	
	Both Girders $\ \ \lor$	4	\sim	89.920969	90.171806	0	0	1	0	0	89.920969	90.171806		DIA B $$	
	Both Girders $\ \ \lor$	4	\sim	112.401211	112.714758	0	0	1	0	0	112.4012	112.714758		DIA A 🗸 🗸	
	Both Girders $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4	\sim	133.632551	134.005323	0	0	1	0	0	133.6325	134.005323		DIA C 🗸 🗸	

Click **Apply** to apply the diaphragm definition and keep the window open.

A wizard is also available to create the diaphragm locations for the user.

Navigate to the **Lateral bracing ranges** tab of this window to see how lateral bracing definitions are assigned to the framing plan. Values can be copied from the provided spreadsheet for girder bay 1 and girder bay 4. See images below.

	Disabasan		and the second second													
ayo		is Late	ral bracing	ranges												
ird	er bay: 1		<u> </u>	Copy bay	iy to											
	Lateral bracing	Supp		Start distanc (ft)			acing length (ft)	- 61	umber braces	Lateral bracing			Length (ft)		End distance (ft)	
	pattern	num			ight girde	Along r girde		igin	braces	bracing		Left	Right	Left	Right	
\rangle	Alternating /	~ 1	~			0	9.0040	0265	2	DIAGONAL BRAC	ING 🗸	0	18.0080	053 0	18.008053	
	Alternating \land	~ 1	~		18.0080	53	9.6249	935	12	DIAGONAL BRAC	ING 🗸	0	115.4999	022 0	133.507975	
	Alternating \land	~ 1	~	1	133.50797	75	9.6249	935	2	DIAGONAL BRAC	ING 🗸	0	19.2499	87 0	152.757962	
	Alternating \wedge	× 2	~			0	11.0325	5195	2	DIAGONAL BRAC	ING 🗸	0	22.0650	039 0	22.065039	
	Alternating \wedge	× 2	~		22.06503	39	11.027	7345	16	DIAGONAL BRAC	ING 🗸	0	176.437	/52 0	198.502559	
	Alternating ∧	× 2	~	1	198.50255	59	11.0325	5195	2	DIAGONAL BRAC	ING ~	0	22.0650	039 0	220.567598	
		× 2	~		0.5675949	_	9.6456		2	DIAGONAL BRAC	_	0	19.2913		239.85897998	
	Alternating ∧	_	~		4.0244679		9.6456		2	DIAGONAL BRAC	_	0	19.2913		413.31585298	
	Alternating ∧	_	~		9.291384	_	9.635		16	DIAGONAL BRAC		0	154.1654		173.45687259	
		× 4	~		1.774118	_	10.5564		2	DIAGONAL BRAC	_	0	21.1128	_	132.88700756	
	Anternating / (· 4	~		2.354823	-					_	_				
	/accinicality / (~ 4 ~ 4	~	20	2,304823	0	11.177		8	DIAGONAL BRAC	_	0	89.4192 22.3548	_	111.77411956 22.354824	
uc	ture Framing Plan D	etails											New OK	Dupli	Apply C	
be you	r of spans: 4	Nu	mber of gird racing rang	es py bay to											Apply C.	ance
be you	r of spans: 4 ut Diaphragms r bay: 4 Lateral	Nur Lateral t	racing rang	es py bay to Start distance		Bracing	it)	Number		Lateral	Ŀ	ength (ft)			Apply C. — [ance
be you	r of spans: 4 ut Diaphragms r bay: 4	Nur Lateral t	racing rang	es py bay to Start distance (ft)	t girder		it)	Number of braces		Lateral bracing	Left	(ft)			Apply C.	ance
you you	r of spans: 4 ut Diaphragms r bay: 4 Lateral bracing	Nur Lateral t	oracing rang	es py bay to Start distance (ft)	t girder	(f Along left	t) Along right		DIAGO			(ft)	OK	d	Apply C. — [
be you de	r of spans: 4 ut Diaphragms r bay: 4 Lateral bracing pattern	Nur Lateral k	oracing rang	start distance (ft) er Right	t girder	(f Along left girder	t) Along right	of braces		bracing	Left	(ft) 4	OK	d	Apply C. End listance (ft) Right 34 0	ance
ber you der	r of spans: 4 ut Diaphragms r bay: 4 Lateral bracing pattern Alternating V ~	Nur Lateral b Support number	Cc Left gird	ss by bay to Start distance (ft) er Right 0 084	t girder	(f Along left girder 9.054542	t) Along right	of braces	DIAGO	bracing	Left 18.10908	(ft) 4 2	OK Right	d Left 18.10900	Apply C. End listance (ft) Right 34 0 06 0	ance
ber you der	r of spans: 4 tt Diaphragms r bay: 4 Lateral bracing pattern Alternating V × Alternating V ×	Num Lateral b V Support number 1 V	Left gird	ss by bay to Start distance (ft) er Right 0 084	t girder	(f Along left girder 9.054542 9.6789935	t) Along right	of braces 2 12	DIAGO DIAGO	bracing	Left 18.10908 116.14792	(ft) 4 2 9	OK Right 0 0	d Left 18.10908 134.25700	End istance (ft) Right 34 00 25 0	ance
ber you de	r of spans: 4 at Diaphragms r bay: 4 Lateral bracing pattern Alternating V × Alternating V ×	Nur Lateral t Support number 1 ~ 1 ~ 1 ~	Left gird	s by bay to Start distance (ft) er Right 0 284 0 303 0	t girder	(1 Along left girder 9.054542 9.6789935 9.8932495	t) Along right	of braces 2 12 2 2 2	DIAGO DIAGO DIAGO	NAL BRACING \checkmark NAL BRACING \checkmark NAL BRACING \checkmark	Left 18.10908 116.14792 19.78649	(ft) 4 2 9 2	OK Right 0 0 0	d Left 18.10908 134.25700 154.04350	Apply C. End Istance (ft) Right 34 0 05 0 02 0 32 0	
ber /ou de	r of spans: 4 at Diaphragms r baye 4 Lateral bracing pattern Alternating V × Alternating V × Alternating V ×	Nur Lateral b Support number 1 ~ 1 ~ 1 ~ 2 ~	Left gird 18.109	s s s s s s s s s s s s s s s s s s s	t girder	(f Along left girder 9.054542 9.6789935 9.8932495 11.094416	t) Along right	of braces 2 12 2 2 2	DIAGO DIAGO DIAGO DIAGO	NAL BRACING × NAL BRACING × NAL BRACING × NAL BRACING ×	Left 18.10908 116.14792 19.78649 22.18883	(ft) 4 2 9 2 2 2	OK Right 0 0 0 0	d Left 18.10908 134.25700 154.04350 22.1888	End istance (rt) Right 34 0 05 0 02 0 32 0 24 0	
ber you de	at Diaphragms r baye 4 Lateral bracing Atternating V × Atternating V × Atternating V × Atternating V × Atternating V ×	Nur Lateral b Support number 1 ~ 1 ~ 2 ~ 2 ~	Left gird 18.109 134.257	s s s s s s s s s s s s s s	t girder	(f Along left girder 9.054542 9.6789935 9.8932495 11.094416 11.089212	t) Along right	of braces 2 12 2 2 16	DIAGO DIAGO DIAGO DIAGO DIAGO	NAL BRACING × NAL BRACING × NAL BRACING × NAL BRACING × NAL BRACING ×	Left 18.10908 116.14792 19.78649 22.18883 177.42739	(ft) 4 2 9 2 2 2 2	OK Right 0 0 0 0 0 0 0 0	d Left 18.10908 134.25700 154.04350 22.18883 199.61622	End End istance (rt) Right 34 0 05 0 02 0 32 0 24 0 36 0	
be /ou de	at Diaphragms at Diaphragms at Lateral bracing Laterating V Alternating Alterna	Num Lateral b V Support number 1 V 1 V 2 2 2 2 2	Left gird 18.109 134.257 22.188 199.616	s s start distance (ft) asses a	t girder	(f Along left girder 9.054542 9.6789935 9.8932495 11.094416 11.089212 11.403781	t) Along right	of braces 2 12 2 2 2 16 2 2 2 2 2 2	DIAGO DIAGO DIAGO DIAGO DIAGO	INAL BRACING × INAL BRACING × INAL BRACING × INAL BRACING × INAL BRACING × INAL BRACING ×	Left 18.10908 116.14792 19.78649 22.18883 177.42739 22.80756	(ft) 4 2 9 2 2 2 7	OK Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d Left 18.10908 134.25700 154.04350 22.1888 199.61622 222.42378	End listance (ft) Right 34 00 55 00	
ber you	art Diaphragms art Diaphragms art art diaphragms art art diaphragms art art diaphragms art	Num Lateral B	Left gird 18.109 134.257 22.188 199.616 221.80505	s start distance (ft) Right 0 284 203 0 0 2224 2224 2555 9 5559 0 0 0 0 0 0 0 0 0 0 0 0 0	t girder	(f Along left girder 9.054542 9.6789935 9.8932495 11.094416 11.089212 11.403781 9.6998085	t) Along right	of braces 2 12 2 2 2 16 2 2 2 2 2 2	DIAGO DIAGO DIAGO DIAGO DIAGO DIAGO	INAL BRACING VINAL BRACING VIN	Left 18.10908 116.14792 19.78649 22.18883 177.42739 22.80756 19.39961	(ft) 4 2 9 2 2 2 2 7 8	OK Right 0 0 0 0 0 0 0 0 0 0 0 0 0	d Left 18.10900 134.25700 134.04350 22.1888 199.61622 222.42378 241.2046739	End listance (ft) Right 34 0 056 0 22 0 24 0 36 0 35 0 59 0	
iber you rde	art Diaphragms art Diaphragms r bays 4 Lateral bracing pattern Alternating V × Alternating V ×	Num Lateral B v Support 1 2 2 2 2 2 2 2 3	Left gird 18.109 134.257 22.188 199.616 221.80505 19.39961	s start	t girder	(f Along left girder 9.6789935 9.8932495 11.094416 11.089212 11.403781 9.6998085 9.6894005	t) Along right	of braces 2 12 2 2 2 2 16 2 2 2 2 2 2 16	DIAGO DIAGO DIAGO DIAGO DIAGO DIAGO DIAGO	bracing Vinal BR	Left 18.10908 116.14792 19.78649 22.18883 177.42739 22.80756 19.39961 155.03040	(ft) 4 2 9 2 2 2 7 8 8 1	OK Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d Left 18.10900 134.25700 134.25700 134.25700 134.25700 222.42888 199.61622 222.42370 241.2046739 174.430024	End listance (ft) Right 34 0 056 0 022 0 22 0 24 0 356 0 359 0 59 0	
iber you rde	Att Diaphragms r bays: 4 Lateral bracing bracing Atternating V × Atternating V ×	Num Lateral I V Support number 1 2 2 2 2 2 3	Left gird Left gird 18,109 134,257 22,188 199,616 221,80505 19,39961 174,43002	ss py bay to Start distance (ft) Right 0 2024 2024 2024 2025 2024 2025 2		(f Along left girder 9.054542 9.6789935 9.8932495 11.094416 11.089212 11.403781 9.6998085 9.6894005 9.6894005	t) Along right	of braces 2 12 2 2 2 16 2 2 2 16 2 2 16 2 2	DIAGO DIAGO DIAGO DIAGO DIAGO DIAGO DIAGO DIAGO	INAL BRACING × INAL BRACING ×	Left 18.10908 116.14792 19.78649 22.18883 177.42739 22.80756 19.39961 155.03040 19.9403	(ft) 4 2 9 2 2 2 2 7 8 1 1 2	OK Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d Left 18.10908 134.25700 154.04350 22.18883 199.61622 222.42376 241.2046735 174.4300245 174.4300245	End listance (ft) Right 34 0 05 0 02 0 22 0 24 0 35 0 39 0 59 0 59 0	
nber ayou irde	r of spans: 4 T Diaphragms r baye 4 T b	Num Lateral I Support number 1 2 2 2 2 3 3	Left gird Left gird 18.109 22.188 199.616 221.80505 19.39961 174.43002 193.82964	ss py bay to Start distance (ft) Right 0 2 2 2 2 2 2 2 2 2 2 2 2 2		(f Along left girder 9.054542 9.6789935 9.8932495 11.094416 11.089212 11.403781 9.6998005 9.6894005 9.6894005 11.240121	t) Along right	of braces 2 12 2 2 16 2 2 2 16 2 2 2 16 2 2 2 3 8	DIAGO DIAGO DIAGO DIAGO DIAGO DIAGO DIAGO DIAGO	INAL BRACING × INAL BRACING ×	Left 18.10908 116.14792 19.78649 22.18883 177.42739 22.80756 19.39961 155.03040 19.9403 22.48024	(ft) 4 2 9 9 2 2 2 2 7 8 8 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	OK	d Left 18.10906 134.25700 154.04350 22.18883 199.61622 222.42376 241.2046735 174.4300245 194.3703375 216.3098865	End End Iistance (ff) Right 34 0 05 0 0 0 0 0 0 0 0 0 0 0 0 0	

Click **OK** to apply the data and close the window.

Bracing Spec Check Selection

Double click on the **Bracing spec check selection** node in the BWS tree. This window is used to identify which diaphragms should be loaded for live load (for both straight and curved girder systems). This window contains a listing of each diaphragm location in the superstructure definition. The first number is the bay number, and the second number is the numerical id of the diaphragm starting with 1 for the diaphragm at the start of the bay. Selecting a diaphragm in this window will result in influence surfaces for the diaphragm members being generated and then loaded with the live load. BrDR will also perform a specification check on each checked diaphragm. Including more diaphragms for specification checking in a 3D analysis can greatly affect the run time and amount of memory needed for the analysis. Note that the diaphragms are always included in the FE model. This checkbox only controls if the diaphragm members are loaded for live load and specification checking.

Diap	hragms	Lateral b	oracing							
Selec	ct diaphrag	ims for spe	ecification ch	ecking in a 3D ana	lysis:					
S	elect all	Clea	r all							
	Bay 1	Bay 2	Bay 3	Bay 4						
>	1-1	2-1	3-1	4-1						î
	1-2	2-2	3-2	4-2						L
	1-3	2-3	3-3	4-3						L
	1-4	2-4	3-4	4-4						L
	1-5	2-5	3-5	4-5						L
	1-6	2-6	3-6	4-6						L
	1-7	2-7	3-7	4-7						ų
	1-8	2-8	3-8	4-8						
	1-9	2-9	3-9	4-9						
	1-10	2-10	3-10	4-10						
	1-11	2-11	3-11	4-11						
	1-12	2-12	3-12	4-12						
	1-13	2-13	3-13	4-13						
	1-14	2-14	3-14	4-14						
	1-15	2-15	3-15	4-15						•
						OK	Арг	bly	Cano	el

lracir	ng Spec	ificatio	n Check	Selection					_		
Diaph	ragms	Lat	eral brac	ing							
elect	lateral	bracing	g for spe	cification checking	in a 3D ana	alysis:					
Se	lect all		Clear al	1							
	Bay 1	Bay 2	Bay 3	Bay 4							
>	<u> </u>			L4-1							î
	_ L1			L4-2							l
	_ L1			L4-3							l
	_ L1			L4-4							ļ
	_ L1			L4-5							
	L1			L4-6							
	L1			L4-7							
	L1			L4-8							
	L1			L4-9							
	L1			L4-10							
	_ L1			L4-11							
	L1			L4-12							
(_ L1			L4-13							
	<u> </u>			L4-14							
	_ L1			L4-15							
							OK	Apply		Cano	cel

Similarly, the same can be done with the lateral bracing in the Lateral bracing tab of this window as shown below.

Click **OK** to apply the data and close the window.

Structure Typical Section

Double click on the **Structure Typical Section** node in the **BWS tree** to open the **Structure Typical Section** window. This window contains the following options for curved girder systems. The width of the deck must be constant along the length of the structure. The overhangs are computed based on the distance from the superstructure definition reference line to the leftmost girder and girder spacing entered on the **Framing Plan Detail** window and the deck width entered here.

Structure Typical Section Distance from left edge of deck to superstructure definition ref. line Deck	superstructure Superstruct	defini ure D	*					_		×
eft overhang	Reference			light over	-					
Deck Deck (cont'd) Parapet Med Superstructure definition reference line is	-		Generic Side	walk deck.	Lane position	Striped lanes	Wearing surface			
Distance from left edge of deck to superstructure definition reference line:	Start 33.416666	ft	End 33.416666	ft						
Distance from right edge of deck to superstructure definition reference line:	9.416666	ft	9.416666	ft						
Left overhang:	3.166666	ft	3.166666	ft						
Computed right overhang:	3.166666	ft	3.166666	ft						
							ОК	Apply	Canc	el

Navigate to the **Deck (Cont'd)** tab of this window and enter the information related to the deck concrete and thickness as shown below.

A Structure Typical Section		-		×
Distance from left edge superstructure definitio	e of deck to ' Distance from right edge of deck to n ref. linesuperstructure definition ref. line			
De De thi	sck Leference Line			
Left overhang	Right overhang			
Deck Deck (cont'd) Para	pet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Deck concrete:	Class AA (US) V			
Total deck thickness:	8.25 in			
Load case:	Engine Assigned V			
Deck crack control parameter:	130 kip/in			
Sustained modular ratio factor:	3			
Deck exposure factor:	1			
	ОК Ар	ply	Cance	el

Switch to the **Parapets** tab and enter the following parapet information.

ruc	ture Typical Sectior	1									-	
k	Fr	ont										
eck	Deck (cont'd)	Parapet	Median	n I	Railing Ger	neric Sidewalk	Lane posit	ion Stripe	d lanes W	earing surface		
	Nam	e	Load	case	Measure to	Edge of deck dist. measured from	Distance at start (ft)	Distance at end (ft)	Front face orientation			
>	2'-8" Railing	~	DC2	\sim	Back 🗸	Left Edge 🛛 🗸	0.16667	0.16667	Right \vee			
	2'-8" Railing	\sim	DC2	\sim	Back 🗸	Right Edge 🗸	0.16667	0.16667	Left \checkmark			
									Ne	ew Duplie	cate	Delete
										ОК	Apply	Ca

Navigate to the **Lane position** tab of this window. Use the **Compute** button to have BrDR compute the lane positions. These lane positions are used to compute the LRFD live load distribution factors.

	Travelway number	Distance from left edge o travelway to superstructur definition reference line at start (A) (ft)	re travelway to superst	ructure travelway to su	iperstructure erence line I (A)	Distance from travelway to su definition re at en (ft	uperstructure ference line d (B)
•	1	-31.99999	96 7.	999996	-31.999996		7.999996
						Apply	Cance
Str	ucture Typical S	Section					- 0
		Hay 1	velway 2				
)ec	:k Deck (co	nt'd) Parapet Median	Railing Generic Sidew	alk Lane position Strip	ed lanes Wea	aring surface	
	Travelway number	Distance from left edge of travelway to superstructure definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from r travelway to su definition ref at enc (ft)	iperstructure erence line d (B)	
	> 1	-31.999996	7.999996	-31.999996		7.999996	A

Click **OK** to apply the data and close the window.

The next step is to add transverse and bearing stiffeners.

Transverse Stiffeners

To add transverse stiffeners, expand the **Stiffener Definitions** node in the **BWS** tree. Click on **Transverse** and select **New** from the **WORKSPACE** ribbon (or right click and select **New**, or double click) as shown below.

Bridge Workspa	ace - SR 302 3DFEM4	Ļ	ANALYSIS	REPORTS	?	– 🗆 X
	RKSPACE TOOLS	VIEW	DESIGN/RATE	REPORTING		
A Check Out	e 💰 Restore 👔	3 🎸 🕯 ose Export R	efresh Open	New Copy Pa	ste Duplicate	Delete Schematic
	Bridge			Mana	ige	
Workspace		\$	X Schematic	\$2	× Report	× %
Bridge Components						
Components Compo	itions nce Factors itions DEFINITIONS D mic Load Allowance escription Detail ioration Check Selection		Analysis			\$ X
→ +++ Superstructur → ジ Shear Connec → ≧ Stiffener Defi → ジ Transverse	re Loads ctor Definitions nitions					
····· 📁 Bearing ⊞··· 📁 MEMBERS	New					
BRIDGE ALTERNATIV	 Analyze View Summary View Detailed 					
	 General Prefer Close Bridge V 					

Select Trans. Plate Stiffener from the Stiffener Type menu.

A New Transver	rse Stiffener Definition	×
0	Stiffener Type: Trans. Plate Stiffener 🔍	
	Trans. Plate Stiffener	
	Trans. Angle Stiffener	
	OK Cancel	

A Transverse Stiffener Definition _ Name: Intermediate Stiffener Interior Stiffener type Top gap: 0 in Single O Pair Width: 8.5 in Plate Thickness: 0.5 in Bottom gap: ASTM A36 \sim Material: 0 in Welds -- None -- \sim Top: -- None -- \sim Web: -- None --Bottom: \sim OK Apply Cancel

 \times

3DFEM4 – Curved Steel Multi-Span 3D Example

Click **OK** to apply the data and close the window.

Similarly add another stiffener definition as shown below.

Stiffener Exterior		Top gap: 0 Width:	in				
		0	in				
			in				
		MC data		1 1			
		wiath:					
		8.5	in	\leftarrow			
		Bottom gap:					
M A36	~	0	in		L		
lone V							
lone V							
lone V							
	in IM A36 None ~ ~ None ~ ~	Vone ~	IM A36 > Bottom gap: 0 None >	IM A36 V Bottom gap: 0 in	IM A36 V Bottom gap: 0 in	Image: None Sector gap: 0 None V	IM A36 V 0 in

Click **OK** to apply the data and close the window.

Bearing Stiffener

To add bearing stiffeners, expand the **Stiffener Definitions** node in the **BWS** tree. Click on the **Bearing** node and select **New** from the **WORKSPACE** ribbon (or right click and select **New**, or double click) as shown below.

Bridge Workspace - SR 302 3DFEM4		ANALYSIS	REPORTS	?	_		\times
BRIDGE WORKSPACE TOOLS	VIEW	DESIGN/RATE	REPORTING				
Check Out Check In Validate Save & Revert Close	🞸 🕻 Export Re	open	New Copy Pa	aste Duplicate) Delete	Schematic	
Bridge			Mana	age			
Workspace	\$ >	K Schematic	\$	× Report	t	ŝ	×
Bridge Components Image: Strain St		Analysis				Ş	××
B BRIDGE ALTERNA B BRIDGE ALTERNA B General Preferences Close Bridge Workspace		_					

Select Plate Stiffener from the Stiffener Type menu.

ng Stiffener Definition	×
Stiffener Type:	
Plate Stiffener	~
OK	Cancel
	Stiffener Type: Plate Stiffener

Bearing Stiffe	ner Definition							_	>
me: PIER 1	E & 5E Bearing	Stiffener							
Plate						in		<u>+</u> ∦ 2	 in
Thickness:	0.75	in			2	in		₹\[r	
Material:	ASTM A709	9 G50		\sim					
					8.5	in			
Welds									
Тор:	None		~		-		_	_	
Web:	None		~		2	in		<u>*</u> 46	
Bottom:	None		~			in	+	+ <u>+</u> 2	in
						IN	11	112	

Click **OK** to apply the data and close the window.

Similarly add another stiffener definition as shown below.

ame: Pick 2b						
	,3E&4E Bearing Stiffener			in	** ** 2	ir
Plate						
Thickness:	1.5 in		2	in		
Material:	ASTM A709 G50	~				
			8.5	in	$ \longrightarrow $	
Welds						
Тор:	None	~				
Web:	None	\sim	2	in		
Bottom:	None	\sim		in	→ <u>+</u> + <u>+</u> + <u>+</u> 2	i

Click **OK** to apply the data and close the window.

Member

Expand the **Members** node in the **BWS** tree and double click on **G1** to open the **Member** window. This window shows the data that was generated when the structure definition was created. No changes are required in this window. The first Member Alternative created will automatically be assigned as the **Existing** and **Current** Member alternative for this Member.

A Member										-		×
Member name:	G1					Link wit	h: None	\sim				
Description:												
	E	kisting	1	Current	Member alte	ernative name	Description					
												-
Number of spar	4			Span no.	Span length (ft)							
			>	1	152.32945	^						
				2	219.948864	L .						
				3	192.207566	i						
				4	132.514237	,						
						v						
									ОК Арр	ly	Cance	el

Click **Cancel** to close the window.

Supports

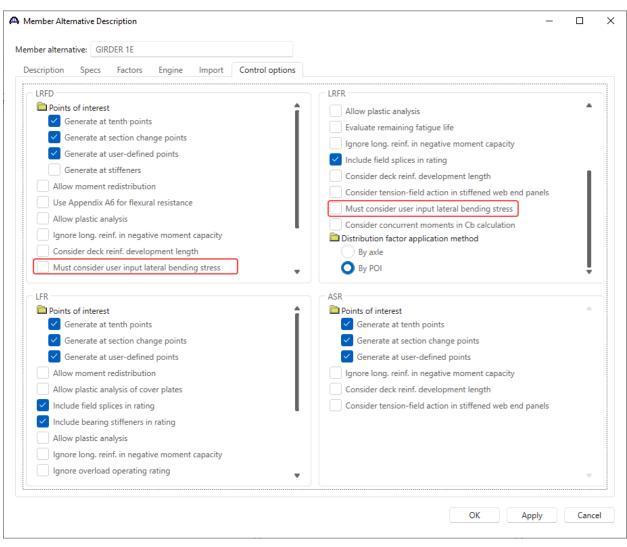
Expand the **G1** node and double click on **Supports** to open the **Supports** window for member **G1** to see how bearings can be oriented for curved girder systems. For curved girder systems bearings are oriented in a local coordinate system at each member support. Select **Tangent** if the local x axis for the bearing alignment is parallel to the tangent of the member reference line at the support. Select **Chord** if the local x axis for the bearing alignment is parallel to a specified chord angle from the tangent of the member reference line at the support.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	al rotation cons	straints Z	
Image: Image			
4 Tangent \checkmark 5 Tangent \checkmark 5 Tangent \checkmark 6 Support number Support type Local translation constraints Local translation constraints 8 Support number Support type Image: Constraint type Constraint type Constraint type 1 Roller \checkmark Constraint type Constraint type Constraint type Constraint type 2 Roller \checkmark Constraint type Constraint type Constraint type Constraint type 3 Pinned \checkmark Constraint type Constraint type Constraint type Constraint type 4 Roller \checkmark Constraint type Constraint type Constraint type Constraint type 3 Pinned \checkmark Constraint type Constraint type Constraint type Constraint type 4 Roller \checkmark Constraint type Constraint type Constraint type Constraint type			
Support Support Local translation constraints Local Support Support χ Y Z X 1 Roller \checkmark Image: Constraint in the second			
Support Local translation constraints Local translation constraints Support Support Local translation constraints Local translation constraints Local translation constraints Mathematical Support Support Local translation constraints Local translation constraints Local translation constraints Mathematical Support Support Mathematical Support Mathematical Support Mathematical Support Mathematical Support Support Cocal translation constraints Local Translation constraints Local Translation constraints Mathematical Support Roller Image: Cocal Translation constraints Local Translating constrats Local Translating constrat			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
A A	Y	Z	
2 Roller Image: Constraint of the constraint			A
3 Pinned Image: Constraint of the state			
4 Roller ✓ ✓ ✓ ✓ ✓			
5 Roller ~ 🗌 🔽 🔽			
			Ţ

Click **OK** to apply the data and close the window.

Member Alternative

Double click on the **Member Alternatives** node for member **G1** in the **BWS** tree to create a new alternative. The **New Member Alternative** window shown below will open. Select **Steel Material type** and **Plate** for **Girder type** and click **OK**.


🗛 New Member Alternativ	re X
Material type:	Girder type:
Steel	Built-up
	Plate
	Rolled
	OK Cancel

ember alterna	tive CIP	DER 1E									
Description	Specs	Factors	Engine	Import	Control options						
Description:					Material type:	Steel					
					Girder type:	Plate					
					Modeling type:	Multi Girder	System				
					Default units:	US Customar	y ~				
C Girder pro	perty inpu	It method	C End bea	aring location	ons	Simple DL, cor	tinuous II				
O Schedule based			Left:	9.5	in	omple be, cor					
Cros	s-section b	based	Right:	9.5	in						
Self load					Default rating me	thod:					
Load case	8	Engine As	signed	~	LRFR	\sim					
Additiona	I self load:	0.01	kip/ft								
Additiona	I self load:		%								
							OK	App	olv	Cano	el

Click **Apply** the save the data and not close the window.

Navigate to the **Factors** tab. The condition and system factors can be updated on this tab if an inspection report is available, and the user can check specific control options from the **Control options** tab in this window. Make sure to uncheck the checkbox – **Must consider user input lateral bending stress** checkbox under LRFD and LRFR. Enter the data as shown below.

A Member Alternative [escription		– 🗆 X
Member alternative:	IRDER 1E		
Description Spece	Factors Engine Import Control	options	
		ASR factors	
Condition factor:	Good or Satisfactory 🗸	INV	OPER
	Field measured section properties	Structural steel:	
System factor:	All Other Girder/Slab Bridges 🗸 🗸	Concrete:	
	System factor override:	P/S concrete comp.:	
		P/S concrete tens.:	
		P/S moment cap.:	
		Reinforcement:	
		Bearing stiffener:	
		Stirrup:	
		Timber:	
		OK	Apply Cancel
		OK	Apply Cancel

Click **OK** to apply the data and close the window.

Girder Profile

Expand the newly added member alternative node and double click on the **Girder Profile** node. Enter the following data in each of its tabs. Since top and bottom flange are the same, the **Copy** feature can be used to save time.

Web

	10p II	ange Bottom fla	nge											
	Begin depth (in)	Depth vary		End depth (in)	Thickness (in)	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld at right		
>	72	None	~	72	0.75	1 ~	0	697.000118	697.000118	ASTM A709 G50	\sim	None	~	1

Top flange

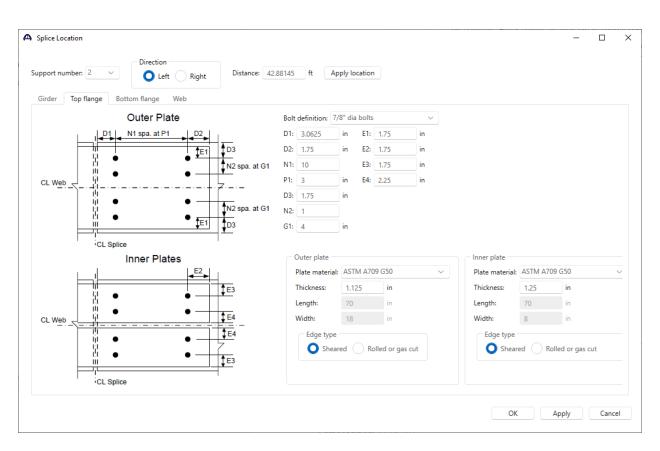
Navigate to the **Top flange** tab and enter the following data. Once entered click **Apply** and then click on the **Copy to bottom flange** button to copy the same rows to the **Bottom flange** tab of this window.

Web	Тор	flange	Bottom fla	ange								
	Begin width (in)	End width (in)	Thickness (in)	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld	Weld at right	
>	18	18	1.25	1 ~	0	49.260467	49.260467	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	1.75	1 ~	49.260466	60.1875	109.447966	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	1 ~	109.447967	32.88021	142.328177	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	3	1 ~	142.328177	20	162.328177	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	2 ~	9.998727	25.63542	35.634147	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2	2 ~	35.634147	149.578125	185.212272	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	2 ~	185.212272	24.73438	209.946652	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	3	2 ~	209.946652	20	229.946652	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	3 ~	9.997787	31.38542	41.383207	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2	3 ~	41.383207	120.65625	162.039457	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	3 ~	162.039457	20.16667	182.206127	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	3	3 ~	182.206127	20	202.206127	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	4 ~	9.998561	22.31771	32.316271	ASTM A709 G50	\sim	None 、	None 🗸	
	18	18	1.75	4 ~	32.316271	50.9375	83.253771	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	1.25	4 ~	83.253771	49.260467	132.514238	ASTM A709 G50	\sim	None 🗸	None 🗸	
												v
	Copy to	bottom	flange]						New	Duplicate	Delete

Bottom flange

Veb	b Top flange		Bottom fla	ange								
	Begin width (in)	End width (in)	Thickness (in)	Suppo	distance	Length (ft)	End distance (ft)	Material		Weld	Weld at right	
	18	18	1.25	1 \	/ 0	49.260467	49.260467	ASTM A709 G50	\sim	None 🗸	None 🗸	A
	18	18	1.75	1 \	49.260466	60.1875	109.447966	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	1 \	109.447967	32.88021	142.328177	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	3	1 \	142.328177	20	162.328177	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	2 \	9.998727	25.63542	35.634147	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2	2 \	35.634147	149.578125	185.212272	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	2 \	185.212272	24.73438	209.946652	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	3	2 \	209.946652	20	229.946652	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	3 \	9.997787	31.38542	41.383207	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2	3 \	41.383207	120.65625	162.039457	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3 \	162.039457	20.16667	182.206127	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	3	3 \	182.206127	20	202.206127	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	2.25	4 \	9.998561	22.31771	32.316271	ASTM A709 G50	\sim	None 🗸	None 🗸	
	18	18	1.75	4 \	32.316271	50.9375	83.253771	ASTM A709 G50	\sim	None 🗸	None 🗸	
>	18	18	1.25	4	83.253771	49.260467	132.514238	ASTM A709 G50	\sim	None 🗸	None 🗸	
												v
	Сору	to top fla	ange							New	Duplicate	Delete

Click **OK** to apply the data and close the window.


Splice Locations

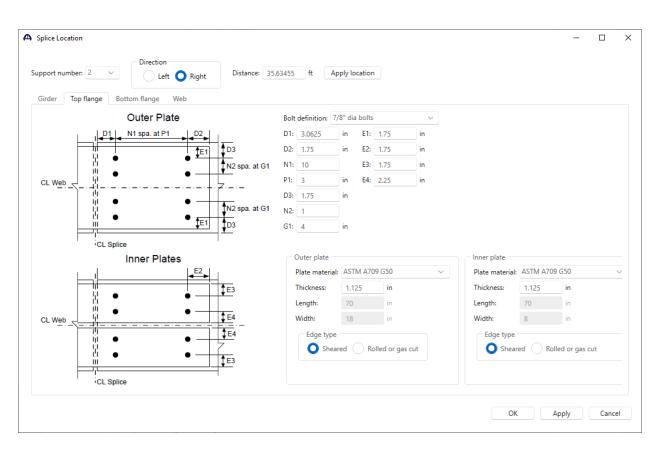
Define splice locations for GIRDER 1E by double clicking on the **Splice Locations** node in the **BWS** tree. This opens the **New Splice Location** window. Define splice locations as shown below. The splices are the same for all locations and all girders.

A New Splice Location								
Support number:	1	~						
Direction								
Left	O Right							
Distance: 0	∨ ft							
	(OK	Cancel					

Click **OK** to open the Splice Location window. Enter details as shown below and click **Apply location**. Also enter details in each tab as shown below.

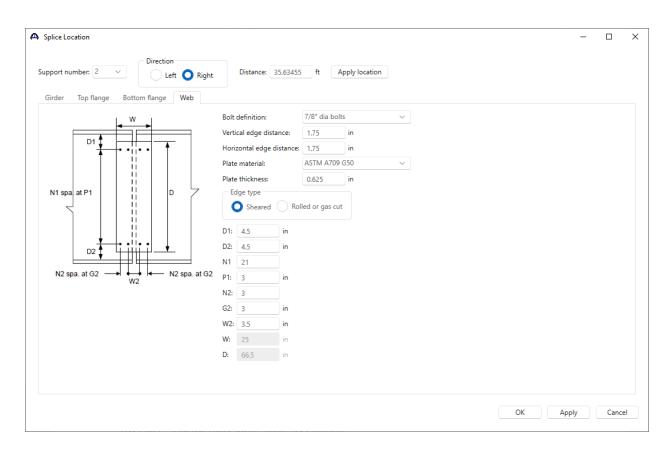
A Splice Location	-		×
Support number: 2 V Direction Distance: 42.88145 ft Apply location Girder Top flange Bottom flange Web			
Interpretation Inter			
Left cover plates Right cover plates			
OK Ap	bly	Cance	el 🛛

A Splice Location \times Direction Support number: 2 Distance: 42.88145 ft Apply location O Left Right Girder Top flange Bottom flange Web Outer Plate Bolt definition: 7/8" dia bolts \sim D1: 3.0625 N1 spa. at P1 D2 in E1: 1.75 in D1 D3 D2: 1.75 in E2: 1.75 in ‡E1 Ľ, . N1: 10 E3: 1.75 in N2 spa. at G1 ili • P1: 3 E4: 2.25 1 in in CL Web j lj D3: 1.75 in Ĭ • • N2 spa. at G1 N2: 1 • • ‡E1 D3 G1: 4 in CL Splice Outer plate Inner Plates Inner plate Plate material: ASTM A709 G50 E2 Plate material: ASTM A709 G50 Thickness: 1.125 in Thickness: 1.125 in ‡Е3 . Lenath: 70 in Length: 70 in III • \$E4 Width: 18 in Width: 8 in CL Web ‡E4 Edge type Edge type ΪįΪ • • O Sheared Rolled or gas cut O Sheared O Rolled or gas cut ł • • ‡E3 CL Splice OK Apply Cancel

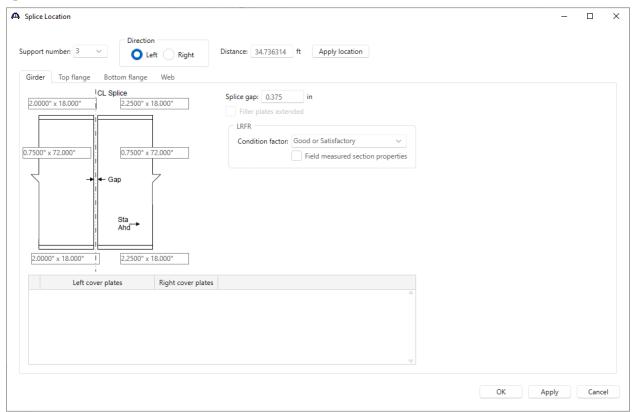

3DFEM4 – Curved Steel Multi-Span 3D Example

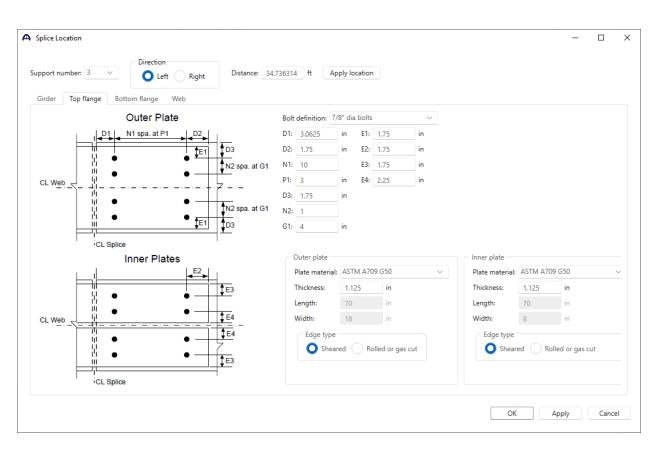
A Splice Location		-		×
Support number: 2 V Direction C Left Right Girder Top flange Bottom flange Web	Distance: 42.88145 ft Apply location			
N1 spa at P1 N2 spa. at G2 W2 N2 spa. at G2	Bolt definition: 7/8" dia bolts ∨ Vertical edge distance: 1.75 in Horizontal edge distance: 1.75 in Plate material: ASTM A709 G50 ∨ Plate thickness: 0.625 in Edge type Sheared Rolled or gas cut D1: 4.5 in D2: 4.5 in N1 21 P1: 3 in W2: 3.5 in W2: 2.5 in D: 66.5 in			
	OK	Apply	Cance	!

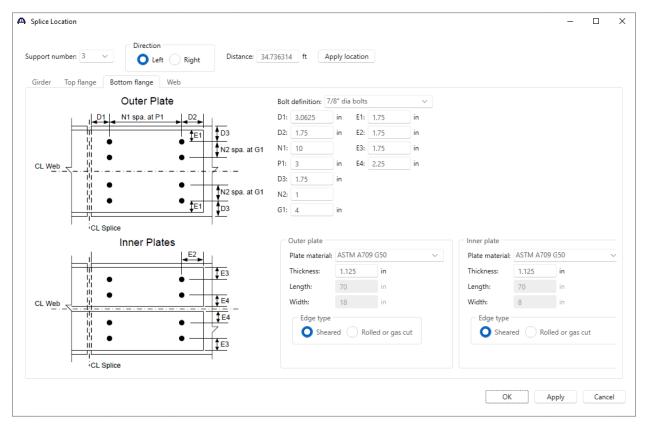
Add the following splice locations in similar manner.

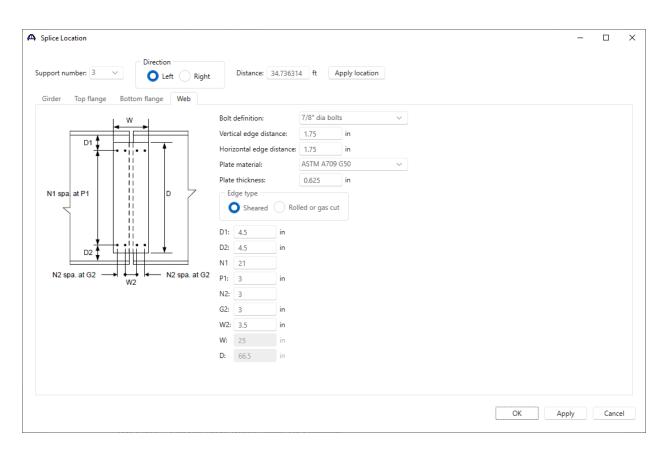


A Splice Location	-		×
Support number: 2 V Left O Right Distance: 35,63455 ft Apply location			
Girder Top flange Bottom flange Web			
ICL Splice Splice gap: 0.375 in 2.2500* x 18.000* 2.0000* x 18.000* Filler plates extended			
LRFR Condition factor: Good or Satisfactory ~			
0.7500° x 72.000° Field measured section properties			
2.2500° x 18.000° 1 2.0000° x 18.000°			
Left cover plates Right cover plates			
OK	Apply	Cance	21

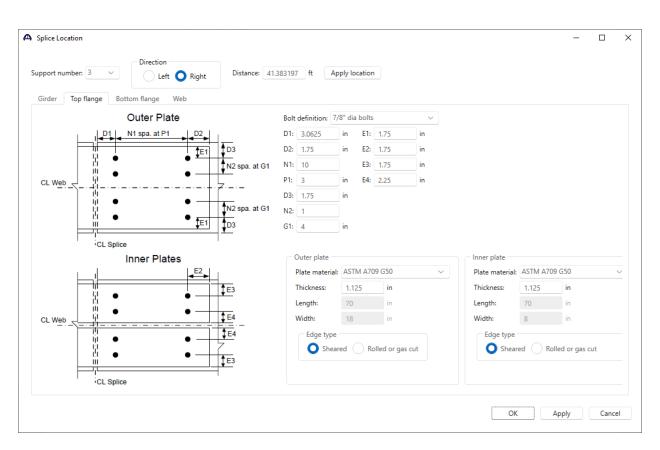


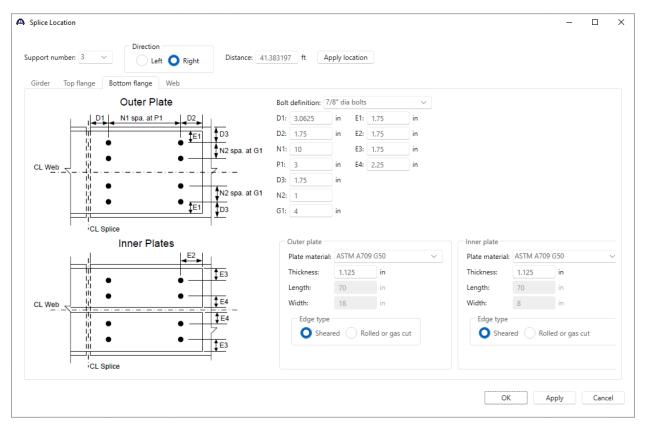

A Splice Location \times Direction Support number: 2 Distance: 35.63455 ft Apply location 🗌 Left 🔘 Right Girder Top flange Bottom flange Web Outer Plate Bolt definition: 7/8" dia bolts \sim D1: 3.0625 N1 spa. at P1 D2 in E1: 1.75 in D1 D3 D2: 1.75 in E2: 1.75 in ‡E1 Ľ, . N1: 10 E3: 1.75 in N2 spa. at G1 ili • P1: 3 E4: 2.25 1 in in CL Web ¥. _ . _ j lj D3: 1.75 in Ĭ • • N2 spa. at G1 N2: 1 • • D3 ‡E1 G1: 4 in CL Splice Outer plate Inner Plates Inner plate Plate material: ASTM A709 G50 E2 Plate material: ASTM A709 G50 Thickness: 1.125 in Thickness: 1.125 in ‡Е3 . Lenath: 70 in Length: 70 in III • \$E4 Width: 18 in Width: 8 in CL Web ‡E4 Edge type Edge type ΪįΪ • • O Sheared Rolled or gas cut O Sheared O Rolled or gas cut ł • • ‡E3 CL Splice ОК Apply Cancel

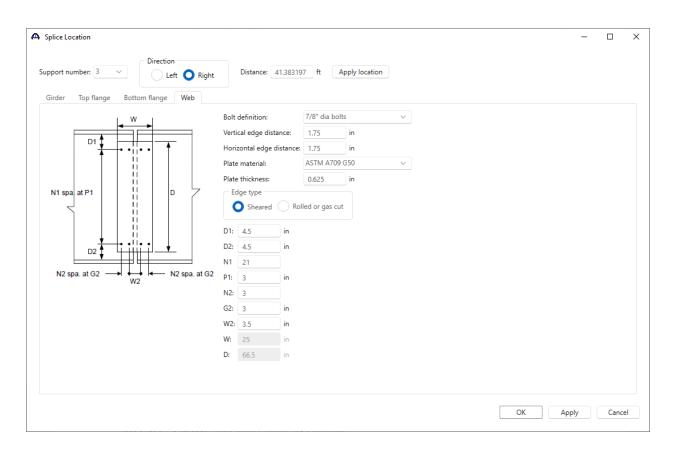

3DFEM4 – Curved Steel Multi-Span 3D Example



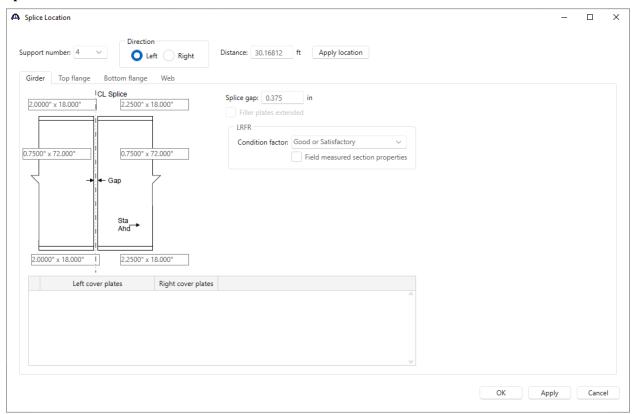
Splice 3

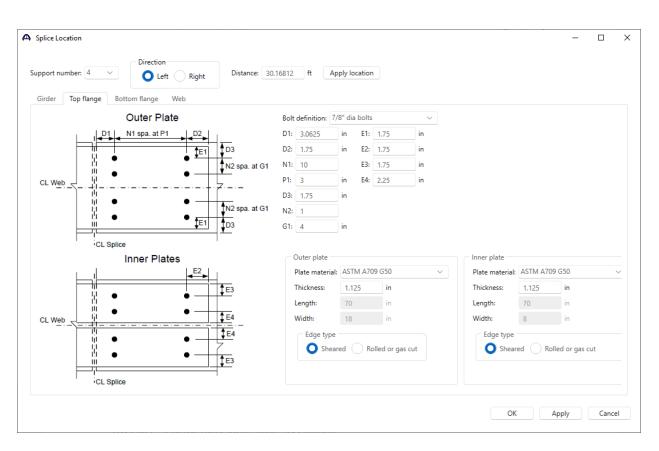


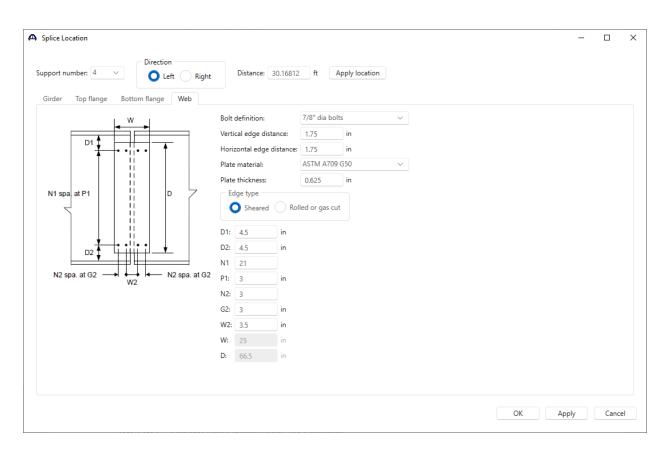


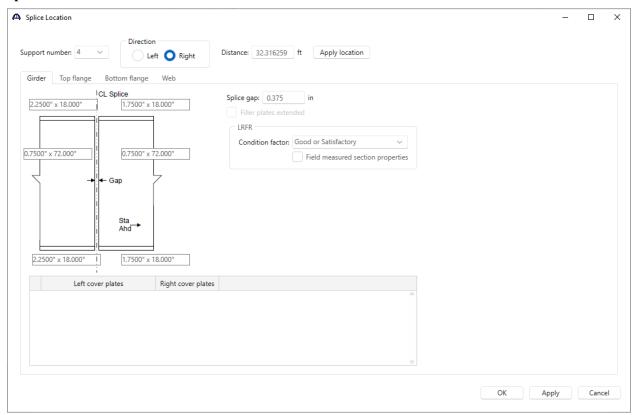


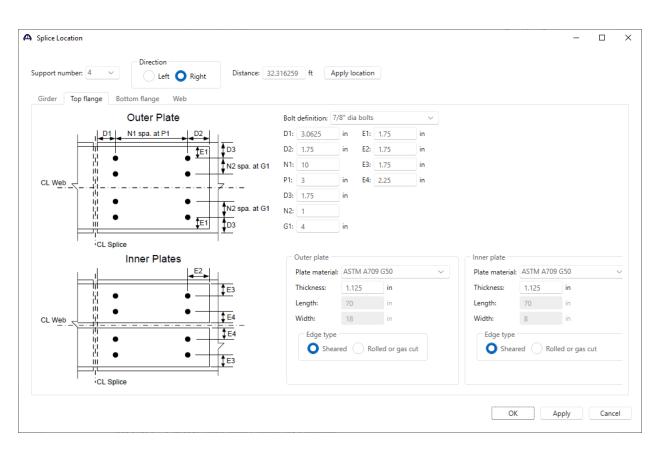
Splice 4

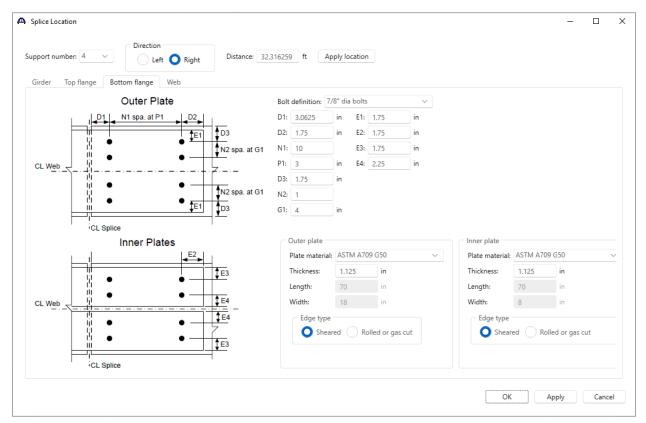

A Splice Location		-		×
Support number: 3 V Girder Top flange Bottom flange Web				
CL. Splice 2.0000" x 18.000" 2.2500" x 18.000" 2.0000" x 18.000" 0.7500" x 72.000" 0.7500" x 72.000" 0.7500" x 72.000" Gap Sta Sta Ahd 2.2500" x 18.000" 2.2500" x 18.000" 2.0000" x 18.000"				
Left cover plates Right cover plates				
	ОК А	pply	Cance	el



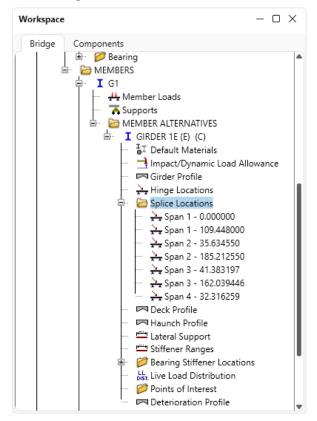

Splice 5




A Splice Location \times Direction Support number: 4 Distance: 30.16812 ft Apply location O Left Right Girder Top flange Bottom flange Web Outer Plate Bolt definition: 7/8" dia bolts \sim D1: 3.0625 N1 spa. at P1 D2 in E1: 1.75 in D1 D3 D2: 1.75 in E2: 1.75 in ‡E1 Ľ, . N1: 10 E3: 1.75 in N2 spa. at G1 ili • P1: 3 E4: 2.25 1 in in CL Web ¥. _ . _ j lj D3: 1.75 in Ĭ • • N2 spa. at G1 N2: 1 • • ‡E1 D3 G1: 4 in CL Splice Outer plate Inner Plates Inner plate Plate material: ASTM A709 G50 E2 Plate material: ASTM A709 G50 Thickness: 1.125 in Thickness: 1.125 in ‡Е3 . Lenath: 70 in Length: 70 in III • \$E4 Width: 18 in Width: 8 in CL Web ‡E4 Edge type Edge type ΪįΪ • • O Sheared Rolled or gas cut O Sheared O Rolled or gas cut ł • • ‡E3 CL Splice ОК Apply Cancel


3DFEM4 – Curved Steel Multi-Span 3D Example

Splice 6



A Splice Location		-		Х
Support number: 4 V Direction Left O Right Girder Top flange Bottom flange Web	Distance: 32.31625	ft Apply location		
N1 spa at P1 N2 spa. at G2 W2 W2 W2 W2 W2 W2 W2 W2 W2 W	Bolt definition: Vertical edge distance: Horizontal edge distance: Plate material: Plate thickness: Edge type Sheared Rol D1: 4.5 in D2: 4.5 in N1 21 P1: 3 in N2: 3 G2: 3 in W2: 3.5 in W: 25 in D: 66.5 in	7/8" dia bolts 1.75 in e: 1.75 in ASTM A709 G50 0.625 in		
		ОК Арріу	Canc	el

The added splice locations are shown below.

Deck Profile

Double click on the **Deck Profile** node in the **BWS** tree and enter the data describing the structural properties of the deck. Clicking on the **Compute from typical section...** button computes the effective flange widths populate automatically. For this example, enter the details as shown below. The **Structural thickness** has ¹/₄' deducted from the **Total deck thickness** (as entered in the **Structure Typical Section** window -> **Deck (cont'd)** tab) to account for an integral wearing surface.

	Plate k concrete Rei	nford	ement		Shear connect	-								
Dec	K concrete Rei	ntorc	ement		snear connect	ors								
	Material		Suppo numb		Start distance (ft)	Length (ft)	End distance (ft)	Structural thickness (in)	Start effective flange width (Std) (in)	End effective flange width (Std) (in)	Start effective flange width (LRFD) (in)	End effective flange width (LRFD) (in)	n	
>	Class AA (US)	~	1	~	0	105.44797	105.44797	8	85.999992	85.999992	92.749992	92.749992	8	*
	Class AA (US)	~	1	~ .	105.44797	86.515625	191.963595	8	0	0	0	0	8	
	Class AA (US)	~	2	~ 3	39.634145	141.578125	181.21227	8	85.999992	85.999992	92.749992	92.749992	8	
	Class AA (US)	~	2	~ .	181.21227	84.119792	265.332062	8	0	0	0	0	8	
	Class AA (US)	~	3 `	~ 4	45.383198	112.65625	158.039448	8	85.999992	85.999992	92.749992	92.749992	8	
	Class AA (US)	~	3	~	158.039	70.484374	228.523822	8	0	0	0	0	8	
	Class AA (US)	~ .	4	~ :	36.316256	96.19797	132.514226	8	85.999992	85.999992	92.749992	92.749992	8	
	Compute from											New	Duplicate	Delete
	typical section											New	Duplicate	Delete

The reinforcement is defined on the **Reinforcement** tab of this window. Enter data as shown below.

Deck	Profi	le									-)
e:	Plate												
eck)	conc	rete	Reinforce	ment Shea	ar connectors								
	Supp		Start distance (ft)	Length (ft)	End distance (ft)	Connector ID	Number of spaces	Number per row	Transverse spacing (in)				
>	1	\sim	0	105.44797	105.44797	Composite 🗸							
	2	\sim	39.634145	141.578125	181.21227	Composite 🗸							
	3	\sim	45.383198	112.65625	158.039448	Composite $$							
	4	\sim	36.316256	96.19797	132.514226	Composite 🗸							
										New Duplic	ate	Delete	

The **Shear connectors** tab of this window indicates if the bridge is composite. Enter the data as shown below.

Click **OK** to apply the data and close the window.

Haunch Profile

Double click on the Haunch Profile node from the BWS tree. The length can be found in the Member window.

A Steel Haunch Profil	e									-		\times
Haunch type:	Embedded fla	ange										
			Z4									
	Support number	Start distance (ft)	End distance (ft)	Z1 (in)	Z2 (in)	Z3 (in)	Z4 (in)	Y1 (in)	Y2 (in)			
₩ 4	> 1 ~	0 697.000118	697.000118	2	4	2	4	3.3125	3.3125			
												P
								New	Duplicate	•	Delete	•
								OK	Apply		Cance	el

Enter the data as shown below.

Click **OK** to apply the data and close the window.

Lateral Support

Double click on the Lateral Support node in the BWS tree to open the window. Enter the data as shown below.

Later	al Suppo	rt						-)
		10-1		141-						
	Start Dist	ance 🙀	Length	H H						
Rang	jes Lo	ocations	Flange lateral l	bending						
Тор	flange									
	Suppor numbe	t distance (ft)	Length (ft)	End distance (ft)						
>	1 ~		697.000118							1
						New	Duplicate		Delete	

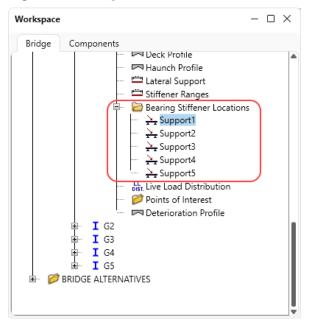
Click **OK** to apply the data and close the window.

Stiffener Ranges

Double click on the **Stiffener Ranges** node in the **BWS** to open the window shown below. Click on the **Apply at diaphragms...** button.

Stiffener Ranges											
Start Distance	acing										
Transverse stiffener ranges	Longitudir	nal stiffen	ner ranges								
Name	Support number	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)					
											-
											-
	rs between hragms						New	Duplici	ate	Delete	

Make the following selections and click **OK** to apply the data and close the window.


End diaphragms and	d diaphragms at piers
Bearing stiffener:	PIER 1E & 5E Bearing Stiffener 🔍
Interior diaphragms	
Transverse stiffener	Intermediate Stiffener Exterior 🔍

Start Dist	ance Spacing									
ransverse st	T 1	gitudir	nal stiffen	er ranges						
	Name		Suppor numbe		Number of spaces	Spacing (in)	Length (ft)	End distance (ft)		
Interme	diate Stiffener Exterio	r V	1 ~	17.957537	1	0	0	17.957537		
Interme	diate Stiffener Exterio	r V	1 ~	17.957537	6	230.351844	115.175922	133.133459		
Interme	diate Stiffener Exterio	r V	2 ~	22.003143	1	0	0	22.003143		
Interme	diate Stiffener Exterio	r ~	2 ~	22.003143	8	263.913864	175.942576	197.945719		
Interme	diate Stiffener Exterio	r ~	3 ~	19.237269	1	0	0	19.237269		
Interme	diate Stiffener Exterio	r ~	3 ~	19.237269	8	230.599548	153.733032	172.970301		
Interme	diate Stiffener Exterio	r ~	4 ~	22.292115	1	0	0	22.292115		
> Interme	diate Stiffener Exterio	r ~	4 ~	22.292115	4	267.505368	89.168456	111.460571		
Apply at diaphragms	Stiffeners betwe						N	ew Du	uplicate	Delete
diaphragm							N	ew Du	uplicate	Delete

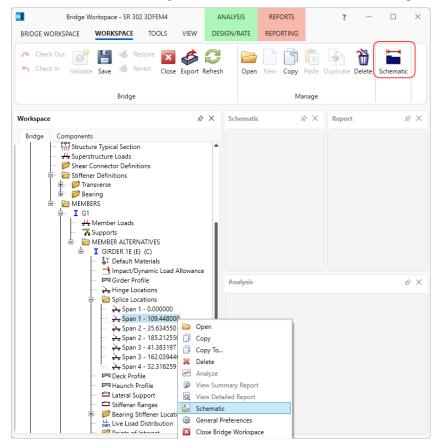
Click **OK** to apply the data and close the window.

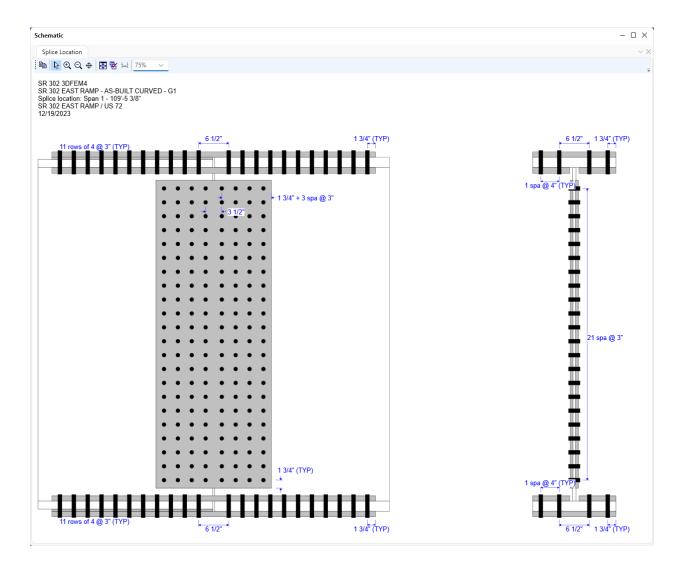
Bearing Stiffener Locations

Expand the **Bearing Stiffener Locations** node and double click on **Support 1** as shown below.

The bearing stiffeners are defined by selecting the stiffener at each support from the drop down menu. See images below for bearing stiffener locations at each support.

A Bearing Stiffener Location - Support 1 -		×
*Negative offset to left of cl bearing		
Pairs of bearing stiffeners at this support: 1 X: 9.5 in		
Stiffener pair Name Offset (in) > 1 PIER 1E & 5E Bearing Stiffener 0		
OK Apply	Cancel	•
A Bearing Stiffener Location - Support 2 -		×
▲ Bearing Stiffener Location - Support 2 -		×
*Negative offset to left of		×
CL of Bearing Offset* *Negative offset to left of cl bearing		×
Pairs of bearing stiffeners at this support: 1 Stiffener Name		×
Pairs of bearing stiffeners at this support: 1 Stiffener pair Name	Cancel	×


A 1	Bearing Stiff	ener Location - Support 3			_	
Pai	irs of bearing	∫ g stiffeners at this support: 1	PCL of Bearin POffset			
	Stiffener pair	Name	Offset (in)			
>	1	PIER 2E,3E&4E Bearing Stiffe 🗡	0			-
				ОК	Apply	Cancel


A 1	Bearing Stiff	ener Location - Support 4			_		×
Pai	irs of bearing	g stiffeners at this support: 1	P CL of Bea → - - - - - - - - - - - - -				
	Stiffener pair	Name	Offset (in)				
>	1	PIER 2E,3E&4E Bearing Stiffener $~~$ \sim	0				-
							~
				ОК Ар	oply	Cance	el

۵	Bearing Stiff	ener Location - Support 5							_		×
			CL <u>of</u> I Offset	Bearing	×.,	*Negative c cl bearing	offset to left of				
Pa	airs of bearing	g stiffeners at this support: 1			X:	9.5	in				
	Stiffener pair	Name		Offset (in)							
	> 1	PIER 1E & 5E Bearing Stiffener	~	0							-
											-
							ОК	Apply		Cance	el

Schematic – Splice Location

With Splice Location **Span 1 – 109.448000** selected in the **BWS** tree, click on the **Schematic** button from the **WORKSPACE** ribbon (or right click and select **Schematic**) to view the splice schematic as shown below.

The description for **Girder 1** for this superstructure definition is complete. **Girder 2** through **Girder 5** are similar. The information is provided below. The girder flanges and web sizes are the same as **Girder 1**. The length will need to be updated for the haunches and lateral support. The stiffeners will need to be generated at the diaphragm locations.

TABLE OF DIMENSIONS											
Girder	"A"	<i>"8"</i>	"с"	"D"	"E"	"F"	" 6"	"н"	"7"	","	"K"
IE	153'-6/3"	219'-118"	192'-2§"	133'-9%	60'-24"	78'-6 ; *	149'-6\$5"	76'-1 % "	120'-78"	62'-5\$	50'-114"
2E	154'-0"	220'-6#	192'-9"	134'-18"	60'-6"	78'-8 ; "	150'-0"	76'-4"	121'-0"	62'-78"	51'-28"
3E	154'-5%"	221'-24"	193'-3 1 6"	134'-6%	60'-9] " A	78'-11k	150'-5%	76'-6 % *	121'-46"	62'-10"	51'-6#
4 E	154'-108"	221'-9#	193'-9\$\$"	134'-10%	61'-12"	79'-2 6 "	150'-106"	76'-8 % "	121'-8%	63'-0 f "	51'-10 f "
5E	155'-3#	222'-5#	194'-4%	135'-3 ₁₆ "	61'-54"	79'- 4# *	151'-3	76'-11#*	122'-03	63'-2 ¦ "	52'-0] "

The following are all of the steps needed to define members alternatives for members G2 through G5.

Member G2

	Support number	Girder bearing alignment type	Chord angle (degrees)						
	1	Tangent \vee							
	2	Tangent \vee							
	3	Tangent \vee							
	4	Tangent \vee							
	5	Tangent 🗸							
	neral Ela	astic							
	Suppor	t Support		anslation co			rotation cons		
		t Support	Local tra X	Y	Z	Local X	rotation cons Y	traints Z	
	Suppor	t Support	X						
	Suppor numbe	t Support r type	x	Y	Z				
)	Suppor number 1 2	t Support r type Roller V		Y	Z				
	Suppor number 1 2	t Support type Roller ~	x	Y ~ ~	Z Z				

Copy and Paster Member Alternative

An easier/quicker way to enter these member alternatives is to copy the member alternative entered for member G1 and make changes to selected windows for each member alternative based on the bridge details given.

To copy, first select the **GIRDER 1E** member alternative for member **G1** and click on the **Copy** button from the **WORKSPACE** ribbon, or right click and select **Copy** as shown below.

Bridge Workspace - SR 302 3		ANAI		REPORTS		?	-		×
BRIDGE WORKSPACE Check Out Check In Validate Bridge Bridge	- 🛀 🛀 🖡	DESIGN	Open N		Paste I	Duplicate Del	ete Sche	ematic	
bridge				1410	nage				
Workspace	\$2	X S	chematic	5	$\times $	Report		\$	\times
Bridge Components									
AS-BUILT CURVED Impact/Dynamic Load Allow The Action of the	Collapse Brand Copy Copy Duplicate Delete Analyze								
i 🌮 🌮 Transverse	🔊 Validate							\$2	×
		Report							
I GIRDER 1E (E) (C I G2 I G2 G2 G2 G4 G4 G4 G4 G4 G4 G G G G G G	Ċ)	I							

Now, select the node **MEMBER ALTERNATIVES** under member **G2** and click the **Paste** button from the **WORKSPACE** ribbon or right click and select **Paste** as shown below.

Bridge Workspace - SR 302 3DF BRIDGE WORKSPACE WORKSPACE TO				?	- 0	×
Check Out 💣 📔 🚳 Restore Check In Validate Save 🚳 Revert	Close Export Refresh	Open New	Copy Paste	Duplicate Dele	te Schematic	
Bridge			Manage			
Workspace Bridge Components	\$ ×	Schematic	\$ X	Report	5	\$ ×
 Impact/Dynamic Load Allowar Load Case Description Framing Plan Detail Pracing Deterioration BSC Bracing Spec Check Selection Structure Typical Section Superstructure Loads Shear Connector Definitions Stiffener Definitions For Structure Section Bearing 	ice	Analysis			3	\$ ×
MEMBERS Gamma	 View Detailed Rep General Preference Close Bridge Work 	ort				

The following warning message shows up indicating that the span lengths are different. Click Yes to continue.

Bridge D	esign & Rating	\times
<u>^</u>	Span lengths are different for this member! Ranges will need to be adjusted! Continue with Copy?	
	Yes No	

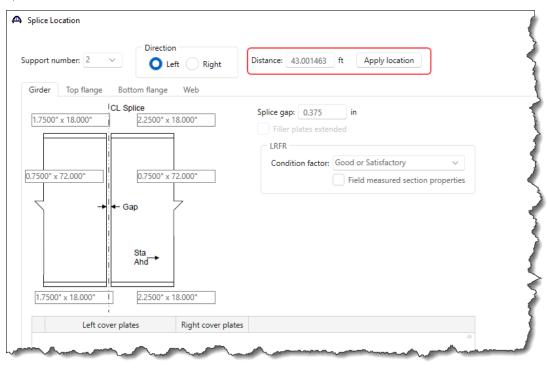
The copied member alternative is shown below. Rename the copied member alternative as shown below. Double click on the newly copied member alternative for member G2 to open the Member Alternative Description window and rename it as shown below. Also uncheck the Must consider user input lateral bending stress checkbox in the Control options tab as shown for member G1.

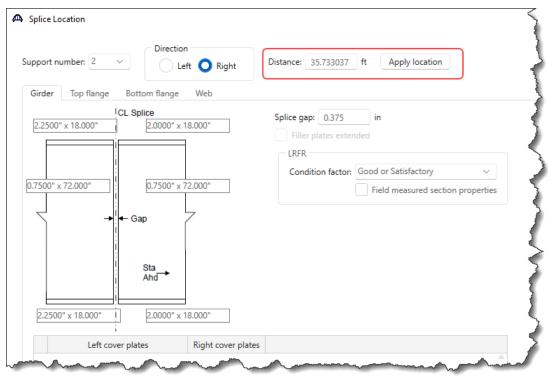
nher altern									
moer artern	ative: GIRE	DER 2E							
escription	Specs	Factors	Engine	Import	Control options				
escription:					Material type:	Steel			
					Girder type:	Plate			
					Modeling type:	Multi Girder System			
					Default units:	US Customary \lor			
Girder pr	operty input	method	End be	aring locatio	ons (Simple DL, continuous LL			
	edule based		Left:	9.5	in				
Cros	ss-section ba	ased	Right:	9.5	in				
Self load					Default rating met	thad			
Load cas		Engine As	signed	~	LRFR	×			
Addition	al self load:		- kip/ft						
	al self load:		%						

Now visit the following windows for this member alternative and make the necessary changes as shown below.

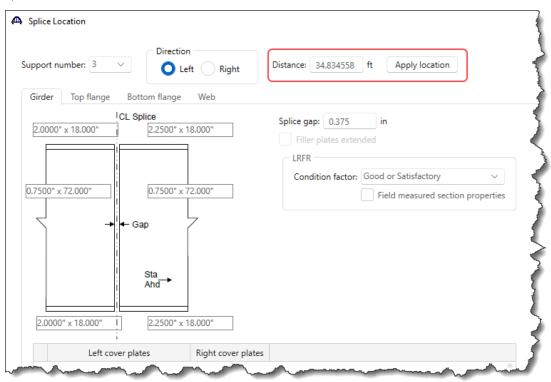
Girder Profile – Web

eb	Top fl	ange Bottom flange									
	Begin depth (in)	Depth vary	End depth (in)	Thickness (in)	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Material	Weld at right	
>	72	None ~	72	0.75	1 ~	0	698.960826	698.960826	ASTM A709 G50 🗸	None 🗸	

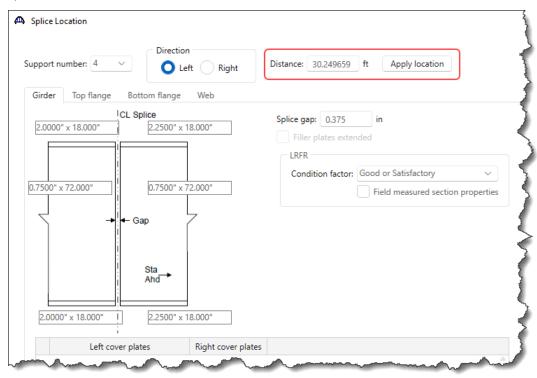

Girder Profile – Top flange

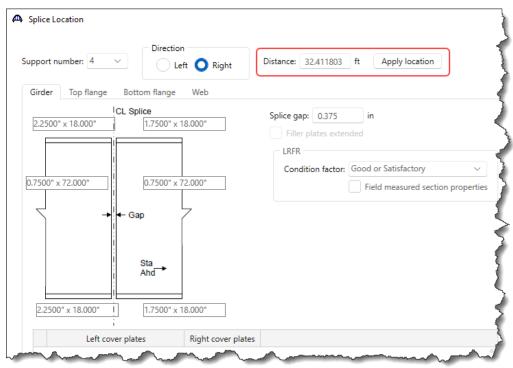

pe:	Plate Gi	rder											
Web	Тор	flange	Bottom fl	ange									
	Begin width (in)	End width (in)	Thickness (in)		port nber	Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld	Weld at right	
	18	18	1.25	1	~	0	49.256453	49.256453	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	-
	18	18	1.75	1	~	49.256453	60.5	109.756453	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	1	~	109.756452	33	142.756452	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	1	~	142.756452	20	162.756452	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	~	9.99849	25.73438	35.73287	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	2	~	35.73287	150	185.73287	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	~	185.73287	24.83333	210.5662	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	2	~	210.5662	20	230.5662	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3	~	9.998604	31.5	41.498604	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	3	~	41.498604	121	162.498604	ASTM A709 G50	\sim	None V	None 🗸	
>	18	18	2.25	3	~	162.498604	20.25	182.748604	ASTM A709 G50	\sim	None V	None 🗸	
	18	18	3	3	~	182.748604	20	202.748604	ASTM A709 G50	\sim	None V	None 🗸	
	18	18	2.25	4	~	10.000346	22.41146	32.411806	ASTM A709 G50	~	None V	None V	
	18	18	1.75	4	~	32.411806	51.21875	83.630556	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	1.25	4	~	83.630556	49.256453	132.887009	ASTM A709 G50	~	None V	None 🗸	
												1	v
	Copy to	bottom	flange								New Dup	Delete	e

Girder Profile – Bottom flange


ype:	Plate Gi	rder												
Web	Тор	flange	Bottom fla	ange										
	Begin width (in)	End width (in)	Thickness (in)		oport nber	Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld		Weld at right	
	18	18	1.25	1	\sim	0	49.256453	49.256453	ASTM A709 G50	\sim	None	\sim	None 🔻	
	18	18	1.75	1	~	49.256453	60.5	109.756453	ASTM A709 G50	\sim	None	\sim	None 🚿	,
	18	18	2.25	1	~	109.756452	33	142.756452	ASTM A709 G50	\sim	None	\sim	None 🚿	
	18	18	3	1	\sim	142.756452	20	162.756452	ASTM A709 G50	\sim	None	\sim	None 🚿	
	18	18	2.25	2	~	9.99849	25.73438	35.73287	ASTM A709 G50	\sim	None	\sim	None 🗸	,
	18	18	2	2	\sim	35.73287	150	185.73287	ASTM A709 G50	\sim	None	\sim	None 🔍	,
	18	18	2.25	2	~	185.73287	24.83333	210.5662	ASTM A709 G50	\sim	None	\sim	None 🔍	,
	18	18	3	2	~	210.5662	20	230.5662	ASTM A709 G50	\sim	None	~	None 、	,
>	18	18	2.25	3	~	9.998604	31.5	41.498604	ASTM A709 G50	\sim	None	~	None 、	,
	18	18	2	3	~	41.498604	121	162.498604	ASTM A709 G50	\sim	None	~	None 、	,
	18	18	2.25	3	~	162.498604	20.25	182.748604	ASTM A709 G50	\sim	None	\sim	None 🚿	,
	18	18	3	3	~	182.748604	20	202.748604	ASTM A709 G50	\sim	None	\sim	None 、	,
	18	18	2.25	4	\sim	10.000346	22.41146	32.411806	ASTM A709 G50	\sim	None	~	None 、	,
	18	18	1.75	4	~	32.411806	51.21875	83.630556	ASTM A709 G50	\sim	None	~	None 🚿	,
	18	18	1.25	4	~	83.630556	49.256453	132.887009	ASTM A709 G50	\sim	None	~	None 🔻	,
									[1		[
	Сору	to top fl	ange								New	Jupli	cate De	ete

Splice Location 1



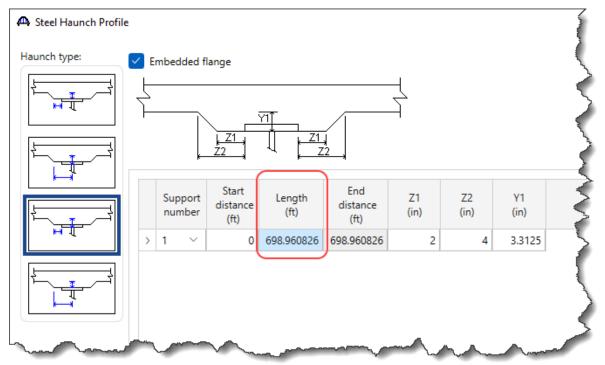

Splice Location 3

pport number: 3 V Direction	Distance: 41.4986 ft Apply location
Girder Top flange Bottom flange Web	
ICL Splice 2.2500" × 18.000" 2.0000" × 18.000" 7500" × 72.000" 0.7500" × 72.000"	Splice gap: 0.375 in Filler plates extended LRFR Condition factor: Good or Satisfactory ~ Field measured section properties
Sta Ahd→ 2.2500" x 18.000" ↓ 2.0000" x 18.000"	
Left cover plates Right cover plat	

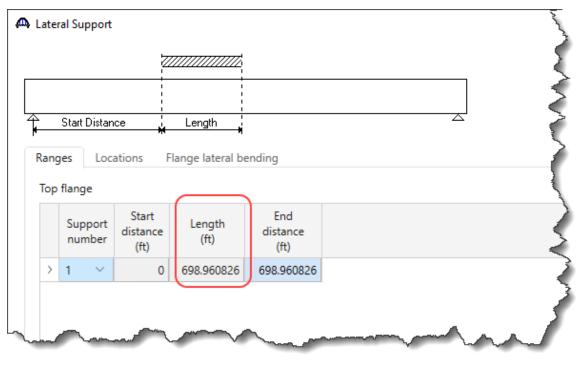
Splice Location 5

Deck Profile – Deck concrete

be:	Plate												
Deck	concrete R	einfo	rceme	ent	Shear connec	ctors							
	Material			port nber	Start distance (ft)	Length (ft)	End distance (ft)	Structural thickness (in)	Start effective flange width (Std) (in)	End effective flange width (Std) (in)	Start effective flange width (LRFD) (in)	End effective flange width (LRFD) (in)	n
>	Class AA (US)	\sim	1	\sim	0	105.75645	105.75645	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	1	\sim	105.75645	86.734375	192.490825	8	0	0	0	0	8
	Class AA (US)	\sim	2	\sim	39.732862	142	181.732862	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	2	~	181.732862	84.333333	266.066195	8	0	0	0	0	8
	Class AA (US)	\sim	3	~	45.4986	113	158.4986	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	3	\sim	158.4986	70.661459	229.160059	8	0	0	0	0	8
	Class AA (US)	\sim	4	\sim	36.4118	96.4752	132.887	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	4	\sim	132.887	9E-06	132.887009	8	0	0	0	0	8


Deck Profile – Reinforcement

	ate															
eck co	oncrete	Re	infor	eme	nt Shear co	nnectors										
	Materia	ıl		oport nber	Start distance (ft)	Length (ft)	End distance (ft)	Std bar count	LRFD bar count	Bar	size	Distance (in)	Row		Bar spacing (in)	
Gr	rade 60	\sim	1	~	0	95.008001	95.008001	9	9	4	\sim	2.5	Top of Slab	\sim	8	
Gr	rade 60	\sim	1	~	0	698.960826	698.960826	9	9	5	~	1.3125	Bottom of Slab	\sim	8	
Gr	rade 60	\sim	1	~	95.008001	123.92438	218.932381	9	9	7	~	2.6875	Top of Slab	~	8	
Gr	rade 60	\sim	2	~	66.174418	88.218758	154.393176	9	9	4	~	2.5	Top of Slab	~	8	
Gr	rade 60	\sim	2	~	154.393176	124.007176	278.400352	9	9	7	~	2.6875	Top of Slab	~	8	
Gr	rade 60	\sim	3	~	57.832757	77.082744	134.915501	9	9	4	~	2.5	Top of Slab	~	8	
Gr	rade 60	\sim	3	~	134.915501	124.897231	259.812732	9	9	7	~	2.6875	Top of Slab	~	8	
> Gr	rade 60	\sim	4	~	67.064473	65.822537	132.88701	9	9	4	~	2.5	Top of Slab	\sim	8	
Gr	rade 60 rade 60	~	2 3	~	154.393176 57.832757	124.007176 77.082744	278.400352 134.915501	9	9	7	~	2.6875	Top of Slab Top of Slab	~		8


Deck Profile – Shear connectors

pe:	F	Plate							
Dec	ck (concrete	Reinforcer	ment Shea	r connectors				
			Start		End				Transverse
		Support number	distance (ft)	Length (ft)	distance (ft)	Connector ID	Number of spaces	Number per row	spacing (in)
>		1 ~	0	105.75645	105.75645	Composite 🗸			
		2 ~	39.732862	142	181.732862	Composite 🗸			
	:	3 ~	45.4986	113	158.4986	Composite \checkmark			
	4	4 ~	36.4118	96.4752	132.887	Composite $\ \lor$			

Haunch Profile

Lateral Support

Stiffener Ranges

Ì	Start Distance							
ran	sverse stiffener ranges	nal	stiffener	ranges				
	5							
	Name		Support number	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)
>	Intermediate Stiffener Interior $aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1	~	18.008053	1	0	0	18.008053
	Intermediate Stiffener Interior $~~$ $~~$	1	~	18.008053	6	230.99984652	115.499923	133.507976
	Intermediate Stiffener Interior $~~$ $~~$	2	. ~	22.065039	1	0	0	22.065039
	Intermediate Stiffener Interior $~~$ \sim	2	. ~	22.065039	8	264.65628	176.43752	198.502559
	Intermediate Stiffener Interior $~~$ \sim	3	; ~	19.291385	1	0	0	19.291385
	Intermediate Stiffener Interior $~~$ \sim	3	· ~	19.291385	8	231.248232	154.165488	173.456873
	Intermediate Stiffener Interior $~~$ \sim	4	+ ~	22.354824	1	0	0	22.354824
	Intermediate Stiffener Interior $~~$ $~~$	4	- ~	22.354824	4	268.257888	89.419296	111.77412

Member G3

Supports

	Support number	Girder bearing alignment type		Chord angle (degrees)						
	1	Tangent 🗸								
	2	Tangent 🗸								
	3	Tangent 🗸								
	4	Tangent ~								
	5									
Ge		Tangent ∨								
Ge	eneral E Suppo	lastic ort Suppo	rt	Local tr	ranslation co	nstraints	Local	rotation cons	traints	
Ge	eneral E	lastic ort Suppo	rt	Local tr X	ranslation cor Y	nstraints Z	Local X	rotation cons [.] Y	traints Z	
	eneral E Suppo	lastic ort Suppo	rt							
	eneral E Suppo numbe	lastic ort Support er type	rt		Y	Z				
	eneral E Suppo numbr > 1	lastic ort Suppor er type Roller	rt		Y	Z				-
	eneral E Suppo numbr > 1 2	lastic er Supportype Roller Roller	rt	x	Y	Z V				-

Member Alternative Description

Use the Copy and Paste method discussed in the last section to copy member alternative from member G1 to G3. Rename the member alternative for member G3 as shown below.

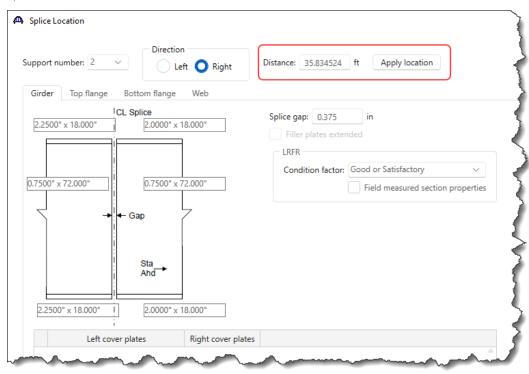
	ve: Giki	DER 3E				
escription	Specs	Factors	Engine	Import	Control options	
escription:					Material type:	Steel
					Girder type:	Plate
					Modeling type:	Multi Girder System
					Default units:	US Customary 🗸 🗸
	ule based section b		Left: Right:	9.5 9.5	inin	thod:
Load case:		Engine As	signed	\sim	LRFR	\sim
Additional	self load:	0.01	kip/ft			
Additional s	self load:		%			

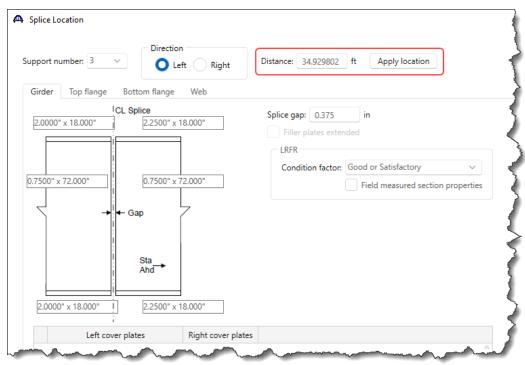
Now visit the following windows for this member alternative and make the necessary changes as shown below similar to the changes made for G2.

Girder Profile – Web

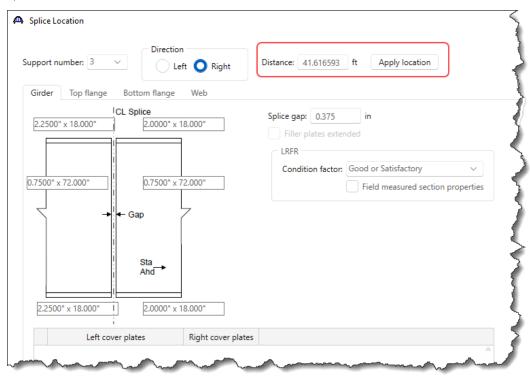
Veb	Top fl	ange Bottom flange									
	Begin depth (in)	Depth vary	End depth (in)	Thickness (in)	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Material	Weld at right	
>	72	None \vee	72	0.75	1 ~	0	700.921534	700.921534	ASTM A709 G50	✓ None	~

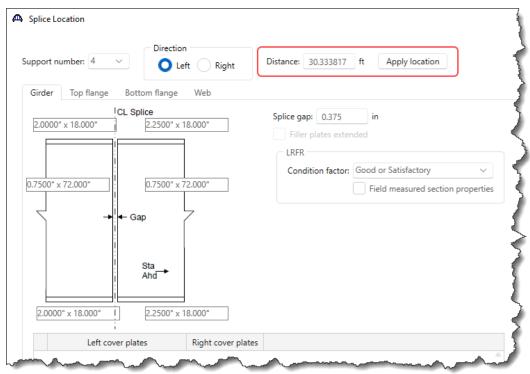
Girder Profile – Top flange


	Plate Gi												
Web	Тор	flange	Bottom fl	ange									
	Begin width (in)	End width (in)	Thickness (in)		oport mber	Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld	Weld at right	
>	18	18	1.25	1	~	0	49.255067	49.255067	ASTM A709 G50	\sim	None 🗸 🗸 🗸	None 🗸	-
	18	18	1.75	1	~	49.255067	60.8125	110.067567	ASTM A709 G50	\sim	None V	None 🗸	
	18	18	2.25	1	~	110.067567	33.11979	143.187357	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	1	~	143.187357	20	163.187357	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	~	10.000881	25.83333	35.834211	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	2	~	35.834211	150.4219	186.256111	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	~	186.256111	24.93229	211.188401	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	2	~	211.188401	20	231.188401	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3	~	10.002075	31.61458	41.616655	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	3	~	41.616655	121.3385	162.955155	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3	~	162.955155	20.3333	183.288455	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	3	~	183.288455	20	203.288455	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	4	~	9.999503	22.5	32.499503	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	1.75	4	~	32.499503	51.50521	84.004713	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	1.25	4	~	84.004713	49.255067	133.25978	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
													w
	Copy to	bottom	flange								New Du	plicate Dele	te


Girder Profile – Bottom flange

Web	Plate Gi	flange	Bottom fl	ange									
		lange	bottom										
	Begin width (in)	End width (in)	Thickness (in)		oport mber	Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld	Weld at right	
>	18	18	1.25	1	\sim	0	49.255067	49.255067	ASTM A709 G50	\sim	None V	None 🗸	-
	18	18	1.75	1	~	49.255067	60.8125	110.067567	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸 🗸	
	18	18	2.25	1	~	110.067567	33.11979	143.187357	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	1	~	143.187357	20	163.187357	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	~	10.000881	25.83333	35.834211	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	2	~	35.834211	150.4219	186.256111	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	\sim	186.256111	24.93229	211.188401	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸 🗸	
	18	18	3	2	~	211.188401	20	231.188401	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3	~	10.002075	31.61458	41.616655	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	3	\sim	41.616655	121.3385	162.955155	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3	~	162.955155	20.3333	183.288455	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	3	~	183.288455	20	203.288455	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	4	~	9.999503	22.5	32.499503	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	1.75	4	~	32.499503	51.50521	84.004713	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	1.25	4	~	84.004713	49.255067	133.25978	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
													v
	Сору	to top fl	ange								New Du	plicate Dele	te


	Left Right	Distance: 43.118976	ft Apply location	
rder Top flange Bottom flan CL Splice .7500" x 18.000" .2250	ige Web	Splice gap: 0.375	in Inded	
500" x 72.000" Gap	0" x 72.000"	LRFR Condition factor:	Good or Satisfactory Field measured section pr	v
StaAhd				
1.7500" x 18.000" 	0" x 18.000" Right cover plate			


Splice Location 2

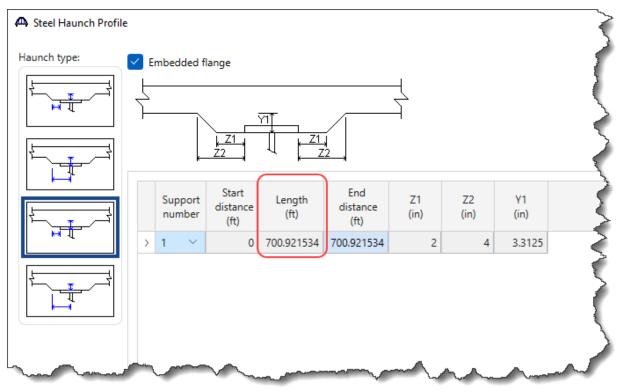
Splice Location 4

Splice Location 6

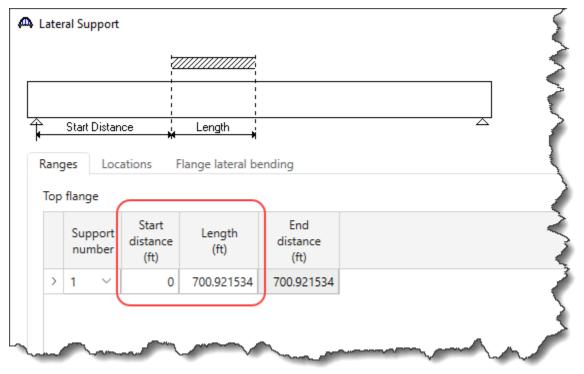
port number: 4	tion Left O Right	Distance: 32.499516	ft Apply location	
der Top flange Bottom flang	je Web			
ICL Splice 2500" x 18.000" 1.7500"	" x 18.000"	Splice gap: 0.375 Filler plates exter	in Ided Good or Satisfactory	~
500" x 72.000" 0.7500'	" x 72.000"		Field measured section pr	
I Sta Ahd→				
2.2500" x 18.000" 1.7500	" x 18.000"			
Left cover plates	Right cover plates			

Deck Profile – Deck concrete

e:	Plate												
eck	concrete R	Reinfo	rceme	nt	Shear conne	ctors							
	Material		Supj num		Start distance (ft)	Length (ft)	End distance (ft)	Structural thickness (in)	Start effective flange width (Std) (in)	End effective flange width (Std) (in)	Start effective flange width (LRFD) (in)	End effective flange width (LRFD) (in)	n
>	Class AA (US)	\sim	1	\sim	0	106.06752	106.06752	8	96	96	109.5	109.5	8
	Class AA (US)	~	1	\sim	106.06752	86.953125	193.020645	8	0	0	0	0	8
	Class AA (US)	\sim	2	\sim	39.834169	142.421875	182.256044	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	2	\sim	182.256044	84.546875	266.802919	8	0	0	0	0	8
	Class AA (US)	\sim	3	\sim	45.616593	113.338542	158.955135	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	3	\sim	158.955135	70.833333	229.788468	8	0	0	0	0	8
	Class AA (US)	\sim	4	\sim	36.499516	96.760228	133.259744	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	4	\sim	133.259744	3.6E-05	133.25978	8	0	0	0	0	8


Deck Profile – Reinforcement

pe	* L	Plate														
De	eck	concrete	Re	infor	cemer	nt Shear co	onnectors									
		Material			oport mber	Start distance (ft)	Length (ft)	End distance (ft)	Std bar count	LRFD bar count	Bar	r size	Distance (in)	Row		Bar spacing (in)
	>	Grade 60	~	1	\sim	0	95.274516	95.274516	9	9	4	\sim	2.5	Top of Slab	\sim	8
		Grade 60	~	1	~	0	700.921534	700.921534	9	9	5	~	1.3125	Bottom of Slab	\sim	8
		Grade 60	~	1	\sim	95.274516	124.27201	219.546526	9	9	7	~	2.6875	Top of Slab	\sim	8
		Grade 60	~	2	\sim	66.36005	88.466228	154.826278	9	9	4	~	2.5	Top of Slab	\sim	8
		Grade 60	~	2	\sim	154.826278	124.355038	279.181316	9	9	7	\sim	2.6875	Top of Slab	\sim	8
		Grade 60	~	3	\sim	57.99499	77.298974	135.293964	9	9	4	~	2.5	Top of Slab	\sim	8
		Grade 60	~	3	~	135.293964	125.247588	260.541552	9	9	7	~	2.6875	Top of Slab	\sim	8
		Grade 60	~	4	\sim	67.2526	66.007181	133.259781	9	9	4	\sim	2.5	Top of Slab	\sim	8


Deck Profile – Shear connectors

2	Plat	e							
ecl	k con	crete	Reinforce	ment Shea	r connectors				
		oport mber	Start distance (ft)	Length (ft)	End distance (ft)	Connector ID	Number of spaces	Number per row	Transverse spacing (in)
>	1	\sim	0	106.06752	106.06752	Composite $$			
	2	~	39.834169	142.421875	182.256044	Composite 🗸			
	3	\sim	45.616593	113.338542	158.955135	Composite 🗸			
	4	~	36.499516	96.760228	133.259744	Composite 🗸			

Lateral Support

Stiffener Ranges

4	Start Distance							
an	sverse stiffener ranges Longitudi	nal	stiffene	r ranges				
	Name		Support number	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)
>	Intermediate Stiffener Interior \sim	ŀ	1 ~	18.058568	1	0	0	18.058568
	Intermediate Stiffener Interior $~~$ \sim	ŀ	1 ~	18.058568	6	231.64784181	115.823921	133.882489
	Intermediate Stiffener Interior $~~$	1	2 ~	22.126935	1	0	0	22.126935
	Intermediate Stiffener Interior $~~$	1	2 ~	22.126935	8	265.398684	176.932456	199.059391
	Intermediate Stiffener Interior $~~$:	3 ~	19.345501	1	0	0	19.345501
	Intermediate Stiffener Interior $~~$:	3 ~	19.345501	8	231.896928	154.597952	173.943453
	Intermediate Stiffener Interior $~~$	4	4 ~	22.417533	1	0	0	22.417533
	Intermediate Stiffener Interior	1	4 ~	22.417533	4	269.010396	89.670132	112.087665

Member G4

Supports

	Support number	Girder bearing alignment type	Chord angle (degrees)					
>	1	Tangent 🗸						
	2	Tangent \vee						
	3	Tangent 🗸						
	4	Tangent 🗸						
	5	Tangent 🗸						
Ge	eneral El	astic						
Ge	Suppo	astic rt Support	Local tra	anslation con	straints	Local	rotation cons	traints
Ge		astic rt Support	Local tra X	anslation con Y	straints Z	Local X	rotation cons Y	traints Z
	Suppo	astic rt Support						
	Suppo	astic rt Support er type		Y	Z		Y	
	Suppo numbe	astic rt Support type Roller V		Y	Z		Y	
	Suppo numbe	astic rt Support type Roller ~ Roller ~	x	Y ✓	Z ~		Y	

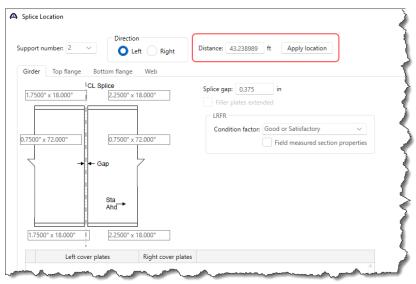
Member Alternative Description

Use the Copy and Paste method discussed in the last section to copy member alternative from member G1 to G4 and rename it as shown below. Also uncheck the **Must consider user input lateral bending stress** checkbox in **Control options** tab as shown for member **G1**.

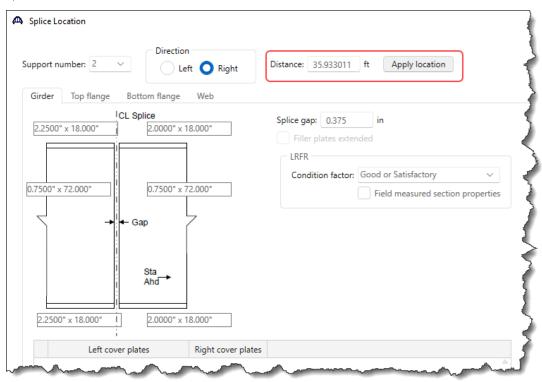
moer arcematives	GIRDER 4E			
escription Sp	becs Factors	Engine Import	Control options	
escription:			Material type:	Steel
			Girder type:	Plate
			Modeling type:	Multi Girder System
			Default units:	US Customary \vee
	have all	1.0		
Cross-sec	tion based	Left: 9.5 Right: 9.5	in in	
				thod:
Cross-sec		Right: 9.5	in	thod:
Cross-sec	tion based	Right: 9.5	in Default rating met	thod:

Now visit the following windows for this member alternative and make the necessary changes as shown below similar to the changes made for G2.

Girder F	Profile –	Web
----------	-----------	-----


Veb	Top fl	ange Bottom	flange							
	Begin depth (in)	Depth vary	End depth (in)	Thickness (in)	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Material	Weld at right
>	72	None 🗸	72	0.75	1 ~	0	702.882243	702.882243	ASTM A709 G50 🗸	None 🗸

Girder Profile – Top flange


pe:	Plate Gi	rder											
Web	Тор	flange	Bottom fl	ange	2								
	Begin width (in)	End width (in)	Thickness (in)		pport imber	Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld	Weld at right	
	18	18	1.25	1	~	0	49.251203	49.251203	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	A
	18	18	1.75	1	~	49.251203	61.125	110.376203	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	1	~	110.376203	33.239583	143.615786	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	1	~	143.615786	20	163.615786	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2.25	2	~	10.000797	25.932291	35.933088	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	2	~	35.933088	150.843375	186.776463	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	~	186.776463	25.03125	211.807713	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	2	~	211.807713	20	231.807713	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3	~	10.002656	31.682291	41.684947	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	3	~	41.684947	121.671875	163.356822	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3	~	163.356822	20.473958	183.83078	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	3	~	183.83078	20	203.83078	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
>	18	18	2.25	4	~	10.001135	22.536464	32.537599	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	1.75	4	~	32.537599	51.84375	84.381349	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	1.25	4	\sim	84.381349	49.251203	133.632552	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
													v
	Copy to	bottom	flange								New	Duplicate	Delete


Girder Profile – Bottom flange

	Plate Gi												
Web	Тор	flange	Bottom fl	ange									
	Begin width (in)	End width (in)	Thickness (in)		oport mber	Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld	Weld at right	
>	18	18	1.25	1	~	0	49.251203	49.251203	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	A
	18	18	1.75	1	~	49.251203	61.125	110.376203	ASTM A709 G50	~	None 🛛 🗸	None 🗸 🗸	
	18	18	2.25	1	~	110.376203	33.239583	143.615786	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	3	1	~	143.615786	20	163.615786	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2.25	2	~	10.000797	25.932291	35.933088	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2	2	~	35.933088	150.843375	186.776463	ASTM A709 G50	~	None 🗸 🗸	None 🗸 🗸	
	18	18	2.25	2	~	186.776463	25.03125	211.807713	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	3	2	~	211.807713	20	231.807713	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2.25	3	~	10.002656	31.682291	41.684947	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2	3	~	41.684947	121.671875	163.356822	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2.25	3	~	163.356822	20.473958	183.83078	ASTM A709 G50	~	None 🗸 🗸	None 🗸 🗸	
	18	18	3	3	~	183.83078	20	203.83078	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2.25	4	~	10.001135	22.536464	32.537599	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	1.75	4	~	32.537599	51.84375	84.381349	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	1.25	4	~	84.381349	49.251203	133.632552	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	Сору	to top fl	ange								New	Duplicate	Delete

Splice Location 2

Splice Location 4

pport number: 3 ~ Direction	Distance: 41.685136 ft Apply location
Girder Top flange Bottom flange Web ICL Splice 2.0000" x 18.000" 2.0000" x 18.000"	Splice gap: 0.375 in Filler plates extended
.7500" x 72.000"	LRFR Condition factor: Good or Satisfactory ~ Field measured section properties
Sta_	
2.2500" x 18.000"	

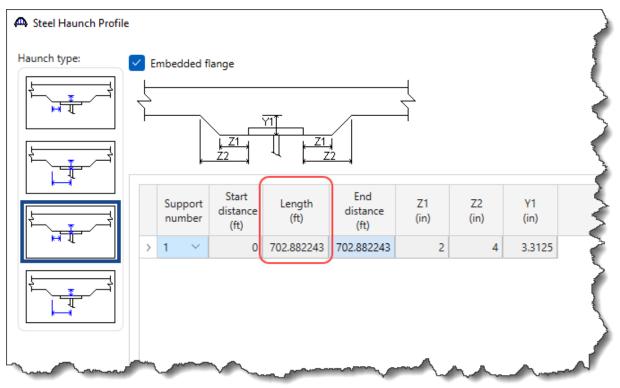
pport number: 4 V Direction	t Distance: 30.472641 ft Apply location
Girder Top flange Bottom flange Web ICL Splice 2.0000" x 18.000" 2.2500" x 18.000" 0.7500" x 72.000" 0.7500" x 72.000" Gap Sta Ahd	Splice gap: 0.375 in Filler plates extended LRFR Condition factor: Good or Satisfactory ~ Field measured section properties
2.0000" x 18.000" I Left cover plates Right cover	

Splice Location 6

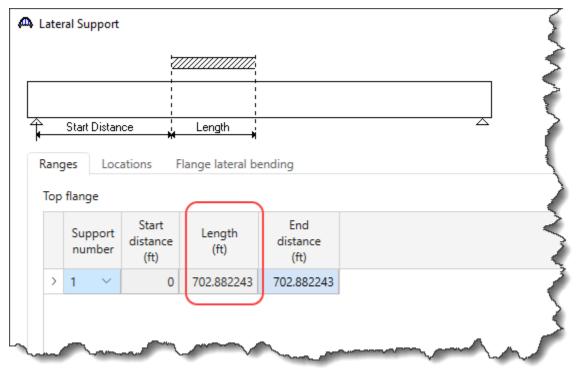
oport number: 4 ~ Direction	Distance: 32.537396 ft Apply location
irder Top flange Bottom flange Web	
Interview Interview <t< th=""><th>Splice gap: 0.375 in Filler plates extended LRFR Condition factor: Good or Satisfactory ~ Field measured section properties</th></t<>	Splice gap: 0.375 in Filler plates extended LRFR Condition factor: Good or Satisfactory ~ Field measured section properties
Gap Sta Ahd 2.2500" x 18.000" ↓ 1.7500" x 18.000"	

Deck Profile – Deck concrete

oe:	Plate												
Dec	k concrete R	einfo	rcemer	ıt	Shear conne	ctors							
	Material		Supp numl		Start distance (ft)	Length (ft)	End distance (ft)	Structural thickness (in)	Start effective flange width (Std) (in)	End effective flange width (Std) (in)	Start effective flange width (LRFD) (in)	End effective flange width (LRFD) (in)	n
>	Class AA (US)	\sim	1	\sim	0	106.376016	106.376016	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	1	\sim	106.376016	87.171875	193.547891	8	0	0	0	0	8
	Class AA (US)	\sim	2	\sim	39.932902	142.84375	182.776652	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	2	\sim	182.776652	84.713542	267.490194	8	0	0	0	0	8
	Class AA (US)	\sim	3	\sim	45.685137	113.671875	159.357012	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	3	\sim	159.357012	71.010416	230.367428	8	0	0	0	0	8
	Class AA (US)	\sim	4	\sim	36.537783	97.094766	133.632549	8	96	96	109.5	109.5	8
	Class AA (US)	\sim	4	\sim	133.632549	3E-06	133.632552	8	0	0	0	0	8


Deck Profile – Reinforcement

ete	Rei	inford												
			temer	nt Shear co	nnectors									
aterial				Start distance (ft)	Length (ft)	End distance (ft)	Std bar count	LRFD bar count	Bar s	ize	Distance (in)	Row		Bar spacing (in)
: 60	~	1	~	0	95.541028	95.541028	9	9	4	\sim	2.5	Top of Slab	\sim	8
: 60	~	1	~	0	702.882243	702.882243	9	9	5	\sim	1.3125	Bottom of Slab	\sim	8
: 60	~	1	~	95.541028	124.61964	220.160668	9	9	7	\sim	2.6875	Top of Slab	\sim	8
: 60	~	2	~	66.545679	88.713696	155.259375	9	9	4	\sim	2.5	Top of Slab	\sim	8
: 60	~	2	~	155.259375	124.7029	279.962275	9	9	7	\sim	2.6875	Top of Slab	\sim	8
: 60	~	3	~	58.157218	77.515206	135.672424	9	9	4	\sim	2.5	Top of Slab	\sim	8
: 60	~	3	~	135.672424	125.597947	261.270371	9	9	7	\sim	2.6875	Top of Slab	\sim	8
e 60		4	~	67.440726	66.191824	133.63255	9	9	4	\sim	2.5	Top of Slab	\sim	8
	60 60 60 60 60 60	60 ~ 60 ~ 60 ~ 60 ~ 60 ~ 60 ~ 60 ~ 60 ~ 60 ~ 60 ~ 60 ~ 60 ~ 60 ~	attenuit num $60 \lor 1$ 1 $60 \lor 1$ 1 $60 \lor 2$ 1 $60 \lor 2$ 2 $60 \lor 3$ 3	number 60 1 60 1 60 1 60 2 60 2 60 2 60 3	Support number Support distance (ft) 60 1 0 60 1 95.541028 60 2 66.545679 60 2 155.259375 60 3 58.157218	Support number Support distance (ft) Length (ft) 60 <	Support number Gistance (ft) Length (ft) distance distance (ft) 60 <	Support number Support distance (ft) Length (ft) distance distance (ft) Std bar count 60 <	Support number Support distance (ft) Length (ft) Length distance (ft) Std LRED bar count LRED bar count 60 <	Support number Support distance (ft) Length (ft) distance distance (ft) Std bar count LRFD bar count Bar st bar count 60 <	Support number Support distance (ft) Length distance (ft) distance distance (ft) Std bar count LRFD bar count Bar size 60 <	Support number Support distance (ft) Length distance (ft) Std bar count LRPD bar count Bar size Distance (in) 60 <	Support number Support distance (ft) Length (ft) Length distance (ft) Std distance (ft) LRFD bar count Bar size socut Distance (in) Distance Row 60 <	Support number Support distance (ft) Length (ft) distance distance (ft) Std bar count LRFD bar count Bar size Distance (in) Row 60 <


Deck Profile – Shear connectors

Decl	k co	ncrete	Reinforce	ment Shea	r connectors				
		upport umber	Start distance (ft)	Length (ft)	End distance (ft)	Connector ID	Number of spaces	Number per row	Transverse spacing (in)
>	1	~	0	106.376016	106.376016	Composite 🗸			
	2	~	39.932902	142.84375	182.776652	Composite 🗸			
	3	~	45.685137	113.671875	159.357012	Composite 🗸			
	4	\sim	36.537783	97.094766	133.632549	Composite 🗸			
	-		50.557765	57.054700	155.052545	composite			

Lateral Support

Stiffener Ranges

Name Support distance (r) Start distance (r) Number of spaces Spacing (in) Length (r) End distance (r) Intermediate Stiffener Interior 1 1 1 1 8 10 10 1	4	Start Distance											-		
> Intermediate Stiffener Interior 1 × 18.109084 1 0 0 18.109084 Intermediate Stiffener Interior 1 × 18.109084 6 232.2958371 116.147919 134.257003 Intermediate Stiffener Interior 2 × 22.188832 1 0 0 22.188832 Intermediate Stiffener Interior 2 × 22.188832 8 266.141088 177.427392 199.616224 Intermediate Stiffener Interior 3 × 19.399617 1 0 0 19.399617 Intermediate Stiffener Interior 3 × 19.399617 8 232.545612 155.030408 174.430025 Intermediate Stiffener Interior 4 × 22.480242 1 0 0 22.480242 Intermediate Stiffener Interior 4 × 22.480242 4 269.762916 89.920972 112.401214	ans	-	gitudir	Sup	oport	Start distance				distance					
Intermediate Stiffener Interior 2 22.188832 1 0 0 22.188832 Intermediate Stiffener Interior 2 2 22.188832 8 266.141088 177.427392 199.616224 Intermediate Stiffener Interior 3 19.399617 1 0 0 19.399617 Intermediate Stiffener Interior 3 19.399617 8 232.545612 155.030408 174.430025 Intermediate Stiffener Interior 4 22.480242 1 0 0 22.480242 Intermediate Stiffener Interior 4 22.480242 1 0 0 22.480242 Intermediate Stiffener Interior 4 22.480242 4 269.762916 89.920972 112.401214	>	Intermediate Stiffener Interio	r ~	1	~		1	0	0						-
Intermediate Stiffener Interior 2 22.188832 8 266.141088 177.427392 199.616224 Intermediate Stiffener Interior 3 19.399617 1 0 0 19.399617 Intermediate Stiffener Interior 3 19.399617 8 232.545612 155.030408 174.430025 Intermediate Stiffener Interior 4 22.480242 1 0 0 22.480242 Intermediate Stiffener Interior 4 22.480242 4 269.762916 89.920972 112.401214		Intermediate Stiffener Interio	r ∨	1	\sim	18.109084	6	232.2958371	116.147919	134.257003					
Intermediate Stiffener Interior 3 V 19.399617 1 0 0 19.399617 Intermediate Stiffener Interior 3 V 19.399617 8 232.545612 155.030408 174.430025 Intermediate Stiffener Interior 4 V 22.480242 1 0 0 22.480242 Intermediate Stiffener Interior V 4 V 22.480242 4 269.762916 89.920972 112.401214		Intermediate Stiffener Interio	r V	2	\sim	22.188832	1	0	0	22.188832					
Intermediate Stiffener Interior 3 × 19.399617 8 232.545612 155.030408 174.430025 Intermediate Stiffener Interior 4 × 22.480242 1 0 0 22.480242 Intermediate Stiffener Interior × 4 × 22.480242 4 269.762916 89.920972 112.401214		Intermediate Stiffener Interio	r V	2	\sim	22.188832	8	266.141088	177.427392	199.616224					
Intermediate Stiffener Interior 4 22.480242 1 0 0 22.480242 Intermediate Stiffener Interior 4 22.480242 4 269.762916 89.920972 112.401214		Intermediate Stiffener Interio	r V	3	\sim	19.399617	1	0	0	19.399617					
Intermediate Stiffener Interior ✓ Apply at Stiffeners between		Intermediate Stiffener Interio	r ~	3	\sim	19.399617	8	232.545612	155.030408	174.430025					
Apply at Stiffeners between		Intermediate Stiffener Interio	r ~	4	\sim	22.480242	1	0	0	22.480242					
		Intermediate Stiffener Interio	r ~	4	\sim	22.480242	4	269.762916	89.920972	112.401214					
											New	Dup	olicate	Delete	

Member G5

Supports

	Support number	Girder bearing alignment type	Chord angle (degrees)					
	1	Tangent 🗸						
	2	Tangent \vee						
	3	Tangent \vee						
	4	Tangent \vee						
	5	Tangent 🗸						
ï		, angent						
Ge	Suppor	astic rt Support	Local tra	anslation co	nstraints	Local	rotation cons	traints
Ge		astic rt Support	Local tra X	anslation co Y	nstraints Z	Local X	rotation cons Y	traints Z
Ge	Suppor	astic rt Support						
Se	Suppor	astic rt Support rr type		Y	Z			
	Suppor numbe	astic rt Support type Roller ~		Y	Z			
	Suppor numbe	astic rt Support type Roller ~ Roller ~	x	Y V	Z			

Member Alternative Description

Use the Copy and Paste method discussed in the last section to copy member alternative from member G1 to G5 rename it as shown below. Also uncheck the **Must consider user input lateral bending stress** checkbox in **Control options** tab as shown for member **G1**.

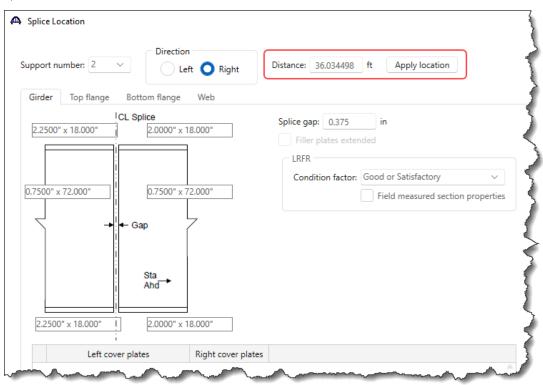
mber alternative: GI	RDER 5E				
Description Specs	Factors	Engine	Import	Control options	
escription:				Material type:	Steel
				Girder type:	Plate
				Modeling type	Multi Girder System
				Default units:	US Customary 🗸 🗸
Girder property inp		End bea	aring locat	ions	Simple DL, continuous LL
Girder property inp	ed	End bea Left: Right:	9.5	ions in in	Simple DL, continuous LL
O Schedule base	ed	Left:	9.5	in	
Cross-section	ed	Left: Right:	9.5	in in	
Schedule base Cross-section	ed based Engine As	Left: Right:	9.5 9.5	in in Default rating m	

Now visit the following windows for this member alternative and make the necessary changes as shown below similar to the changes made for G2.

Girder Profile – Web

Veb	Plate Gird		n flange							
			5				\frown			
	Begin depth (in)	Depth vary	End depth (in)	Thickness (in)	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Material	Weld at right
>	72	None 🗸 🗸	72	0.75	1 ~	0	704.842951	704.842951	ASTM A709 G50 \lor	None 🗸 🗸

Girder Profile – Top flange


	Plate Gi	rder											
Web	Тор	flange	Bottom fl	ange	2								
	Begin width (in)	End width (in)	Thickness (in)		pport mber	Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld	Weld at right	
>	18	18	1.25	1	\sim	0	49.249611	49.249611	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	A
	18	18	1.75	1	\sim	49.249611	61.4375	110.687111	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	1	\sim	110.687111	33.35938	144.046491	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	1	\sim	144.046491	20	164.046491	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	\sim	10.002989	26.03125	36.034239	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	2	\sim	36.034239	151.2656	187.299839	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	\sim	187.299839	25.125	212.424839	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	2	\sim	212.424839	20	232.424839	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3	\sim	10.001051	31.848958	41.850009	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2	3	\sim	41.850009	122.015625	163.865634	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	3	\sim	163.865634	20.505208	184.370842	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	3	\sim	184.370842	20	204.370842	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	4	\sim	10.000504	22.682291	32.682795	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	1.75	4	\sim	32.682795	52.072916	84.755711	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	1.25	4	\sim	84.755711	49.249611	134.005322	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
				~									
	Copy to	bottom	flange								New	Duplicate	Delete

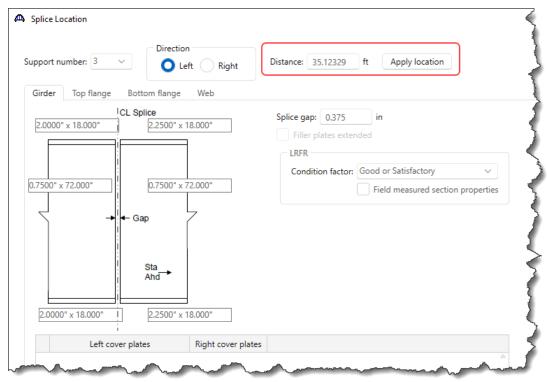

Girder Profile – Bottom flange

	Plate Gi												
Web	Тор	flange	Bottom fl	ange									
	Begin width (in)	End width (in)	Thickness (in)	Supp num		Start distance (ft)	Length (ft)	End distance (ft)	Material		Weld	Weld at right	
>	18	18	1.25	1	\sim	0	49.249611	49.249611	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	A
	18	18	1.75	1	\sim	49.249611	61.4375	110.687111	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	1	\sim	110.687111	33.35938	144.046491	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	3	1	~	144.046491	20	164.046491	ASTM A709 G50	\sim	None 🗸 🗸	None 🗸	
	18	18	2.25	2	\sim	10.002989	26.03125	36.034239	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2	2	\sim	36.034239	151.2656	187.299839	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2.25	2	\sim	187.299839	25.125	212.424839	ASTM A709 G50	~	None 🗸 🗸	None V	
	18	18	3	2	\sim	212.424839	20	232.424839	ASTM A709 G50	~	None V	None 🗸	
	18	18	2.25	3	\sim	10.001051	31.848958	41.850009	ASTM A709 G50	~	None V	None 🗸	
	18	18	2	3	\sim	41.850009	122.015625	163.865634	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	2.25	3	\sim	163.865634	20.505208	184.370842	ASTM A709 G50	~	None 🗸 🗸	None V	
	18	18	3	3	\sim	184.370842	20	204.370842	ASTM A709 G50	~	None V	None 🗸	
	18	18	2.25	4	\sim	10.000504	22.682291	32.682795	ASTM A709 G50	~	None V	None 🗸	
	18	18	1.75	4	\sim	32.682795	52.072916	84.755711	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
	18	18	1.25	4	\sim	84.755711	49.249611	134.005322	ASTM A709 G50	~	None 🗸 🗸	None 🗸	
				~									v
	Сору	to top fl	ange								New	Duplicate	Delete

oport number: 2 V		Distance: 43.356102 ft Apply location
irder Top flange Bottom flange	Web	
CL Splice 2.2500" × 18.000" 2.2500" × 2.2500" × 2.2500" × 0.7500" × 0.7500" × 4. Gap Sta Ahd		Splice gap: 0.375 in Filler plates extended
1.7500" x 18.000" 2.2500" x	(18.000"	

Splice Location 2

Splice Location 4

port number: 3 V Directio	eft 🔵 Right	Distance: 41.850268 ft Apply location
irder Top flange Bottom flange	Web	
CL Splice 2.2500" x 18.000"	18.000"	Splice gap: 0.375 in Filler plates extended
/500" x 72.000"	72.000"	LRFR Condition factor: Good or Satisfactory Field measured section properties
→ ← Gap	7	
2.2500" x 18.000"	18.000"	
Left cover plates	Right cover pla	tec

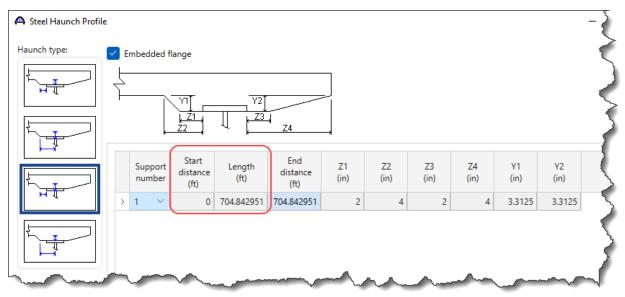
port number: 4 V	
rder Top flange Bottom flange	Web
ICL Splice 2.2500" x 18.000" 500" x 72.000" Gap Sta Ahd 2.2500" x 1 2.2500" x 1 2.2500" x 1 3.000" x 18.000" 2.2500" x 1 3.000"	Condition factor: Good or Satisfactory Field measured section properties
Left cover plates	Right cover plates

Splice Location 6

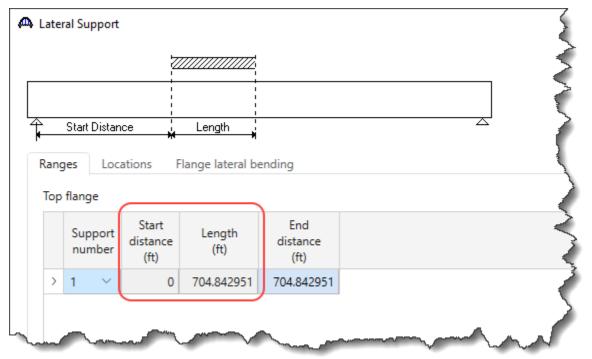
pport number: 4 V Direction	Distance: 32.683052 ft Apply location
Girder Top flange Bottom flange Web ICL Splice 1.7500" x 18.000" 1.7500" x 18.000"	Splice gap: 0.375 in
.7500" x 72.000"	Filler plates extended LRFR Condition factor: Good or Satisfactory Field measured section properties
→ Gap	
Ahd 2.2500" x 18.000" 1.7500" x 18.000"	

Deck Profile – Deck concrete

pe:	Plate											
Dec	k concrete	leinfo	rcement	Shear conne	ectors							
	Material		Suppo		Length (ft)	End distance (ft)	Structural thickness (in)	Start effective flange width (Std) (in)	End effective flange width (Std) (in)	Start effective flange width (LRFD) (in)	End effective flange width (LRFD) (in)	n
>	Class AA (US)	\sim	1 \	/ 0	106.68735	106.68735	8	85.999992	85.999992	92.749992	92.749992	8
	Class AA (US)	\sim	1 \	106.68735	87.390625	194.077975	8	0	0	0	0	8
	Class AA (US)	\sim	2 \	40.034473	143.265625	183.300098	8	85.999992	85.999992	92.749992	92.749992	8
	Class AA (US)	\sim	2 \	183.300098	84.973958	268.274056	8	0	0	0	0	8
	Class AA (US)	\sim	3 、	45.850268	114.015625	159.865893	8	85.999992	85.999992	92.749992	92.749992	8
	Class AA (US)	\sim	3 、	159.865893	71.1875	231.053393	8	0	0	0	0	8
	Class AA (US)	\sim	4	36.683055	97.322265	134.00532	8	85.999992	85.999992	92.749992	92.749992	8
	Class AA (US)	\sim	4	134.00532	3E-06	134.005323	8	0	0	0	0	8


Deck Profile – Reinforcement

e:	Plate													
)ec	k concrete	Re	infor	cemer	nt Shear co	nnectors								
	Material			oport mber	Start distance (ft)	Length (ft)	End distance (ft)	Std bar count	LRFD bar count	Bar size	Distance (in)	Row		Bar spacing (in)
>	Grade 60	~	1	\sim	0	95.807544	95.807544	7.5	7.5	4 ~	2.5	Top of Slab	\sim	8
	Grade 60	~	1	~	0	704.842951	704.842951	7.5	7.5	5 ~	1.3125	Bottom of Slab	\sim	8
	Grade 60	~	1	~	95.807544	124.96727	220.774814	7.5	7.5	7 ~	2.6875	Top of Slab	\sim	8
	Grade 60	~	2	~	66.731312	88.961166	155.692478	7.5	7.5	4 ~	2.5	Top of Slab	\sim	8
	Grade 60	~	2	\sim	155.692478	125.05076	280.743238	7.5	7.5	7 ~	2.6875	Top of Slab	~	8
	Grade 60	~	3	\sim	58.31945	77.731438	136.050888	7.5	7.5	4 ~	2.5	Top of Slab	\sim	8
	Grade 60	~	3	~	136.050888	125.948305	261.999193	7.5	7.5	7 ~	2.6875	Top of Slab	~	8
	Grade 60	~	4	~	67.628855	66.376469	134.005324	7.5	7.5	4 ~	2.5	Top of Slab	~	8


Deck Profile – Shear connectors

/pe: Plate Deck concrete Reinforcement Shear			ar connectors						
	Support dista		Start distance (ft)	Length (ft)	End distance (ft)	Connector ID	Number of spaces	Number per row	Transverse spacing (in)
>	1	~	0	106.68735	735 106.68735	Composite 🗸			
	2	~	40.034473	143.265625	183.300098	Composite 🗸			
	3	\sim	45.850268	114.015625	159.865893	Composite 🗸			
	4	\sim	36.683055	97.322265	134.00532	Composite 🗸			

Haunch Profile

Lateral Support

Stiffener Ranges

Ì	Start Distance							
ans	verse stiffener ranges Longitudir	nal	stiffener	ranges				
	Name		Support number	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)
>	Intermediate Stiffener Exterior $~~$		1 ~	18.1596	1	0	0	18.1596
	Intermediate Stiffener Exterior $~~$		1 ~	18.1596	6	232.94383239	116.471916	134.631516
	Intermediate Stiffener Exterior $~~$		2 ~	22.250728	1	0	0	22.250728
	Intermediate Stiffener Exterior $~~$		2 ~	22.250728	8	266.883504	177.922336	200.173064
	Intermediate Stiffener Exterior $~~$ \sim		3 ~	19.453732	1	0	0	19.453732
	Intermediate Stiffener Exterior $~~$ \sim		3 ~	19.453732	8	233.194308	155.462872	174.916604
	Intermediate Stiffener Exterior \sim		4 ~	22.542952	1	0	0	22.542952
	Intermediate Stiffener Exterior $~~$ \sim	•	4 ~	22.542952	4	270.515412	90.171804	112.714756

3D Analysis Settings

It is not recommended that users launch an analysis in training due to the large number of degrees of freedom in this example. The analysis runtime will require a 64 bit PC and adequate memory that is likely not available on attendee laptops.

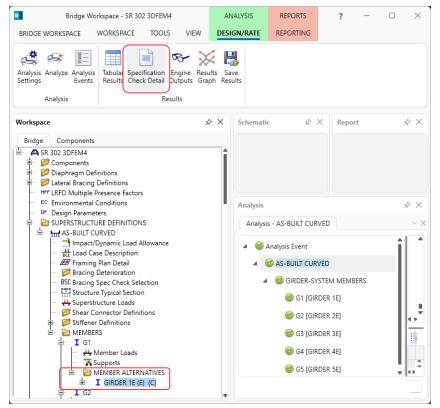
LRFD Design Review

To perform a 3D LRFD design review on the superstructure, from the **Analysis** group of the **DESIGN/RATE** ribbon, click on the **Analysis Settings** button to open the window shown below. Apply the following selections for an HL93 Design review.

Bridge Wor	kspace - SR 302 3DFE	M4	ANALYSIS	REPORTS	? —		×		
BRIDGE WORKSPACE	WORKSPACE TOO	DLS VIEW	DESIGN/RATE	REPORTING					
Analysis Settings Analysis Analysis Analysis Analysis	Tabular Specificatio Results Check Deta	n Engine Resu Outputs Gra Results	llts Save ph Results						
🕰 Analysis Settings							_		×
O Design review	Rating		Design r	nethod:	LRFD		~		
Analysis type:	3D FEM	\sim	Analysis	option:	DL, LL and Spec-Cl	necking	\sim		
Lane / Impact loading type:	As Requested		Apply pr	eference setting:	None		~		
Vehicles Output E	ngine Description								
Traffic direction: Both di	irections	\sim		Refresh	Temporary vehicl	es A	Advanced		
Vehicle selection				Vehicle summar	Y				
 → Vehicles → Alternate Mil → EV2 → EV3 → HL-93 (SI) → HL-93 (US) → HS 20 (SI) → HS 20-44 → LRFD Fatigue → Agency → User defined → Temporary 	Truck (SI)		Add to >> Remove from <<	E-Design vehi	oads)3 (US) pads				
Reset Clear	Open templa	te Save	template		ОК	Ap	ply	Cance	el

Navigate to the **Output** tab of this window and apply the following settings. Make sure to check the **Detailed influence line loading** checkbox to view the centrifugal force calculations.

O Design review Rating	Design method:	LRFD	~	
nalysis type: 3D FEM V	Analysis option:	DL, LL and Spec-Checking	~	
ne / Impact loading type: As Requested	Apply preference setting:	None	~	
Vehicles Output Engine Description Tabular results	Detailed inf Capacity su Capacity de FE model fe FE model fe LL influence LL distrib. fa LL distrib. fa Regression Camber Fatigue stre Service II st Servica II st	eports: erties ifluence line loading mmary tailed computations or DL analysis or LL analysis et lines FE model et lines FE actions actor computations actor summary data		


Click **OK** to apply the settings and close the window.

With the **AS-BUILT CURVED** superstructure definition selected on the **BWS** tree, click the **Analysis** button from the Analysis group of the **DESIGN/RATE** ribbon.

-	kspace - SR 302 : WORKSPACE	3DFEM4 TOOLS	VIEW	ANALYSIS DESIGN/RATE	REPORTS		?	-	×
Analysis Settings Analysis Analysis Analysis	Tabular Specific Results Check		ne Resu						
Workspace Bridge Components	Definitions	× &	Schem	atic	× \$	Repo	rt		& ×
C Environmental C P Design Parameter C SUPERSTRUCTU B → MAS-BUILT CU B → MAS BUILT (E)	ers RE DEFINITIONS IRVED ATIVES		Analys	is					\$ ×

Specification Check Detail - LRFD Design Review

Select the member alternative **GIRDER 1E** of member **G1** and click on the **Specification Check Detail** button from the **Results** group of the **DESIGN/RATE** ribbon to view all the spec check articles for this alternative.

A Specification Cl	hecks for GIRDE	R 1E - 48 of 7491			- 🗆	×
Properties	Generate	Articles All articles V Format				
Floperties	Generate	Bullet list V				
Specification filter		Report				
🔺 🚞 Superstructu	ure Component	Specification reference	Limit State	Flex. Sense	Pass/Fail	1
Stage 1		1.3.2.1 Design Philosophy - Limit State - General		N/A	General Comp.	
🕨 🚞 Stage 2		✓ 2.5.2.6.2 Criteria for Deflection		N/A	Passed	
🔺 🚞 Stage 3		4.6.2.7.1 I-Sections - Lateral Wind Load Distribution in Multibeam Bridges		N/A	General Comp.	
a 🚞 girdi		5.4.2.6 Modulus of Rupture		N/A	General Comp.	
	oan 1 - 0.00 ft.	5.4.2.8 Concrete Density Modification Factor		N/A	General Comp.	
	oan 1 - 4.49 ft.	6.10.1 Estimated Flange Lateral Bending Stress Proportioning		N/A	General Comp.	
· · · · · ·	oan 1 - 8.98 ft.	6.10.1.1.1b Stresses for Sections in Positive Flexure		N/A	General Comp.	
	oan 1 - 13.47 ft.	🖺 6.10.1.10.1 Hybrid Factor, Rh		N/A	General Comp.	
	oan 1 - 15.23 ft.	6.10.1.10.2 Web Load-Shedding Factor, Rb		N/A	General Comp.	
	oan 1 - 17.96 ft.	✓ 6.10.1.6 Flange Stress and Member Bending Moments		N/A	Passed	
	oan 1 - 22.76 ft.	✓ 6.10.1.7 Minimum Negative Flexure Concrete Deck Reinforcement		N/A	Passed	
	oan 1 - 27.56 ft.	6.10.1.9.1 Webs without Longitudinal Stiffeners		N/A	General Comp.	
	oan 1 - 30.47 ft.	✓ 6.10.11.1.2 Transverse Stiffeners - Projecting Width		N/A	Failed	
Sp	oan 1 - 32.35 ft.	6 10 11 1 3 Transverse Stiffeners - Moment of Inertia		NZA	Daccad	

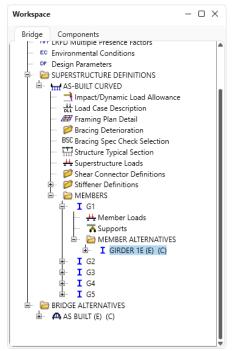
LFR Rating

In the Analysis Settings window select the following vehicles and settings for an LFR rating.

Analysis Settings		_	
Design review O Rating	Rating method:	LFR ~	
nalysis type: 3D FEM ~	Analysis option: Apply preference setting:	DL, LL and Spec-Checking V None V	
Vehicles Output Engine Description Traffic direction: Both directions Vehicle selection	Refresh Vehicle summar	•]
 ⇔ Vehicles ⇔ Standard → Alternate Military Loading → EV2 → EV3 → H 15-44 → H 15-44 → H 15-44 → H 52 0 (SI) → HS 20 (SI) → HS 20 (SI) → SU4 → SU4 → SU5 → SU6 → SU7 → Type 33 → Type 33 → Type 352 → Agency → User defined → Temporary 	Add to Permit	ry 20-44 ng	

The example in the AASHTO Guide Specification is for an HS25 loading. To produce this loading, enter a scale factor of 1.25 in the **Vehicle Properties** window as shown below.

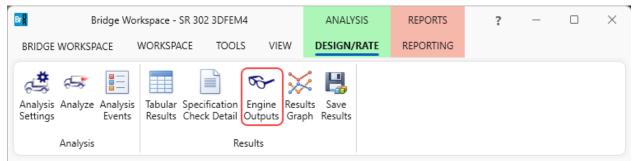
6	D, V	ehicle Prope	erties					×
		Vehicle	Tandem train	Scale factor	Impact	Single Iane Ioaded		
	>	HS 20-44		1.25				A
	Ad	jacent vehic	le live loar	factor				v
	Auj	Jacent Venic	are invertode				ОК	Cancel
							UN	Cancer

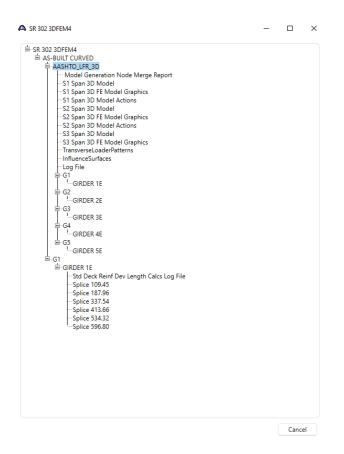

Navigate to the **Output** tab and check the checkboxes shown below to generate detailed reports. Be sure to check the **Detailed influence line loading** to be able to view the centrifugal force calculations.

Analysis Settings					_	×
Design review O	Rating		Rating method:	LFR	~	
nalysis type:	3D FEM	\sim	Analysis option:	DL, LL and Spec-Checking	~	
ane / Impact loading type:	As Requested	\sim	Apply preference setting:	None	~	
Vehicles Output En	gine Description					
	eport		 Detailed inf Capacity su Capacity de FE model fc FE model fc LL influence LL influence 	eports: erties fluence line loading fluence line loading mmary stailed computations or DL analysis or LL analysis e lines FE model e lines FE actions actor computations		
Select all Clear a	Ш		Select all Cle	ar all		

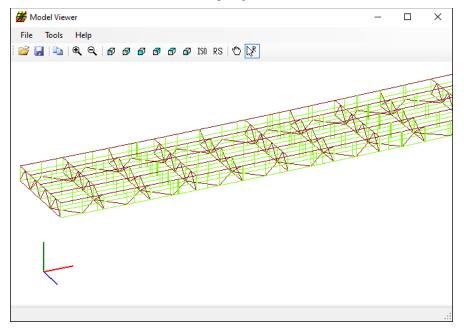
This example shows the results from a 3D LFD rating. It is not recommended that users launch an analysis in training due to the large number of degrees of freedom in this example The analysis runtime will require a 64 bit PC and adequate memory that is likely not available on attendee laptops.

The software develops the 3D model using the member alternative marked as **Existing** for each member. If the member does not have a member alternative marked as **Existing** and only has 1 member alternative, that member alternative is used for the 3D model. If the member has no member alternative marked as **Existing** and more than 1 member alternative, the analysis will not be performed.


When the analysis is launched for the superstructure definition, spec checking and rating is only performed for the member alternatives marked as **Existing**. When the analysis is launched for a single member alternative (as shown below), the spec checking and rating will only be performed for that member alternative.



A feature for both straight and curved girder system FE analysis is the ability to reuse existing FEA results. The program will generate new dead load and live load influence surface FE models and compare the models to previous models. If the models compare exactly then the FEA results will be reused. The live load will be applied to the previous influence surfaces. This leads to a greatly reduced runtime on successive runs.


Engine Outputs – LFR Rating

Select the **GIRDER 1E** member alternative for member **G1** and click the **Engine Outputs** button on the **Results** group of the **DESIGN/RATE** ribbon. The following shows the output files created by the 3D LFR rating.

The **3D** Model files list the data for the models including nodes, members, properties, and loads. The **3D** Model Actions files list the FE results (reactions, element actions, displacements) for the models. The Model Graphics files can be opened to graphically view the FE models. The following shows the graphics for the Stage 1 model which contains the steel beams and diaphragms.

Node and element numbers can be turned on from the **Tools** menu. The mouse controls manipulation of the view. Zoom by rolling the mouse wheel. Translate by pushing down the mouse wheel. Rotate by pushing down the left mouse button.

The generated influence surfaces for the unit live loading can be viewed by selecting the **Stage 3** Graphics model and then selecting **File** -> **Open** -> **Influence Surfaces.sur**. This opens the **Influence Surface** window as shown below. An influence surface for viewing can be chosen by selecting **Tools** -> **Change Influence Surface** and then selecting desired actions.

Bridge ID: Bridge: Superstructure Definition: User: NBI Structure ID: Bridge Alternative: Date: Juance Surface Selection Girder: G1 G2 G3 G4						
fluence Surface Information						
Bridge ID:	SR 302 3DFE	M4				
Bridge:	SR 302 EAST	RAMP				
-	AS-BUILT CU	RVED				
	bridge					
NBI Structure ID:	12345					
Bridge Alternative:						
Deter	12/21/2023					
Date: ifluence Surface Selection						
fluence Surface Selection	Deck Node:		Action:		Face:	
fluence Surface Selection	Deck Node:	^	Action: Moment-Z	^	Face:	
fluence Surface Selection - Girder:		^		^		
fluence Surface Selection - Girder: [G1 G2	1	^	Moment-Z	^		
fluence Surface Selection - Girder: [G1 G2 G3	1 5	^	Moment-Z Shear-Y	^		
fluence Surface Selection - Girder: [G1 G2 G3	1 5 9	^	Moment-Z Shear-Y Moment-Y	^		
Girder: [Girder: [G1 G2 G3 G4	1 5 9 13	*	Moment-Z Shear-Y Moment-Y Moment-Y Top Flange	^		
Girder: [Girder: [G1 G2 G3 G4	1 5 9 13 17		Moment-Z Shear-Y Moment-Y Moment-Y Top Flange Moment-Y Bottom Flange			

Tabular Results – LFR Rating

From the **Results** group of the **DESIGN/RATE** ribbon, click on **Tabular Results** to view the LFR rating results for member alternative **GIRDER 1E** as shown below.

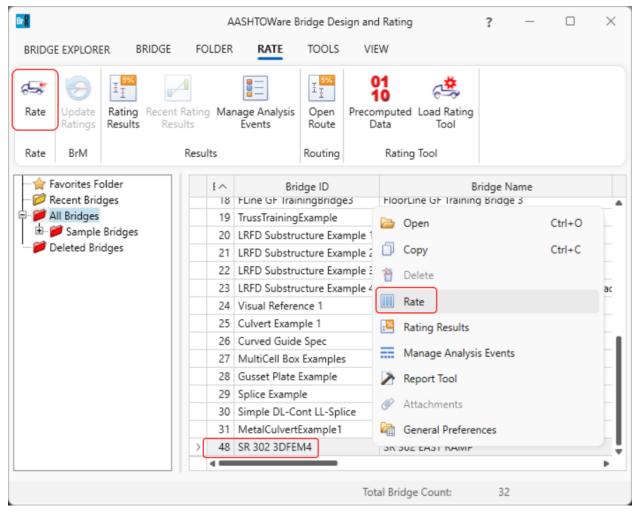
Bridge Wor	rkspace - SR 302 3DFEM	4	ANALYSIS	REPORTS	?	_	\times
BRIDGE WORKSPACE	WORKSPACE TOOLS	S VIEW	DESIGN/RATE	REPORTING			
a 🖙 🗉		r≎- 🏹	2 🖪				
Analysis Analyze Analysis Settings Events			Its Save				
Analysis	Re	esults					

Pr	nalysi nint	is Results -	GIRDER	1E							- 0	×
eport	t type	e			Stage				Dead I	oad Case		
		Actions			Non-comp	osite (St	age 1)	~	Load (Case 1 - Self Lo	ad(Stage 1 🗸	
s	ipan	Location (ft)	% Span	Side	Moment (kip-ft)	Shear (kip)	Axial (kip)	Torsion (kip-ft)	Reaction (kip)	X Deflection (in)	Y Deflection (in)	
	1	0.00	0.0	Right	0.00	15.87	0.00	0.00	17.37	0.0000	0.0000	
	1	8.98	5.9	Left	142.51	15.87	0.00	0.00		0.0000	-0.1023	
	1	8.98	5.9	Right	137.39	13.31	0.84	0.00		0.0000	-0.1023	
	1	15.23	10.0	Left	220.61	13.31	-0.84	0.00		0.0000	-0.1685	
	1	15.23	10.0	Right	220.61	11.79	0.84	0.00		0.0000	-0.1685	
	1	17.96	11.8	Left	252.75	11.79	-0.84	0.00		0.0000	-0.1957	
	1	17.96	11.8	Right	252.74	9.80	0.84	0.00		0.0000	-0.1957	
	1	27.56	18.1	Left	346.79	9.80	-0.84	0.00		0.0000	-0.2791	
	1	27.56	18.1	Right	343.01	7.69	1.46	0.00		0.0000	-0.2791	
	1	30.47	20.0	Left	365.40	7.69	-1.46	0.00		0.0000	-0.3002	
	1	30.47	20.0	Right	365.40	6.07	1.46	0.00		0.0000	-0.3002	
	1	37.15	24.4	Left	406.03	6.07	-1.46	0.00		0.0000	-0.3401	
	1	37.15	24.4	Right	406.03	3.77	1.46	0.00		0.0000	-0.3401	
	1	45.70	30.0	Left	438.23	3.77	-1.46	0.00		0.0000	-0.3719	
	1	45.70	30.0	Right	438.23	2.15	1.46	0.00		0.0000	-0.3719	
	1	46.75	30.7	Left	440.49	2.15	-1.46	0.00		0.0000	-0.3742	
	1	46.75	30.7	Right	442.60	1.64	1.11	0.00		0.0000	-0.3742	
	1	49.26	32.3	Left	446.49	1.17	-1.11	0.00		0.0000	-0.3783	
	1	49.26	32.3	Right	446.50	-0.28	1.11	0.00		0.0000	-0.3783	
		R 3D Engin eference set			3001							
											Clo	ose

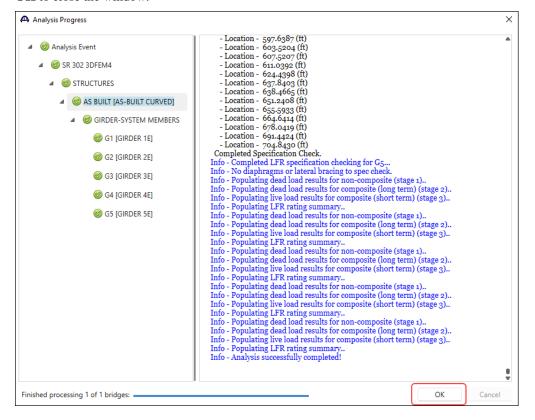
A A	analysis Re	sults - GIRDI	ER 1E								- 🗆	×
P	Print											
Repor	rt type:		C Lane	/Impact load	ing type	Display	/ Format					
Ratin	g Results	Summary	~ 0	As requeste		ed Single	rating leve	l per row	\sim			
1	Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane	
	HS 20-44	Lane	LFR	Inventory	50.96	1.132	372.28	3 - (0.0)	Design Flexure - Steel	As Requested	As Requested	-
	HS 20-44	Lane	LFR	Operating	85.10	1.891	372.28	3 - (0.0)	Design Flexure - Steel	As Requested	As Requested	
	HS 20-44	Axle Load	LFR	Inventory	105.46	2.344	372.28	3 - (0.0)	Design Flexure - Steel	As Requested	As Requested	
	HS 20-44	Axle Load	LFR	Operating	176.12	3.914	372.28	3 - (0.0)	Design Flexure - Steel	As Requested	As Requested	
AASH	TO LFR 3D	-	sion 7.5.0.3001									
	sis prefere	nce setting:	None									

Specification Check Detail – LFR Rating

From the **Results** group of the **DESIGN/RATE** ribbon, click on **Specification Check Detail** to view the LFR spec check results for member alternative **GIRDER 1E** as shown below.


Bridge Wo	rkspace - SR 302 3DFEM4 ANALYSIS REPORTS	? –	o x	
BRIDGE WORKSPACE	WORKSPACE TOOLS VIEW DESIGN/RATE REPORTING			
Analysis Analyze Analysis Settings Analyze Analysis Analysis	Tabular Specification Results Check Detail			
_				
Specification Checks for GIRDEI Properties Generate	Articles All articles ~ Format Bullet list ~			
pecification filter	Report			
Superstructure Component	Specification reference Limit State		Pass/Fail	
Stage 1	5.1 Flanges With One Web - General	N/A	General Comp.	
Image 2 Image 3	5.2.1 Compact Flanges	N/A N/A	General Comp. General Comp.	
GIRDER 1E	 5.2.2 Non-Compact Flanges 5.3 Partially Braced Tension Flanges 	N/A N/A	General Comp. General Comp.	
Span 1 - 0.00 ft.	 5.4 Continuously Braced Flanges 5.4 Continuously Braced Flanges 	N/A	General Comp.	
🚞 Span 1 - 4.49 ft.	 6.2.1 Unstiffened Webs - Bending Stresses 	N/A	General Comp.	
🚞 Span 1 - 8.98 ft.	6.2.2 Unstiffened Webs - Shear Stresses	N/A	General Comp.	
🚞 Span 1 - 13.47 ft.	6.3 Transversely Stiffened Webs	N/A	General Comp.	
🚞 Span 1 - 15.23 ft.	NA 6.3.1 Transversely Stiffened Webs - Bending Stresses	N/A	Not Applicable	
🚞 Span 1 - 17.96 ft.	NA 6.3.2 Transversely Stiffened - Shear Stresses	N/A	Not Applicable	
🚞 Span 1 - 22.76 ft.	NA 6.4.1 Longitudinally and Transversely Stiffened Webs - Bending Stresses	N/A	Not Applicable	
ig Span 1 - 27.56 ft.	NA 6.4.2 Longitudinally and Transversely Stiffened Webs - Shear Stresses	N/A	Not Applicable	
i Span 1 - 30.47 ft.	9.5 I-Girders Permanent Deflection	N/A	General Comp.	
i Span 1 - 32.35 ft.	Bending Stress Rating	N/A	Passed	
🚞 Span 1 - 37.15 ft. 📺 Span 1 - 41.95 ft.	Depth of web in compression in the Elastic Range (Dc)	N/A	General Comp.	
Span 1 - 41.95 ft.	 Depth of web in compression uncracked sections (Dc) 	N/A	General Comp.	
Span 1 - 45.70 ft.	 Flange Bending Stress Rating 	N/A	Passed	
Span 1 - 40.75 ft.	 Flange Overload Rating 	N/A	Passed	
🚞 Span 1 - 49 26 ft	· ····································	N/A	General Comp.	
i Span 1 - 49.26 ft. ■ Span 1 - 51.55 ft.	LED General Steel Elexural Results		activities of the	
ian Span 1 - 51.55 ft.	LFD General Steel Flexural Results IED Steel Flastic Section Properties		General Comp	
i Span 1 - 51.55 ft. i Span 1 - 56.35 ft.	LFD Steel Elastic Section Properties	N/A	General Comp. General Comp.	
i Span 1 - 51.55 ft. Span 1 - 56.35 ft. Span 1 - 56.35 ft.	LFD Steel Elastic Section Properties	N/A N/A	General Comp.	
i Span 1 - 51.55 ft. i Span 1 - 56.35 ft.	LFD Steel Elastic Section Properties	N/A	1 State 1 Stat	

LFR Rating from Bridge Explorer


Rating of a bridge can be performed from the **Bridge Explorer** as well. To do this, first the newly created bridge description needs to be saved. Click on the **Save** button from the **WORKSPACE** ribbon to save the bridge to the database.

Bridge Workspace - SR 302 3DFEM4	ANALYSIS	REPORTS	?	- 0	×
BRIDGE WORKSPACE TOOLS V	/IEW DESIGN/RATE	REPORTING			
validate Save	ose Doort Open New	Copy Paste Du	Þì 🎁 plicate Delete	Schematic	
Bridge		Manage			

Now from the **Bridge Explorer**, select the bridge, and click on the **Rate** button from the **RATE** ribbon (or right click and select **Rate**) as shown below.

This opens the **Analysis Settings** window. Apply the same settings as discussed in the LFR analysis section of this tutorial and click **OK** to initiate the rating process. This opens the **Analysis Progress** window listing details of the ongoing analysis. Once the analysis is complete, review this window for any warnings, or error messages and click **OK** to close the window.

Clicking **OK** on the window shown above closes the **Analysis Progress** window and opens the **Bridge Rating Results** window. Alternatively, this window can be opened by clicking on the **Rating Results** button from the **Results** group of the **RATE** ribbon or right clicking and selecting **Rating Results**

/st	em of units			.ane/impa	act loading	type	Display format:							
0	US customary	SI / m	etric	🔿 As re	equested (Detailed	Single rating level per row \lor							
	Bridge ID	Vehicle	Rating level	Rating factor	Rating method	Capacity (Ton)	Time stamp	Rated by	Impact	Lane	Up to date	DB	Vehicle path	
SI	R 302 3DFEM4	HS 20-44	Inventory	1.014	LFR	45.618	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested				Γ
s	R 302 3DFEM4	HS 20-44	Operating	1.693	LFR	76.182	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested	 Image: A set of the set of the			1

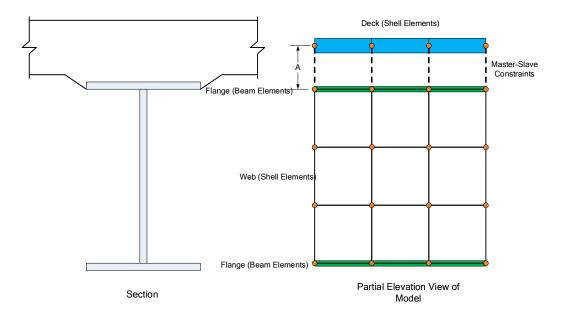
The 3D LFR results of the HS25 ratings are shown for all girders when run using the bridge explorer. Click on the **View structure rating results** button in this window to view the results per structure in the Structure Rating Results window. In this window, click on the **View member rating results** button to view rating factors per member. (See images below).

	sults												- 0	
ystem of units			Lane/impact	loading t	type	Displ	ay format:							
US customary	SI / m	etric	O As requ	lested	Detailed	d Sing	le rating level per row \sim							
Bridge id	Structure	Vehicle	Rating level	Rating factor	Rating method	Capacity (Ton)	Time stamp	Rated by	Impact	Lane	Up to date	DB	Vehicle path	
SR 302 3DFEM4	AS BUILT	HS 20-44	Inventory	1.014	LFR	45.618	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested	 Image: A set of the set of the			
SR 302 3DFEM4	AS BUILT	HS 20-44	Operating	1.693	LFR	76.182	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested	 Image: A set of the set of the			
Show up-to-date	results only													

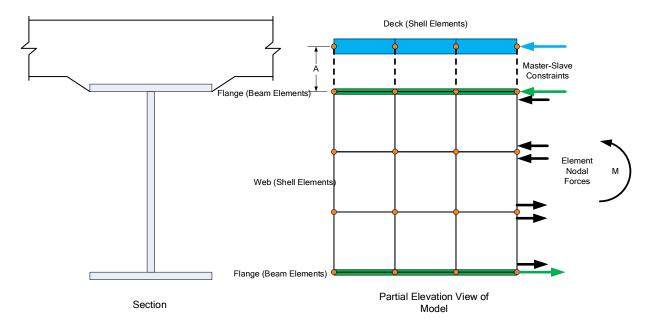
	SI / metric	O As rea	quested Rating	Detailed Rating		le rating lev	/el per row	v								
	cture Member	Vehicle	Rating	Rating												
DFEM4 AS BU			level		Rating method	Capacity (Ton)	Location (ft)	Time stamp	Rated by	Impact	Lane	Up to date	DB	Vehicle path	Distribution factor	
	UILT G1	HS 20-44	Inventory	1.132	LFR	50.958	372.278	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested					
DFEM4 AS BU	UILT G1	HS 20-44	Operating	1.891	LFR	85.100	372.278	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested					
DFEM4 AS BU	UILT G2	HS 20-44	Inventory	1.272	LFR	57.247	373.326	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested					
DFEM4 AS BU	UILT G2	HS 20-44	Operating	2.124	LFR	95.602	373.326	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested					
DFEM4 AS BU	UILT G3	HS 20-44	Inventory	1.370	LFR	61.656	374.373	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested					
DFEM4 AS BU	UILT G3	HS 20-44	Operating	2.288	LFR	102.965	374.373	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested					
DFEM4 AS BU	UILT G4	HS 20-44	Inventory	1.180	LFR	53.107	375.420	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested					
DFEM4 AS BU	UILT G4	HS 20-44	Operating	1.971	LFR	88.688	375.420	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested					
DFEM4 AS BU	UILT G5	HS 20-44	Inventory	1.014	LFR	45.618	376.467	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested					
	UILT G5	HS 20-44	Onemtine	1.693	100	76.182	376.467	Thursday, December 21, 2023 12:49:45 PM	In Column	A . D	As Requested					
	DFEM4 AS B DFEM4 AS B DFEM4 AS B DFEM4 AS B DFEM4 AS B DFEM4 AS B	AS BUILT G2 OFEM4 AS BUILT G2 OFEM4 AS BUILT G2 OFEM4 AS BUILT G3 OFEM4 AS BUILT G3 OFEM4 AS BUILT G4 OFEM4 AS BUILT G4	AS BUILT G2 HS 20-44 OFEM4 AS BUILT G2 HS 20-44 OFEM4 AS BUILT G3 HS 20-44 OFEM4 AS BUILT G4 HS 20-44 OFEM4 AS BUILT G4 HS 20-44 OFEM4 AS BUILT G4 HS 20-44	AS BUILT G2 HS 20-44 Inventory OFEM4 AS BUILT G2 HS 20-44 Inventory OFEM4 AS BUILT G2 HS 20-44 Operating OFEM4 AS BUILT G3 HS 20-44 Inventory OFEM4 AS BUILT G3 HS 20-44 Inventory OFEM4 AS BUILT G3 HS 20-44 Inventory OFEM4 AS BUILT G4 HS 20-44 Inventory OFEM4 AS BUILT G4 HS 20-44 Operating OFEM4 AS BUILT G4 HS 20-44 Operating	FEMA AS BUILT G2 HS 20-44 Inventory 1.272 OFEMA AS BUILT G2 HS 20-44 Inventory 1.272 OFEMA AS BUILT G2 HS 20-44 Operating 2.124 OFEMA AS BUILT G3 HS 20-44 Inventory 1.370 OFEMA AS BUILT G3 HS 20-44 Operating 2.288 OFEMA AS BUILT G4 HS 20-44 Inventory 1.180 OFEMA AS BUILT G4 HS 20-44 Operating 1.971	ASBUILT G2 HS 20-44 Inventory 1.272 LFR OFEMA AS BUILT G2 HS 20-44 Inventory 1.272 LFR OFEMA AS BUILT G2 HS 20-44 Operating 2.124 LFR OFEMA AS BUILT G3 HS 20-44 Inventory 1.370 LFR OFEMA AS BUILT G3 HS 20-44 Inventory 1.370 LFR OFEMA AS BUILT G3 HS 20-44 Inventory 1.180 LFR OFEMA AS BUILT G4 HS 20-44 Inventory 1.180 LFR OFEMA AS BUILT G4 HS 20-44 Operating 1.971 LFR OFEMA AS BUILT G4 HS 20-44 Operating 1.971 LFR	FEMA AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 DFEMA AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 DFEMA AS BUILT G2 HS 20-44 Operating 2.124 LFR 95.002 DFEMA AS BUILT G3 HS 20-44 Inventory 1.370 LFR 61.656 DFEMA AS BUILT G3 HS 20-44 Operating 2.288 LFR 102.955 DFEMA AS BUILT G4 HS 20-44 Inventory 1.180 LFR 53.107 DFEMA AS BUILT G4 HS 20-44 Operating 1.971 LFR 88.688 DFEMA AS BUILT G4 HS 20-44 Operating 1.971 LFR 88.688	AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 OFEMA AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 OFEMA AS BUILT G2 HS 20-44 Operating 2.124 LFR 95.602 373.326 OFEMA AS BUILT G3 HS 20-44 Inventory 1.370 LFR 61.656 374.373 OFEMA AS BUILT G3 HS 20-44 Operating 2.288 LFR 102.965 374.373 OFEMA AS BUILT G4 HS 20-44 Inventory 1.180 LFR 53.107 375.420 OFEMA AS BUILT G4 HS 20-44 Operating 1.971 LFR 88.688 375.420	AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM DFEM4 AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM DFEM4 AS BUILT G2 HS 20-44 Operating 2.124 LFR 95.602 373.326 Thursday, December 21, 2023 12:4945 PM DFEM4 AS BUILT G3 HS 20-44 Inventory 1.370 LFR 61.656 374.373 Thursday, December 21, 2023 12:4945 PM DFEM4 AS BUILT G3 HS 20-44 Operating 2.288 LFR 102.965 374.373 Thursday, December 21, 2023 12:4945 PM DFEM4 AS BUILT G4 HS 20-44 Inventory 1.180 LFR 53.107 375.420 Thursday, December 21, 2023 12:4945 PM DFEM4 AS BUILT G4 HS 20-44 Operating 1.971 LFR 88.688 375.420 Thursday, December 21, 2023 12:4945 PM DFEM4	ASBUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM bridge DFEM4 AS BUILT G2 HS 20-44 Operating 2.124 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM bridge DFEM4 AS BUILT G3 HS 20-44 Operating 2.124 LFR 95.602 373.326 Thursday, December 21, 2023 12:4945 PM bridge DFEM4 AS BUILT G3 HS 20-44 Inventory 1.370 LFR 61.656 374.373 Thursday, December 21, 2023 12:4945 PM bridge DFEM4 AS BUILT G3 HS 20-44 Operating 2.288 LFR 102.965 374.373 Thursday, December 21, 2023 12:4945 PM bridge DFEM4 AS BUILT G4 HS 20-44 Inventory 1.180 LFR 53.107 375.420 Thursday, December 21, 2023 12:4945 PM bridge DFEM4 AS BUILT G4 HS 20-44 Operating 1.971 LFR	ASBUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested DFEM4 AS BUILT G2 HS 20-44 Operating 2.124 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested DFEM4 AS BUILT G3 HS 20-44 Operating 2.124 LFR 95.602 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested DFEM4 AS BUILT G3 HS 20-44 Inventory 1.370 LFR 61.656 374.373 Thursday, December 21, 2023 12:4945 PM bridge As Requested DFEM4 AS BUILT G3 HS 20-44 Operating 2.288 LFR 102.965 374.373 Thursday, December 21, 2023 12:4945 PM bridge As Requested DFEM4 AS BUILT G4 HS 20-44 Inventory 1.180 LFR 53.107 375.420 Thursday, December 21, 2023 12:4945 PM bridge As Requested DFEM4 AS BUILT G4 HS 20-44 Inventory 1.88	ASBUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested ASBUILT G2 HS 20-44 Operating 2.124 LFR 95.602 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested ASBUILT G3 HS 20-44 Operating 2.124 LFR 95.602 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested ASBUILT G3 HS 20-44 Inventory 1.370 LFR 61656 374.373 Thursday, December 21, 2023 12:4945 PM bridge As Requested ASBUILT G3 HS 20-44 Operating 2.288 LFR 102.965 374.373 Thursday, December 21, 2023 12:4945 PM bridge As Requested ASBUILT G4 HS 20-44 Operating 2.288 LFR 102.965 374.373 Thursday, December 21, 2023 12:4945 PM bridge As Requested ASBUILT G4 HS 20-44 Inventory 1.180 LFR 53.107 375.402 Thursday, December 21, 2023 12:4945 PM <	AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested As Requested <th< td=""><td>AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:49:45 PM bridge As Requested Image: Control of Control</td><td>OFEMA AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested As Requested Image: Comparison of Comparison of</td><td>OFEMA AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.32 Thursday, December 21, 2023 12:4945 PM bridge As Requested As Requested C C C OFEMA AS BUILT G2 HS 20-44 Operating 2.124 LFR 95.602 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested As Requested C<!--</td--></td></th<>	AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:49:45 PM bridge As Requested Image: Control of Control	OFEMA AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested As Requested Image: Comparison of	OFEMA AS BUILT G2 HS 20-44 Inventory 1.272 LFR 57.247 373.32 Thursday, December 21, 2023 12:4945 PM bridge As Requested As Requested C C C OFEMA AS BUILT G2 HS 20-44 Operating 2.124 LFR 95.602 373.326 Thursday, December 21, 2023 12:4945 PM bridge As Requested As Requested C </td

The centrifugal force effect calculations can be found in the detailed influence surface loading files found in the following folder (of the Documents folder).

	D-D-75	• CR2022DEEN				LED 2D + C1		Cl Canada Data		
	are > BrDK/J	> SK3U23DFEIV	14 > AS-BUIL		AASHIU	LFK_3D > GI	> GIRDERTE >	S3 Span → Data	_	
Name									Da	
		ackward_3000000							12,	
		ackward_3000000		txt					12,	
	-	orward_0_Momen							12,	
		orward_0_polygor							12,	
	-	orward_0_Shear Y.							12,	
	-	orward_0_Y Reacti							12,	
	-	orward_0_Y Transl							12, 12,	
		orward_600000_M orward_600000_pc							12/	
		orward_600000_pt							12/	
		orward_600000_31							12/	
		orward_600000_Y							12	
	-	orward_1200000_N							12,	
INVOPR_	Axle Load Forw	ard_0_Moment Z.	txt - Notepad					_		×
	ormat View 20-44 - Trucl									
		< le Index: 2, Tra	vel Distance:	16.0, Inc	rement: 1.0	,				
Axle	Spacing	Distance First Ax								
	(ft)	(ft)								
1	0.00	0.00								
2 3	14.00 14.00	14.00 28.00								
Axle	Wheel		Lord	5000 B	lacement					
AXIE	wheel	Spacing (ft)	Load (kip)	Span P.	Idcement					
1	1	-3.000	5.00		AnySpan					
1 2	2	3.000	5.00 20.00		AnySpan AnySpan					
2	2	3.000	20.00		AnySpan					
3	1 2	-3.000 3.000	20.00		AnySpan AnySpan					
Total load										
Total lengt Maximum wid		00021, Right 3.0	0021, Total 6	.00021						
entrifugal F	Force and Supe	erelevation Data	:							
urve to left										
uperelevatio	on 3.50 (%)									
entrifugal f	force applied	6.00 (ft) above	the deck							
OI (0.000,-3	30.250) ft	Moment Z Influe	nce Surface							
		is (kip-ft), Sh								
Axle Whee	el X	Z	Surface Ordinate	Wheel Load	curve factor	Action	FE Element			
		t) (ft)	(unit)	(kip)	(unit)					
ront Axle Po 1		32,-27.000) L to 30 -24.00		5.16	1.0329	0.000	236			
otal = Max 0	0.000, Total :	= Min 0.000, Tot	al = 0.000							
		7,-27.064) L to								
1	1 5.9	94 -30.06 30 -24.06	-0.0004 0.0000	4.84 5.16	0.9671 1.0329	-0.002 0.000	236 236			
		= Min -0.002, To								
		57,-27.129) L to								
	1 11.9 2 12.0	93 -30.13 30 -24.13	-0.0008 -0.0001		0.9671 1.0329	-0.004 -0.001	237 237			
		= Min -0.004, To								
					1					
ront Axle Po		57 , -27.193) L to								
ront Axle Po		-30.19			0.9671	-0.004 -0.001	238 239			


3D Model

The modeling techniques used are the result of a survey of researchers and practitioners and review of several software packages.


Steel Members

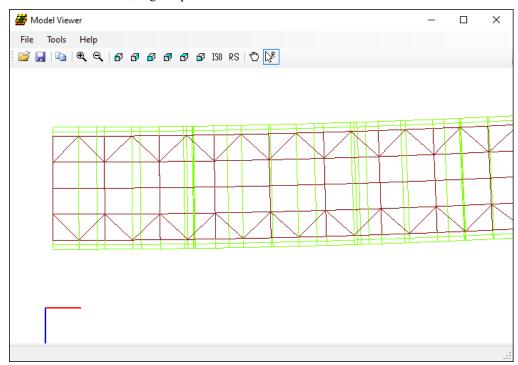
The model for a girder system structure with steel girders is comprised of the following:

- Shell elements for the deck
- Beam elements for the top and bottom flanges.
- Shell elements for the web. Web shell elements are divided into equal segments for web shells. The shell nodes may be adjusted to match diaphragm connections.
- For curved structures, curvature is represented by straight elements with small kinks at node points instead of curved elements.
- Master-slave constraints that connect the top flange to middle of deck. The distance 'A' as shown in figure below is measured from the center of the deck to the center of gravity of the top flange (including cover plates) at the start of G1. The same value is used everywhere for all girders to maintain horizontal elements.

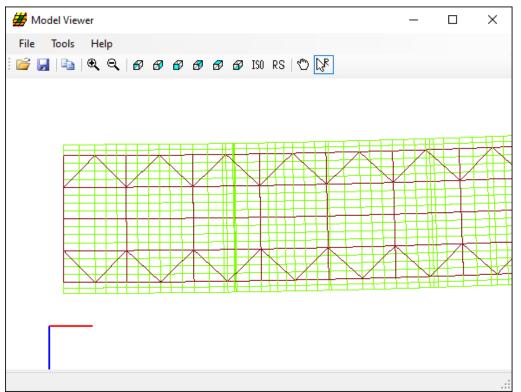
The moment at a beam cross section is calculated by solving the equilibrium equations at that section. This moment is then used in the specification check articles in the same way that it would for a line girder analysis.

Mesh Generation

The FE model created by BrDR will contain nodes at the following locations.


- Cross section property change points
- Span tenth points
- Support locations
- Diaphragm locations
- User defined points of interest

The user controls the mesh generation by the controls previously shown on the **Superstructure Definition**:


Analysis tab. The software creates the mesh following the number of elements selected between beams or within the web of a steel beam and the target aspect ratio entered by the user. The presence of nodes at the locations listed above may result in some elements falling outside the target aspect ratio.

The following plan views show how the mesh for this example can be controlled by the user.

1 shell between beams, target aspect ratio = 4

4 shells between beams, target aspect ratio = 2

Loading

The program computes all the dead loads acting on the beam including the self-weight of the beam, user defined appurtenances on the structure typical section, wearing surfaces, diaphragms, and user defined member loads. Composite dead loads are applied directly to the deck shells in the 3D model in their actual location. They are not distributed to the girders based on the choices available in the **Superstructure Loads** window as they are for a 2D line girder analysis.

				-	
Uniform temperature	Gradient temperature	Wind DI	distribution		
Stage 1 dead loa	d distribution				
O By tributary					
	se simple-beam analysis				
	se continuous-beam analysis				
By percent		·			
Girder	Percentage (%)				
> 1					
2					
3					
4					
By tributary	o all girders / area se simple-beam analysis				
	se continuous-beam analysi	s			
By transver	se continuous-beam analysi	s			
By transver By percent	se continuous-beam analysi age Percentage	S			
By transver By percent: Girder	se continuous-beam analysi age Percentage	s			
By transver By percent: Girder	se continuous-beam analysi age Percentage	s			
By transver By percent Girder	se continuous-beam analysi age Percentage	s			
By transver By percent > 1 2 3 4	se continuous-beam analysi age Percentage	5			

The Stage 3 FE model is loaded with unit loads at each deck node within the travelway to generate influence surfaces for the beam. Lane positions and combinations are determined based on the travelway, and the transverse loading parameters set by the user on the **Superstructure Definition: Analysis Settings** tab. The influence surfaces are then loaded with the selected vehicles to find the maximum live load effects.

Analysis and Results

LFR (HS-20 scaled to HS-25)

stem of units			.ane/impa	act loading	type	Display format:						
US customa	y 🔵 SI / m	etric	🔿 As re	equested (Detaile	d Single rating level per row ∨						
Bridge ID	Vehicle	Rating level	Rating factor	Rating method	Capacity (Ton)	Time stamp	Rated by	Impact	Lane	Up to date	DB	Vehicle path
SR 302 3DFEM	HS 20-44	Inventory	1.014	LFR	45.618	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested			
SR 302 3DFEM	HS 20-44	Operating	1.693	LFR	76.182	Thursday, December 21, 2023 12:49:45 PM	bridge	As Requested	As Requested			

Girder 1E

,a	Analysis Re	sults - GIRD	ER 1E								- 0	×
	Print Print											
Re	port type:		C Lane/	Impact load	ing type	Display	/ Format					
R	ating Results	Summary	~ O	As requeste	-	ed Single	rating leve	l per row	\sim			
	Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane	
	HS 20-44	Lane	LFR	Inventory	50.96	1.132	372.28	2 - (100.0)	Design Flexure - Steel	As Requested	As Request	ed 👘
	HS 20-44	Lane	LFR	Operating	85.10	1.891	372.28	2 - (100.0)	Design Flexure - Steel	As Requested	As Request	ed
	HS 20-44	Axle Load	LFR	Inventory	105.46	2.344	372.28	2 - (100.0)	Design Flexure - Steel	As Requested	As Request	ed
	HS 20-44	Axle Load	LFR	Operating	176.12	3.914	372.28	2 - (100.0)	Design Flexure - Steel	As Requested	As Request	ed
		-	sion 7.5.0.3001									
An	alysis prefere	nce setting:	None									
												Close

Girder 2E

A	Analysis Re	sults - GIRDI	ER 2E								- 0	×
	Print Print											
Rep	ort type:		- Lane/	Impact load	ing type	Display	Format					
Ra	ting Results	Summary	~ 0	As requeste		ed Single	rating leve	l per row	~			
	Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane	
	HS 20-44	Lane	LFR	Inventory	57.25	1.272	373.33	2 - (100.0)	Design Flexure - Steel	As Requested	As Requested	-
	HS 20-44	Lane	LFR	Operating	95.60	2.124	373.33	2 - (100.0)	Design Flexure - Steel	As Requested	As Requested	
	HS 20-44	Axle Load	LFR	Inventory	114.16	2.537	373.33	2 - (100.0)	Design Flexure - Steel	As Requested	As Requested	
	HS 20-44	Axle Load	LFR	Operating	190.63	4.236	49.26	1 - (32.2)	Design Flexure - Steel	As Requested	As Requested	
		-	sion 7.5.0.3001									
Ana	alysis prefere	nce setting:	None									
											C	Close

Girder 3E

A	Analysis Re	esults - GIRD	ER 3E								-		\times
	Print Print												
Rep	port type:		C Lane	Impact load	ing type	Display	Format						
Ra	ting Results	Summary	× 0	As requeste		led Single	rating leve	l per row	\sim				
	Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lan	e	
	HS 20-44	Lane	LFR	Inventory	61.66	1.370	374.37	2 - (100.0)	Design Flexure - Steel	As Requested	As Requ	ested	-
	HS 20-44	Lane	LFR	Operating	102.96	2.288	374.37	2 - (100.0)	Design Flexure - Steel	As Requested	As Requ	ested	
	HS 20-44	Axle Load	LFR	Inventory	119.14	2.648	49.26	1 - (32.2)	Design Flexure - Steel	As Requested	As Requ	ested	
	HS 20-44	Axle Load	LFR	Operating	198.75	4.417	49.26	1 - (32.2)	Design Flexure - Steel	As Requested	As Requ	ested	
L													
		-	sion 7.5.0.3001										
Ani	alysis prefere	ence setting:	None										
												Clo	se

Girder 4E

🗛 A	nalysis Re	sults - GIRD	ER 4E								-		\times
	rint												
Report	t type:		C Lane/	Impact load	ing type	Display	Format						
Rating	g Results	Summary	~ O	As requeste		ed Single	rating leve	l per row	~				
U	ive Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane	2	
F	IS 20-44	Lane	LFR	Inventory	53.11	1.180	375.42	2 - (100.0)	Design Flexure - Steel	As Requested	As Reque	ested	-
H	IS 20-44	Lane	LFR	Operating	88.69	1.971	375.42	2 - (100.0)	Design Flexure - Steel	As Requested	As Reque	ested	
H	IS 20-44	Axle Load	LFR	Inventory	105.68	2.348	375.42	2 - (100.0)	Design Flexure - Steel	As Requested	As Reque	ested	
H	IS 20-44	Axle Load	LFR	Operating	176.48	3.922	375.42	2 - (100.0)	Design Flexure - Steel	As Requested	As Reque	ested	
AASHT	TO LFR 30	Engine Ver	sion 7.5.0.3001										
Analys	is prefere	nce setting:	None										
												Clo	ose

Girder 5E

Analys	is Results	- GIRD	ER 5E								- 0	×
Print Print												
Report typ	:		- Lane/	Impact load	ing type	Display	Format					
Rating Res	ults Sum	mary	× 0	As requeste	-	ed Single	rating leve	l per row	\sim			
Live L	had	e Load ype	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane	
HS 20	-44	Lane	LFR	Inventory	45.62	1.014	376.47	2 - (100.0)	Design Flexure - Steel	As Requested	As Requested	4 A
HS 20	-44	Lane	LFR	Operating	76.18	1.693	376.47	2 - (100.0)	Design Flexure - Steel	As Requested	As Requested	1
HS 20	-44 Axle	e Load	LFR	Inventory	94.57	2.101	376.47	2 - (100.0)	Design Flexure - Steel	As Requested	As Requested	4
HS 20	-44 Axle	e Load	LFR	Operating	157.93	3.509	376.47	2 - (100.0)	Design Flexure - Steel	As Requested	As Requested	4
AASHTO LI Analysis pr	-		sion 7.5.0.3001 None									
												Close

LRFR (HL-93)

Run an LRFR 3D analysis with HL-93 (US) vehicle in Inventory and Operating from the Bridge Explorer. Below are the results for this analysis.

Save analysis results Analysis option: DL, LL and Spec-Checking Apply preference setting: None Refresh Temporary vehicles Vehicle summary
Apply preference setting: None Refresh Temporary vehicles Advanced
Refresh Temporary vehicles Advanced
Add to
>> End load rating Image: Legal load rating Image: Routine Image: Specialized hauling Image: Specialized haulin
2

US cu		SI / met			t loading t uested	Detailed	Display format: Single rating level per row						
Bridg	e ID	Vehicle	Rating level	Rating factor	Rating method	Capacity (Ton)	Time stamp	Rated by	Impact	Lane	Up to date	DB	Vehicle path
SR 302 3	DFEM4	HL-93 (US)	Inventory	0.903	LRFR	32.495	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested			
SR 302 3	DFEM4	HL-93 (US)	Operating	1.186	LRFR	42.692	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested	 Image: A set of the set of the		

	ystem of units US customary	SI / m		As reque				rating level per row							
	Bridge id	Structure	Vehicle	Rating level	Rating factor	Rating method	Capacity (Ton)	Time stamp	Rated by	Impact	Lane	Up to date	DB	Vehicle path	
>	SR 302 3DFEM4	AS BUILT	HL-93 (US)	Inventory	0.903	LRFR	32.495	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested				Γ
	SR 302 3DFEM4	AS BUILT	HL-93 (US)	Operating	1.186	LRFR	42.692	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested				

1	US customary	SI / m	etric	-	loading type			rating leve	l per row	~								
	Bridge id	Structure	Member	Vehicle	Rating level	Rating factor	Rating method	Capacity (Ton)	Location (ft)	Time stamp	Rated by	Impact	Lane	Up to date	DB	Vehicle path	Distribution factor	
•	SR 302 3DFEM4	AS BUILT	G1	HL-93 (US)	Inventory	1.068	LRFR	38.436	350.283	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested					
	SR 302 3DFEM4	AS BUILT	G1	HL-93 (US)	Operating	1.395	LRFR	50.235	350.283	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested	 Image: A set of the set of the				
	SR 302 3DFEM4	AS BUILT	G2	HL-93 (US)	Inventory	1.413	LRFR	50.862	351.269	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested					1
	SR 302 3DFEM4	AS BUILT	G2	HL-93 (US)	Operating	1.833	LRFR	65.998	351.269	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested					1
	SR 302 3DFEM4	AS BUILT	G3	HL-93 (US)	Inventory	1.518	LRFR	54.658	352.254	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested					1
	SR 302 3DFEM4	AS BUILT	G3	HL-93 (US)	Operating	1.970	LRFR	70.918	352.254	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested					1
	SR 302 3DFEM4	AS BUILT	G4	HL-93 (US)	Inventory	1.307	LRFR	47.060	353.240	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested					1
	SR 302 3DFEM4	AS BUILT	G4	HL-93 (US)	Operating	1.697	LRFR	61.089	353.240	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested					1
	SR 302 3DFEM4	AS BUILT	G5	HL-93 (US)	Inventory	0.903	LRFR	32.495	354.225	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested					1
	SR 302 3DFEM4	AS BUILT	G5	HL-93 (US)	Operating	1.186	LRFR	42.692	354.225	Friday, December 22, 2023 5:21:23 AM	bridge	As Requested	As Requested					1