AASHTOWare BrDR 7.5.0

Getting Started Tutorial BrDR Tutorial Workbook

Creating a New Folder Based on a List

Folders are used in the **Bridge Explorer** to help organize bridges. The following illustrates the folders in the **Bridge Explorer** tree as delivered with BrDR 7.5.0.

8				AASHTOW	are Bridge Des	ign and Rating						?	_	
BRIDGE EXPLORER BRIDGE FO	LDER RATE TOOLS VIEW													
New Open D Batch ~	Copy Paste Copy Remove Delete													
Bridge	Manage													
	E ^ Bridge ID	Bridge Name	District	County	Facility	Location	Route	Feature Intersected	Mile/Km Post (mi)	Owner	Maintainer	Admin Area	Length (ft)	Year Built
😑 📂 All Bridges	> 1 TrainingBridge1	Training Bridge 1(LRFD)	District 11	01 Abbeville	SR 0051	Pittsburgh	0051	SR 6060	17.00	State Highway Agency	State Highway Agency	Not Applicable	161.001	1999
🖻 🏓 Sample Bridges	2 TrainingBridge2	Training Bridge 2(LRFD)	Unknown	Unknown (P)	N/A	N/A	-1	N/A		Unknown (P)		Unknown		1996
📁 Deleted Bridges	3 TrainingBridge3	Training Bridge 3(LRFD)	District 11	01 Abbeville	1-79	Pittsburgh	0079	Ohio River	125.00	State Highway Agency	State Highway Agency	Unknown	455.000	1999
	4 PCITrainingBridge1	PCI TrainingBridge1(LFR)					-1					Unknown		
	5 PCITrainingBridge2	PCITrainingBridge2(LRFD)					-1					Unknown		
	6 PCITrainingBridge3	PCI TrainingBridge3(LFR)					-1					Unknown		
	7 PCITrainingBridge4	PCITrainingBridge4(LRFD)					-1					Unknown		
	8 PCITrainingBridge5	PCI TrainingBridge5(LFR)					-1					Unknown		
	9 PCITrainingBridge6	PCITrainingBridge6(LRFD)					-1					Unknown		
	10 Example7	Example 7 PS (LFR)					-1					Unknown		
	11 RCTrainingBridge1	RC Training Bridge1(LFR)					-1					Unknown		
	12 TimberTrainingBridge1	Timber Tr. Bridge1 (ASR)					-1					Unknown		
	13 FSys GFS TrainingBridge1	FloorSystem GFS Training Bridge 1	District 6	15 Colleton	NJ-Turnpike	NJCity	-1					Unknown		2002
	14 FSys FS TrainingBridge2	FloorSystem FS Training Bridge 2	District 11	333 Norfolk	1-95	NYC	-1			State Highway Agency	County Hwy Agency	Unknown		1998
	15 FSys GF TrainingBridge3	FloorSystem GF Training Bridge 3	District 7	06 Barnwell	1-95	ATL	-1			County Hwy Agency		Unknown		1998
	16 FLine GFS TrainingBridge1	FloorLine GFS Training Bridge 1	District 1	01 Abbeville	1-75	JAX	-1			State Highway Agency	State Highway Agency	Unknown		2001
	17 FLine FS TrainingBridge2	FloorLine FS Training Bridge 2	District 2	02 Aiken	1-75	GNV	-1			State Highway Agency	State Highway Agency	Unknown		2000
	18 FLine GF TrainingBridge3	FloorLine GF Training Bridge 3	District 1	01 Abbeville	1-95	NY	15		2200.00	County Hwy Agency	Unknov (P)	Unknown		1999
	19 TrussTrainingExample	Truss Training Example					5				NS			1930
	20 LRFD Substructure Example 1	LRFD Substructure Example 1												
	21 LRFD Substructure Example 2	LRFD Substructure Example 2			SR 4034	ERIE COUNTY	4034	FOUR MILE CREEK	8.12				1095.801	2002
	22 LRFD Substructure Example 3	LRFD Substructure Example 3												
	23 LRFD Substructure Example 4	LRFD Substructure Example 4 (NHI					-1						240.000	2004
	24 Visual Reference 1	Visual Reference 1	District 1	12 Chester	1-76	WAITSFIELD	1-76	MAD RIVER	1199.25	State Highway Agency	State Highway Agency	Unknown	168.000	1938
	25 Culvert Example 1	Culvert Example 1					STH60							
	26 Curved Guide Spec	Curved Guide Spec Example(LFR)					1							
	27 MultiCell Box Examples	Multi Cell Box Examples					100							2014
	28 Gusset Plate Example	Gusset Plate Example	District 1			Some Highway				State Highway Agency			67.900	2015
	29 Splice Example	Splice Example					-1			, j,			240.000	2004
	30 Simple DL-Cont LL-Splice	Simple DL Splice	Unknown	Unknown (P)	N/A	N/A	-1	N/A		Unknown (P)		Unknown		1996
	31 MetalCulvertExample1	MetalCulvertExample 1					1							

The All Bridges folder contains all the bridges shown in the list on the right side of the Bridge Explorer.

Folders can be created based on a list or on a filter. The list option will create a folder that contains only the bridges specified. The filter option will automatically add bridges that match the filter criteria when these bridges are added to the database. A red folder in the tree indicates that the folder is dynamic and is populated based on a filter. A yellow folder in the tree indicates that the folder is static and is populated based on a predefined list.

Use the following procedure to create a new folder using the list option.

Select **Folder** from the ribbon then click the **New** button.

Brg	ASHTOWare Bridge Design and Rating ? — 🗆	×
BRIDGE EXPLORER BRIDGE	FOLDER RATE TOOLS VIEW	
New Rename Properties Paste	Add to Delete Favorite	
Foider	Manage	

The following window is presented.

New Folder Properties -	
Folder name Description: Save options List Filter Filter Owner: (Public Owner: (Public Folder Owner: (Public Folder)	der)
Location text Location list Attribute text Attribute list Custom agency fields Advanced	
Location: Starts With V	Find now
Denter Charte Mith	Stop
Route: Starts with V	New search
mi Post between and	
	Help
	Save folder
	New folder
	Close

- Type the name of the new folder in the Folder name text box as Tutorial Bridges.
- Select the **Save options** as **List**.
- Select Folder ownership as Public.
- Select **Save folder** to create the folder.

An empty folder named **Tutorial Bridges** has been created in the **Bridge Explorer** tree.

Br	AASHT	DWare Bridge Design and Ra	ting ?	_		×
BRIDGE EXPLORER BRIDGE	FOLDER RATE	TOOLS VIEW				
New Rename Properties Paste	Add to Delete Favorite					
Folder	Manage					_
All Bridges All Bridges All Bridges Bridges Comparison Compar		Bridge ID	Bridge Name		District	•
			Total Bridge Count:	0	3	

Creating a New Bridge

Now add a new bridge to the folder just created.

Select Tutorial Bridges folder and from the Bridge tab in the ribbon click the New button.

🕰 New Bridge						>
Bridge ID: TutorialBri	dge1 N	Bl structure ID (8): Tutoria	alBridge1	Template Bridge compl	letely defined	Bridge Workspace View Superstructures Culverts Substructures
Description Desc	ription (cont'd) Al	ternatives Global refere	nce point Traffic	Custom agency fie	lds	
Name:	Tutorial Bridge 1			Year built:		
Description:	Example bridge ente	red as part of the tutoria				
Location:				Length:		ft
Facility carried (7):				Route number:	-1	
Feat. intersected (6):				Mi. post:		
Default units:	US Customary	~				
					\searrow	
Bridge associ	ation 🗸 BrR	BrD BrM				
					ОК	Apply Cancel

Enter the information shown above to describe the bridge and select **OK**. This will apply the new bridge data and close the window.

BrDR Tutorial Workbook

The Bridge Workspace tree after the bridge was created is shown below.

The tree is organized according to the definition of a bridge with data shared by many of the bridge components shown in the upper part of the tree. A bridge can be described by working from top to bottom within the tree.

Enter Bridge Components

Now enter components to be used by members of the bridge. All components to build the bridge are found here. Click on the **Components** tab to view the tree as shown below.

Bridge Works	pace - TutorialBric	lge1	ANALYSIS	REPORTS		? —	
BRIDGE WORKSPACE	RKSPACE TO	OLS VIEW	DESIGN/RATE	REPORTING			
Check Out 💣 F	Ve 🔏 Restore	Close Export	Refresh Open	New Copy Paste	Duplicate Delete Schemat	ic	
	Bridge			Manage			
Workspace	& X	Schematic		\$ ×	Report		* ×
Bridge Components Components Components Departmenances Beam Shapes Connectors	Design Settings						
		Analysis					\$ X

Enter Bridge Appurtenances

Appurtenances such as parapets, medians, and railings can be entered for the bridge. These items are useful when entering the total cross section for the structure including all the beams and the total out-to-out deck width. The appurtenances have dimensions and loads associated with them. Specify where the appurtenances are in the structure typical section. This will define where the travel lanes can exist, and the loads of the appurtenances will be applied to the structure. If only entering a single girder for the structure, the bridge appurtenances are not needed.

Click on the i to expand the tree for **Appurtenances**. Any of these four methods can be used to open windows in the tree. Double click on **Parapet**, right mouse click on **Parapet** and select **New**, select the **New** button from the **Manage** group or press **Ctrl+V**. The window shown below will open.

ф	Library Data: Appurtenances - P	arapet		_		×
	Name	Description	Library	Units		
>	Jersey Barrier	Standard New Jersey Ba	Agency Defined	US Customary		
						w
			ОК	Apply	Can	cel

Click the Copy from Library button and select the Jersey Barrier followed by OK.

The window is populated with data as shown below.

🕰 Bridge Ap	purtenances - Parapet	_		×
Name:	Jersey Barrier			
Description:	Standard New Jersey Barrier			
	All dimensions are in inches			
	Additional load: kip/ft Parapet un	it load:		
	0.15	kcf		
	12 eference 7 Boadway Net cen	ed properties — troid (from		
	Line United Surface reference 7,990	e line):		
	19 Total loa	ad:		
		kip/ft		
	Back Front 🖡 3			
	Copy from library OK	Apply	Canc	el

Select **OK** to close the **Bridge Appurtenances** – **Parapet** window and the data will be saved to memory and will appear in the **Components** tab.

BrDR Tutorial Workbook

Enter Beam Shapes

Steel, prestressed concrete and timber beam shapes can be added to the **Components** tab and then used throughout the structures.

Click on the $\textcircled{\oplus}$ to expand the tree for **Beam Shapes**. Expand the tree again to show the beam shapes under **Prestress**, **Steel**, and **Timber**.

To add a new steel I shape, use one of the four methods described above in **Enter Bridge Appurtenances** section. Using one of the methods, double click on **I Shapes** in the tree. The window shown below will open.

🕰 Steel I Shap	e	- 🗆 ×
Name:		Rolled shape type
Description:		W shape M shape S shape HP shape
Dimension	; Properties	
		in 3
	Copy to library Copy from library	OK Apply Cancel

Select the **Copy from Library** button to copy a standard steel I shape from the Library to the Bridge. The **Steel Shape Selection** window shown below will appear.

ø	s 4	teel Shape Selection					×
					Library O Se A	tandard gency defined	Unit system SI US
		Shape	Year	Depth (in)	Load (lb/ft)	Sxx (in^3)	
	>	W 4x13	2011	4.16	13	5.4326923	•
		W 4x13	1994	4.16	13	5.4326923	
		W 5x16	2011	5.01	16	8.5429142	
		W 5x16	1994	5.01	16	8.502994	
		W 5x19	2011	5.15	19	10.2135922	
		W 5x19	1994	5.15	19	10.1747573	-
						OK	Cancel

This window lists the steel shapes stored in the Library. To help narrow the search of shapes in the Library, hover over the **Shape** column header and double click on the **Filter** icon.

			Library St	andard gency defined	Unit syste
Shape 🗸	Year	Depth (in)	Load (lb/ft)	Sxx (in^3)	
W(4x13	2011	4.16	13	5.4326923	
W 4x13	1994	4.16	13	5.4326923	
W 5x16	2011	5.01	16	8.5429142	
W 5x16	1994	5.01	16	8.502994	
W 5x19	2011	5.15	19	10.2135922	
W 5x19	1994	5.15	19	10.1747573	

Click the tab for FILTER RULES, select Contains and enter W 30 in last field.

🗛 s	teel Shape Sel	lection				×
				Library S A	/ tandard Igency defined	Unit system SI US
	Shape	Year	Depth (in)	Load (lb/ft)	Sxx (in^3)	
>	W 30x90	FILTER RULES	FILTER VALUES		245.1743989	Î
	W 30x90	Contains			244.7457627	
	W 30x99				269.1399663	
	W 30x99	W 30		~	268.6868687	_
	Shape	6			OK	E / X

The shapes in the list will be filtered as shown below, only the shapes that begin with the **W 30** are shown. Clicking on a column header in the list will sort the shapes in the list based on that column. For example, searching for a shape with a section modulus of at least 500 in³, click on the **Sxx (in^3)** heading to view the shapes sorted in order from the smallest Sxx to largest Sxx value.

Scroll down and select W 30x211. Select OK to close the Library.

D, S	teel Shape Selection				Library O S	, tandard ıgency defined	Unit sys SI O US	tem
	Shape 🖓	Year	Depth (in)	Load	(lb/ft)	Sxx (in^3)		
	W 30x191	2011	30.7		191	599.3485342		
>	W 30x211	1994	30.94	3	211	665.8047835		
	W 30x211	2011	30.9		211	666.6666667		I
	W 30x235	1994	31.3		235	747.6038339		
	Shape Contains	W 30					= 0	×
						OK	Canc	el

🕰 Steel I Sha	pe	- 🗆 X
Name:	W 30x211	Rolled shape type
Description:	W 30x211 Imported from AISC Tables (1994)	W shape M shape S shape HP shape
Dimension	ns Properties	
	in 1.315 in 0.775 in Y 15.105 in Y 15.105 in Y 15.105 in Y Y 15.105 in Y Y Y Y Y Y Y Y Y Y Y Y Y	
	Copy to library Copy from library	OK Apply Cancel

Select **OK** to close the window and save the data to memory.

The Workspace Components tab now looks as follows.

Factors

LFR, LRFD and LRFR factors can be entered to override the system default Library Factors. One reason to enter such override factors may be that a bridge is composed of several structure definitions such as a main span structure and several approach span structures. Using more limiting load factors for the main span structure than those found in the standard AASHTO specifications can be done here. Creating a new set of LFR, LRFR or LRFD Factors and then applying those to the main span structure definition while using the standard AASHTO Factors for the approach span structures is possible.

To open the **System Defaults** window, select the **VIEW** tab from the **Bridge Explorer** ribbon and then click the **Configuration** button.

Once the **Configuration** window is open, double click on **System Defaults** near the bottom of the tree.

Br	CONFIGURATION	AASHTOWare Bridge Design and Rating	?	_	\times
BRIDGE EXPLORER	CONFIGURATION				
New Rename Delet Group Grou	te New Open Delete p User User	Close			
Ма	nage				
System Defaults	S				

Navigate to the **Specifications** tab. The default specification version and factors are shown above. New items will not be added in this tutorial. Select the **Close** button to close this window. If new factors are required, follow the same procedure used to create the **Bridge Materials** or **Beam Shapes**.

	Analysis module	type	Spec version	Factors	
X	AASHTO ASR	ASR	MBE 3rd 2023i, Std 17th 🛛 🗸	N/A 🗸	A
Д	AASHTO Culvert LFR	LFR	MBE 3rd 2023i, Std 17th 🛛 🗸	2002 AASHTO Std. Specifications 🗸 🗸	
Д	AASHTO Culvert LRFD	LRFD	LRFD 9th 🗸	2020 AASHTO LRFD Specifications	_
Д	AASHTO Culvert LRFR	LRFR	MBE 3rd 2023i, LRFD 9th 🗸	2018 (2022 Interim) AASHTO LRFR Spec. 🗸	_
Д	AASHTO LFR	LFR	MBE 3rd 2023i, Std 17th 🛛 🗸	2002 AASHTO Std. Specifications 🗸 🗸	
Д	AASHTO LRFD	LRFD	LRFD 9th \checkmark	2020 AASHTO LRFD Specifications	
Д	AASHTO LRFR	LRFR	MBE 3rd 2023i, LRFD 9th 🗸	2018 (2022 Interim) AASHTO LRFR Spec. 🗸	
Д	AASHTO Metal Culvert LFR	LFR	MBE 3rd 2023i, Std 17th 🛛 🗸	2002 AASHTO Std. Specifications 🗸 🗸	
Д	AASHTO Metal Culvert LRFR	LRFR	MBE 3rd 2023i, LRFD 9th 🗸	2018 (2022 Interim) AASHTO LRFR Spec. 🗸	
Д	AASHTO Timber ASR	ASR	MBE 3rd 2023i, Std 17th 🛛 🗸	N/A 🗸	
Д	AASHTO Timber LRFR	LRFR	MBE 3rd 2023i, LRFD 9th $$	2018 (2022 Interim) AASHTO LRFR Spec. $$	
Д	AASHTO Truss LFR	LFR	MBE 3rd 2023i, Std 17th 🛛 🗸	2002 AASHTO Std. Specifications $\qquad \qquad \lor$	
Д	AASHTO Truss LRFR	LRFR	MBE 3rd 2023i, LRFD 9th $~~$ \sim	2018 (2022 Interim) AASHTO LRFR Spec. $$	
N	Madero ASR	ASR	MCEB 1st, Std 16th 🛛 🗸	N/A 🗸	

Navigate back to the bridge. To add a new concrete material, open the **Materials** tree and use one of the four methods described above in **Enter Bridge Appurtenances** section. Using one of the methods, double click on **Concrete** in the tree. The window shown below will open.

🗛 Bridge Materials - Concrete		- 🗆 X
Name:		
Description:		
Compressive strength at 28 days (f'c):	ksi
Initial compressive strength (f'ci):		ksi
Composition of concrete:	Normal	
Density (for dead loads):		kcf
Density (for modulus of elasticity):		kcf
Poisson's ratio:	0.2	
Coefficient of thermal expansion (α) :	0.000006	1/F
Splitting tensile strength (fct):		ksi
LRFD Maximum aggregate size:		in
Comput	e	
Std modulus of elasticity (Ec):		ksi
LRFD modulus of elasticity (Ec):		ksi
Std initial modulus of elasticity:		ksi
LRFD initial modulus of elasticity:		ksi
Std modulus of rupture:		ksi
LRFD modulus of rupture:		ksi
Shear factor:	1	
Сору	to library Cop	y from library OK Apply Cancel

The **Materials Library** contains standard materials and their material properties to minimize the amount of data to be entered.

To select Concrete Material from the Library, click the **Copy from library** button. The following **Library Data: Material - Concrete** window shown below will open.

A	Library Data: N	laterials - Concrete												_		\times
	Name	Description	Library	Units	f'c	f'ci	alpha	DL density	Modulus density	Std modulus of elasticity	LRFD modulus of elasticity	Poisson's ratio	Std Modulus of rupture	LRFD Modulus of rupture		
	Class A	Class A cement concrete	Standard	SI / Metric	28		0.0000108	2400	2320	25426.0823	27730.359798	0.2		3.333		-
>	Class A (US)	Class A cement concrete	Standard	US Customary	4.0		0.000006	0.15	0.145	3644.149254	3986.548657	0.2		0.479857		
	Class B	Class B cement concrete	Standard	SI / Metric	17		0.0000108	2400	2320	19811.8437	23520.226422	0.2		2.5976		
	Class B (US)	Class B cement concrete	Standard	US Customary	2.4		0.000006	0.15	0.145	2822.746208	3368.115517	0.2		0.371688		
	Class C	Class C cement concrete	Standard	SI / Metric	28		0.0000108	2400	2320	25426.0823	27730.359798	0.2		3.333		
	Class C (US)	Class C cement concrete	Standard	US Customary	4.0		0.000006	0.15	0.145	3644.149254	3986.54846	0.2		0.479857		
													ОК	Apply	Can	cel
												~				

Select the highlighted concrete material and press **OK** and the window gets populated as shown below.

Name:	Class A (US)						
Description:	Class A cement concrete	e					
Compressive	strength at 28 days (f'c):	4.0000006	ksi				
nitial compre	essive strength (f'ci):		ksi				
Composition	of concrete:	Normal ~					
Density (for o	lead loads):	0.15	kcf				
Density (for r	nodulus of elasticity):	0.145	kcf				
Poisson's rati	0:	0.2					
Coefficient of	f thermal expansion (α):	0.000006	1/F				
Splitting tens	ile strength (fct):		ksi				
.RFD Maxim	um aggregate size:		in				
	Compute						
td modulus	of elasticity (Ec):	3644.149254	ksi				
RFD modulu	is of elasticity (Ec):	3986.548657	ksi	N			
td initial mo	dulus of elasticity:		ksi	3			
.RFD initial n	nodulus of elasticity:		ksi				
Std modulus	of rupture:		ksi				
LRFD modulu	is of rupture:	0.479857	ksi				
Shear factor:		1					

Click **OK** to save the material and close the window.

The same technique can be used to enter reinforcing steel and structural steel material. The **Reinforcing Steel** and **Structural Steel** material windows are shown below.

Reinforcing Steel

G	Name rade 300	Description	Library	Units	Fy	Fu	Es
G	irade 300	300 MPa reinforcing steel					
G		soo in a removing steel	Standard	SI / Metric	300	500	199948
	rade 350	350 MPa reinforcing steel (rail-steel)	Standard	SI / Metric	350	550	199948
G	rade 40	40 ksi reinforcing steel	Standard	US Customary	40.0	70.00	29000.0
G	irade 400	400 MPa reinforcing steel	Standard	SI / Metric	400	600	199948
G	rade 50	50 ksi reinforcing steel (rail-steel)	Standard	US Customary	50.0	80.00	29000.0
G	rade 500	500 MPa reinforcing steel	Standard	SI / Metric	500	700	199948
> G	rade 60	60 ksi reinforcing steel	Standard	US Customary	60.0	90.00	29000.0
G	rade 75	75 ksi reinforcing steel	Standard	US Customary	75.0	100.0	29000.0
St	tructural or unknown grade prior 1954	Structural or unknown grade prior to 1954	Standard	US Customary	33.0	60.00	29000.0

🕰 Bridge Mat	erials - Reinforc	ing Steel				_		х
Name:	Grade 60							
Description:	60 ksi reinforci	ng steel						
Material prop	perties							
Specified yiel	d strength (fy):	60.000087	ksi					
Modulus of e	elasticity (Es):	29000.004206	ksi					
Ultimate stre	ngth (Fu):	90.0000131	ksi					
Type Plain Epo: Galv	n xy vanized							
	Copy to	o library Copy	from library	OK	Apply		Cancel	

Structural Steel

Д	Library Data: Materials - Structural Steel			- [) ×
	Name	Description	Library	Units	F
	Grade 1000V <= 2.5	AASHTO M270 Grade T00W up to 2.5 thick, inclusive	Stangarg	US Customary	100.00
	Grade 250	AASHTO M270M Grade 250	Standard	SI / Metric	
	Grade 345	AASHTO M270M Grade 345	Standard	SI / Metric	
	Grade 345W	AASHTO M270M Grade 345W	Standard	SI / Metric	
	Grade 36	AASHTO M270 Grade 36	Standard	US Customary	36.00
	Grade 485W	AASHTO M270M Grade 485W	Standard	SI / Metric	
>	Grade 50	AASHTO M270 Grade 50	Standard	US Customary	50.00
	Grade 50W	AASHTO M270 Grade 50W	Standard	US Customary	50.00
	Grade 690 - > 65 to 100 incl.	AASHTO M270M - over 65 to 100 mm thick, inclusive	Standard	SI / Metric	
	Grade 690 <= 65 mm	AASHTO M270M Grade 690 up to 65 mm thick, inclusive	Standard	SI / Metric	
	4				Þ
		Ly C	ОК	Apply	Cancel

🕰 Bridge Mat	erials - Structural Steel					_		×
Name:	Grade 50							
Description:	AASHTO M270 Grade 50							
Material prop	perties							
Specified mir	nimum yield strength (Fy):	50.000073	ksi					
Specified mir	nimum tensile strength (Fu):	65.0000094	ksi					
Coefficient of	f thermal expansion:	0.0000065	1/F					
Density:		0.49	kcf					
Modulus of e	lasticity (E):	29000.004206	ksi					
	Copy to library	Copy from libra	ry	OK	Apply	/	Cance	el
				Ŷ				

Creating a New Superstructure Definition Using the Wizard

A wizard is available to help quickly create a new structure definition. This wizard will create the superstructure **definition** including all members and member alternatives based on the data entered. The wizard is primarily geared to a new design, with input for LRFD data not LFR data. If the wizard is used to create a new structure definition that needs to be analyzed with LFR several windows would have to be visited.

Use the wizard to create the following structure definition:

- 50'-0" single span, composite
- 15 psf stay-in-place forms

To access the wizard, double click on the **SUPERSTRUCTURE DEFINITIONS** node in the **Bridge Workspace** tree and click the **Superstructure definition Wizard** button.

The following window will appear.

A Superstructure Definition Wiz	zard - Supers	tructure Definition						×
Superstructure definition name:			1	Superstruc	ture defi	nition type		
Material type:	Steel	~	٦L (O Girde	r system			
Girder type:	Rolled	~		Girde	r line			
Number of spans:	1 🗘		_	Girder pro	perty inp	ut method		
Skew:		Degrees		O Schee	dule base	d		
Number of girders:	1 🗘			Cross	-section	based		
Girder spacing:		ft	Ent	er span lei	ngths:			
Left overhang:		ft		Span	Span			
Right overhang:		ft		no.	length (ft)			
LRFD analysis module:	AASHTO LR	RFD ~	>	1				
LFR analysis module:	AASHTO Cu	ulvert LFR \sim				1		
Girder system member gener	ation							
O Create each member						v		
Link members								
						N		
						3		
						Back	Next >	Cancel

Enter the following information into the wizard.

A Superstructure Definition Wiz	zard - Supers	tructure Definitio	on					×
Superstructure definition name:	Single Spa	n Structure		Superstruc	ture defir	ition type		
Material type:	Steel		\sim	O Girde	er system			
Girder type:	Rolled		~	Girde	er line			
Number of spans:	1 🗘			Girder pro	perty inpu	it method		
Skew:	0	Degrees		O Sche	dule base	d		
Number of girders:	4 🗘			Cross	s-section b	based		
Girder spacing:	8	ft	En	ter span le	ngths:			
Left overhang:	3	ft		Snan	Span			
Right overhang:	3	ft		no.	length (ft)			
LRFD analysis module:	AASHTO LF	RFD	× ,	1	50			
LFR analysis module:	AASHTO LF	R	~			1		
Girder system member genera	ation							
O Create each member						v		
Link members								
						Ν		
						63		
					<	Back	Next >	Cancel

The Superstructure definition type is selected as **Girder system** since the entire typical section of the structure including all four girders will be entered in this example. If only one of the girders is required, select the **Girder line** Superstructure definition type. The **Girder property input method** is selected as **Schedule based** since the components of the members will be described individually. The wizard will create individual schedules for each member component such as the rolled shape and the concrete deck. This method gives more flexibility, member components later if needed. If the **cross-section based** input method is used, the wizard would create a cross section based on input and apply that cross section to a range over the length of the member. **Girder system member generation** is selected as **Create each member**. Linking of a member to another member should only be done if all member properties, loads, spacing, and distribution factors are identical.

A Superstructure Defin	nition Wizard - Rolled Shape	2	×
Shape:	W 30x211 ~		
Material:	Grade 50 v		
Composite			
O Composite thro	oughout		
Partial composi	ite (positive moment regions	nly)	
		<i>₽</i>	
		< Back Next > Cancel	
			<u> </u>

Select the Next button to advance to the next screen in the wizard. Enter the following information into that screen.

If the steel shape or structural steel material defined at the bridge level didn't exist, use the "**-Copy from Library**-" selection in the list boxes in this window to copy a shape or material from the **Library** as done earlier.

C.1. (1. NI41. (1.)		·	E. ((1 C. 11	· · · · · · · · · · · · · · · · · · ·	
Select the Next buttor	to advance to the net	kt wizard screen.	Enter the following	g information into that s	creen.

eck properties						
Actual deck thickness:	8	in	Deck concrete:	Class A (US)	~	
tructural deck thickness:	7.5	in	Deck reinforcement:	Grade 60	~	
ffective flange width (LRFD):	96	in				
launch type						
	I]	J	-l <u>-</u>	_	
				T T	Ta	
	<u></u> .					
launch depth D: 3	in					
				2		

The **effective slab width** entered above will be applied to all the girders in this structure definition. It is not the correct effective slab width for the exterior girders so the **Deck Profile** windows will be visited later to revise this value. The **Haunch Profile** windows will also need to be visited to revise the haunch dimensions for the exterior girders.

Select the Next button to advance to the next wizard screen. No information needs to be ent	ered here.
---	------------

	Span She	ar I	Moment	Defle	ection				
,	1	Т							
fo	rm loads								
ifo	orm loads							land	
ifo	orm loads Load case n	ame	Тур	e	Stage		Span	Load (kip/ft)	
ifo >	orm loads Load case n DC1	ame	Typ D,DC		Stage Non-composite (Stage 1)	~	Span All Spans N	Load (kip/ft)	
ifo	Load case n DC1 DC2	ame	D,DC D,DC	e	Stage Non-composite (Stage 1) Composite (long term) (Stage 2)	~	Span All Spans All Spans	Load (kip/ft)	
ifo	Drm loads Load case n DC1 DC2 DW	ame	Typ D,DC D,DC D,DW		Stage Non-composite (Stage 1) Composite (long term) (Stage 2) Composite (long term) (Stage 2)	× × ×	Span All Spans All Spans All Spans	Load (kip/ft)	
ifo	DC1 DC2 DW	ame	D,DC D,DC D,DW	e /	Stage Non-composite (Stage 1) Composite (long term) (Stage 2) Composite (long term) (Stage 2)	> > >	Span All Spans All Spans All Spans	Load (kip/ft)	
ifo	DC1 DC2 DW	ame	Typ D,DC D,DC D,DW		Stage Non-composite (Stage 1) Composite (long term) (Stage 2) Composite (long term) (Stage 2)	× × ×	Span All Spans All Spans All Spans	Load (kip/ft)	
ifo	DC1 DC2 DW	ame	Typ D,DC D,DC D,DW	e \	Stage Non-composite (Stage 1) Composite (long term) (Stage 2) Composite (long term) (Stage 2)	× × ×	Span All Spans All Spans All Spans	Load (kip/ft)	
ifo	DC1 DC2 DW	ame	Typ D,DC D,DC D,DW		Stage Non-composite (Stage 1) Composite (long term) (Stage 2) Composite (long term) (Stage 2)	× × ×	Span All Spans All Spans All Spans	Load (kip/ft)	

Select the Next button to advance to the next wizard screen. Enter the following information into that screen.

	<u> </u>	η		L L	ין ז		Л	4 4		<u>}_</u>	л		
	Γ.	<u>Л</u>											
ppu	rtenances -												
	Appurtena	ance	Name		Load	case	Meas	ure to	Edge of dist. mea fror	deck isured n	Distance at start (ft)	Distance at end (ft)	Fron [:] orien
	Left Exterio	or J	lersey Barrier	~	DC2	~	Back	~	Left Edge	\sim	0	0	Right
>	Right Exte	rior J	ersey Barrier	~	DC2	~	Back	~	Right Edg	ge ∨	0	0	Left
	۰			_		_	_						•
idev	valks										6		
	Sidewalk	Width (ft)	n Thickness (ft)	Con	crete n	nateria	al Lo	ad case	Measur	e to	Edge of deck dist. measured from	Distance at start (ft)	Dist.

Select the **Finish** button to close this window and create the new structure definition. The new **Bridge Workspace** tree is shown below partially expanded.

Now that a structure definition has been created, the following windows may need to be visited to revise or enter additional data for both LFR and LRFD analysis:

Steel Bridge:

- Framing Plan Detail: Enter the diaphragm locations.
- Structure Typical Section: Enter wearing surface data.
- Bearing Stiffener Definition: Enter a bearing stiffener definition.

- Deck Profile and Haunch Profile windows (for exterior girders): Enter the appropriate data for exterior girders.
- Lateral Support: Enter the lateral support for the top flange.
- Stiffener Ranges: Revise or enter the transverse stiffener ranges.
- Bearing Stiffener Ranges: Assign bearing stiffener definitions to locations of bearing stiffeners.

Prestressed Concrete Bridge:

- Framing Plan Detail: Enter the diaphragm locations.
- Structure Typical Section: Enter wearing surface data.
- Shear Reinforcement Definitions: Enter a shear reinforcement definition.
- Stress Limit Sets: Enter the final allowable slab compression.
- Deck Profile and Haunch Profile windows (for exterior girders): Enter the appropriate data for exterior girders.
- Strand Layout: Enter the strand layouts for the prestressed beams.
- Interior Diaphragms: Enter the interior diaphragms for prestressed box beams.
- Shear Reinforcement Ranges: Enter the shear reinforcement ranges.

The following windows may need to be visited to enter additional data for an LFR analysis:

- Stress Limit Sets: Enter the LFR allowable stresses for a prestressed concrete bridge.
- Live Load Distribution: Enter the standard (LFR) distribution factors.
- Deck Profile: Enter the standard (LFR) effective slab width.

Structure Impact / Dynamic Load Allowance

Impact and Dynamic Load Allowance can be specified at two levels, **Superstructure Definition** and **Member Alternative** levels. Impact or dynamic allowance entered at the Structure level will be used for all Member Alternatives in that structure unless a different impact is entered for a specific Member Alternative.

Open the **Impact / Dynamic Load Allowance** window for the superstructure by double clicking on the **Impact/Dynamic Load Allowance** node in the **Bridge Workspace** tree or a right click to open a window in the tree. The following window will appear. The word **Structure Definition** will appear in the title to indicate that this is at the Superstructure level.

AASHTO 3.8.1, choose the imp	pact factor to 50	be used:
Standard AASHTO impact:	L + 125	
Modified impact:	0	times AASHTO impact
Constant impact override:	0	%
RFD dynamic load allowance		
Fatigue and fracture limit states:	15	%
All other limit states:	33	%

The default values shown are acceptable for this example, so click the **OK** button to close the window. These values will be used for all Member Alternatives in this bridge unless they are overridden at the Member Alternative level.

Examples of Alternatives Within BrDR

BrDR provides the powerful ability to model different alternatives for bridges, structures, and members. Entering different alternatives can be useful when comparing various alternatives for a preliminary study and when evaluating the benefits of various rehabilitation alternatives. Before exploring this capability, let's review some terminology used in BrDR.

A **bridge** is a structure or a group of structures providing continuity of a highway across an entire crossing. A **bridge alternative** is a configuration of superstructure and substructure units making up the physical definition of a bridge. BrDR allows to define more than one bridge alternative for the same bridge, a feature useful for comparing design alternatives. For example, you can have a one-span alternative and a two-span alternative for the same bridge.

A **structure** is one or more spans that have the same structural type (such as girder, truss, or frame) and for which a load acting anywhere within the structure affects all spans within that structure. Each bridge alternative may contain one or more structures. The structure screen provides location and identification information about the structure, with one or more structure alternatives providing the assignment to structure definitions.

A **structure alternative** is a means of relating a structure definition to a structure, which serves the purpose of relating a physical description of a structure (the structure definition) to one or more positions in the bridge where the structure definition is used (the structure). This allows a structure to be described just once and used in several different places in a bridge. It also allows more than one structure definition to be evaluated as an alternative for any given structure.

A structure definition describes the physical characteristics of a structure.

A **member** is a component of a structure definition, such as a girder. The member screen stores the location and identification information about the member and allows for the assignment of a member alternative to the member. A **member alternative** is a configuration of materials and dimensions making up the physical definition of a member. For the same member, for example, one member alternative may be a transversely stiffened steel plate girder and another member alternative may be a steel plate girder with a slightly thicker web that does not require transverse stiffeners.

BrDR Tutorial Workbook

Alternative Examples for a Preliminary Study

The following tree shows the structure of the Bridge Workspace related to alternatives.

Bridge Bridge Alternative Structure Structure Alternative Structure Definition

For this example, a preliminary study is being performed for a 350' bridge crossing. The following bridge alternatives are being considered.

Bridge Alternative #1 consists of three structures. Structure #1 is a 2 span structure. Structure #2 and Structure #3 are each single span structures. Structure Definition #1 is a 2 span, 4 girder system. Structure Definition #1 is assigned to Structure Alternative #1 which itself is assigned to Structure #1.

Structure Definition #2 is a single span, 5 girder system. Structure Definition #2 is assigned to Structure Alternative #2 which itself is assigned to Structure #2.

Structure Definition #3 is a single span, 4 girder system. Structure Definition #3 is assigned to Structure Alternative #3 which itself is assigned to Structure #3.

The following Bridge Workspace results from these assignments:

Bridge Alternative #2 is as follows:

Bridge Alternative #2 consists of two structures. Structure #1 and Structure #2 are both single span structures. Structure Definition #2 is a single span, 5 girder system which was defined earlier. Structure Definition #2 is assigned to Structure Alternative #1 which itself is assigned to both Structure #1 and Structure #2.

The **Bridge Workspace** is now as follows:

Member alternatives can now be defined for Member G2 in Structure Definition #1.

