
AASHTOWare BrDR 7.5.0 CVT1 - Culvert Tutorial CVT1 - Two Cell RC Box Culvert Example (and Culvert DesignTool)

### **Topics** Covered

- Enter culvert description
- Perform AASHTO Culvert LRFR analysis and review results
- Culvert Design Tool



ALL LONGITUDINAL BARS NOT IDENTIFIED ARE 8409 AS SHOWN.

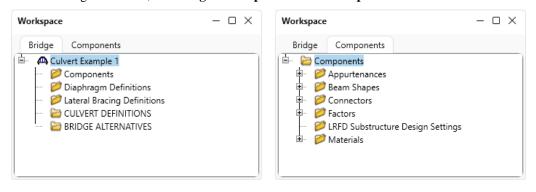
|                   | MARK | NUMBER<br>REQ'D.   | LENGTH                     | BENT                     | CUTTING<br>DIAG. | LOCATION                                                                                        |
|-------------------|------|--------------------|----------------------------|--------------------------|------------------|-------------------------------------------------------------------------------------------------|
| Δ                 | B801 | 416                | 11 -2                      | 3-7                      | NO               | CORNERS                                                                                         |
| Δ                 | B802 | 400                | 7-4                        | 3-7                      | NO               | CORNERS                                                                                         |
| Δ                 | B903 | 76                 | 9-0                        | NO                       | NO               | BOTTOM SLAB TRANS.                                                                              |
| Δ                 | B904 | 72                 | 4-10                       | NO                       | NO               | BOTTOM SLAB TRANS.                                                                              |
| Δ                 | B505 | 124                | 25-10                      | NO                       | NO               | BOTTOM SLAB TRANS.                                                                              |
| Δ                 | B506 | 240                | 8-2                        | NO                       | NO               | BOTTOM SLAB TRANS.                                                                              |
|                   | B507 | 296                | 2-0                        | NO                       | NO               | WALLS-DOWELS VERT.                                                                              |
|                   | B408 | 136                | 2-0                        | NO                       | NO               | WALLS-DOWELS VERT.                                                                              |
|                   | B409 | 320                | 33-0                       | NO                       | NO               | TOP&BOTTOM SLAB & WALL                                                                          |
|                   | B510 | 296                | 12 - 4                     | NO                       | NO               | WALLS VERT.                                                                                     |
|                   | B411 | 136                | 13 - 4                     | 1-0                      | NO               | WALLS VERT.                                                                                     |
| Δ                 | B612 | 84                 | 25-10                      | NO                       | NO               | TOP SLAB TRANS.                                                                                 |
| $\mathbf{\Delta}$ | B613 | 160                | 8-2                        | NO                       | NO               | TOP SLAB TRANS.                                                                                 |
| Δ                 | B714 | 116                | 9-0                        | NO                       | NO               | TOP SLAB TRANS.                                                                                 |
| $\Delta$          | B715 | 112                | 4-10                       | NO                       | NO               | TOP SLAB TRANS.                                                                                 |
|                   | B416 | 64                 | 33-0                       | NO                       | NO               | TOP SLAB LONGIT.                                                                                |
|                   | B417 | 4                  | 26-4                       | NO                       | NO               | HEADERS HORIZ.                                                                                  |
|                   | B318 | 72                 | 3-1                        | YES                      | NO               | HEADER STIRRUPS VERT.                                                                           |
|                   | B519 | 267                | 4-0                        | NO                       | NO               | VERT.CONST.JOINT                                                                                |
|                   |      |                    |                            |                          |                  |                                                                                                 |
|                   |      |                    |                            |                          |                  |                                                                                                 |
|                   | B50  | 5 BARS<br>8 BARS N | MAY BE<br>MAY BE<br>MAY BE | SUBST<br>SUBST<br>SUBSTI | ITUTED F         | OR B802 BARS<br>OR B904 BARS<br>OR PAIRS OF B506 BARS<br>OR PAIRS OF B613 BARS<br>OR B715 BARS. |

BUL OF BADE

I

Material Properties:

- Culvert concrete Class A, f'c = 3.5 ksi
- Reinforcing steel Grade 60, Fy = 60 ksi
- Soil 120 pcf,  $\phi = 30 \text{ deg}$


### Enter culvert description

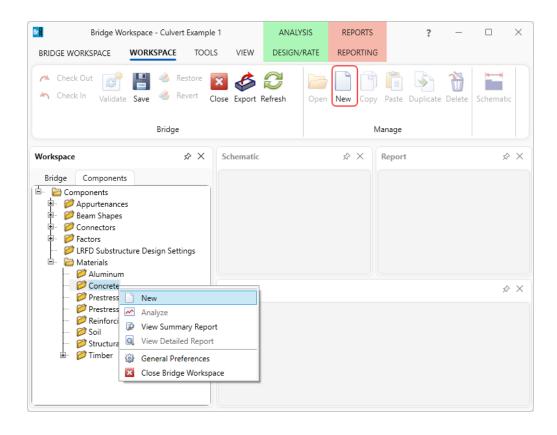
| idge ID: Culvert Exa   | ample 1           | NBI structure  | ID (8): CulvertExample1 |         | Template<br>Bridge compl | etely defined | Bridge Workspace View Superstructures Culverts Substructures |
|------------------------|-------------------|----------------|-------------------------|---------|--------------------------|---------------|--------------------------------------------------------------|
| Description Desc       | ription (cont'd)  | Alternatives   | Global reference point  | Traffic | Custom agency fie        | lds           |                                                              |
| Name:                  | Culvert Example   | 1              |                         |         | Year built:              |               |                                                              |
| Description:           | Two-cell reinford | ed concrete bo | x culvert example       |         |                          |               |                                                              |
| Location:              |                   |                |                         |         | Length:                  |               | ft                                                           |
| Facility carried (7):  |                   |                |                         |         | Route number:            | STH60         |                                                              |
| Feat. intersected (6): |                   |                |                         |         | Mi. post:                |               |                                                              |
| Default units:         | US Customary      | $\sim$         |                         |         |                          |               |                                                              |
|                        |                   |                |                         |         |                          |               |                                                              |
|                        |                   |                |                         |         |                          |               |                                                              |

From the **Bridge Explorer** create a **new bridge** and enter the following description data.

The **Superstructures** and **Culverts** checkboxes specify the types of structures the bridge contains. These checkboxes filter what to display in the **Bridge Workspace** tree.

Close the window by clicking **OK**.




After the bridge is created, the **Bridge Workspace** tree and **Components** tree are as shown below.

The **Bridge Workspace** tree is organized according to the definition of a bridge with data shared by many of the bridge components shown in the **Components** tab. A bridge can be described by working from top to bottom within the tree.

#### Bridge Materials

To enter the materials for the culvert, in the Components tab, expand the tree for Materials.

To add a concrete material, double-click on the **Concrete** folder in the **Components tab** (or select **Concrete** and click on the **New** button from the **Manage** group of the **WORKSPACE** ribbon or right click and select **New**) to create a new concrete material as shown below.



On the **Bridge Materials**-Concrete window, enter the values shown above the **Compute** button and click the **Compute** button to calculate the remaining values (**Class A(US)** in the library is slightly different from the values shown below).

| A Bridge Mater    | ials - Concrete         |            |         |             |    | _     |       | ×  |
|-------------------|-------------------------|------------|---------|-------------|----|-------|-------|----|
| Name:             | Class A (US)            |            |         |             |    |       |       |    |
| Description:      | Class A cement concre   | te         |         |             |    |       |       |    |
| Compressive st    | rength at 28 days (f'c) | 3.5        |         | ksi         |    |       |       |    |
| Initial compres   | sive strength (f'ci):   |            |         | ksi         |    |       |       |    |
| Composition o     | f concrete:             | Normal     | ~       |             |    |       |       |    |
| Density (for de   | ad loads):              | 0.15       |         | kcf         |    |       |       |    |
| Density (for mo   | odulus of elasticity):  | 0.145      |         | kcf         |    |       |       |    |
| Poisson's ratio:  |                         | 0.2        |         |             |    |       |       |    |
| Coefficient of t  | hermal expansion (α):   | 0.000006   |         | 1/F         |    |       |       |    |
| Splitting tensile | strength (fct):         |            |         | ksi         |    |       |       |    |
| LRFD Maximun      | n aggregate size:       |            |         | in          |    |       |       |    |
|                   | Compute                 | 2          |         |             |    |       |       |    |
| Std modulus of    | elasticity (Ec):        | 3408.78778 | 39      | ksi         |    |       |       |    |
| LRFD modulus      | of elasticity (Ec):     | 3814.69399 | )       | ksi         |    |       |       |    |
| Std initial mode  | ulus of elasticity:     |            |         | ksi         |    |       |       |    |
| LRFD initial mo   | dulus of elasticity:    |            |         | ksi         |    |       |       |    |
| Std modulus of    | rupture:                | 0.443706   |         | ksi         |    |       |       |    |
| LRFD modulus      | of rupture:             | 0.448999   |         | ksi         |    |       |       |    |
| Shear factor:     |                         | 1          |         |             |    |       |       |    |
|                   | Сору                    | to library | Copy fr | rom library | ОК | Apply | Cance | el |

To add a reinforcing steel material, double-click on the **Reinforcing Steel** folder in the **Components** tab (or select **Reinforcing Steel** and click on the **New** button from the **Manage** group of the **WORKSPACE** ribbon or right click and select **New**) to create a new reinforcing steel material as shown below.

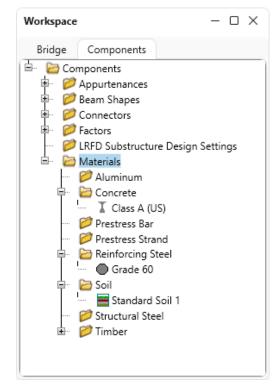
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ace - Culvert Examp        |                | ANALYSIS<br>DESIGN/RATE | REPORTS  | ?             | -          |           | × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|-------------------------|----------|---------------|------------|-----------|---|
| Check Out Check In Validate Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 📲 👶 Restore<br>ve 👶 Revert | Close Export F | Refresh Open            | New Copy | Paste Duplica | ate Delete | Schematic |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bridge                     |                |                         | h        | /lanage       |            |           |   |
| Workspace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ X                       | Schematic      |                         | × ×      | Report        |            | Ŕ         | × |
| Components     Appurtenances     Appurtenances     Poleam Shapes     Connectors     Poleam Shapes     Poleam Shapes | Design Settings            | Analysis       |                         |          |               |            |           | × |
| 📁 Prestress Bar<br>📁 Prestress Strang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ł                          | randrysis      |                         |          |               |            | ×         | ^ |
| - PReinforcing Ste<br>- PSoil<br>- PSoil<br>- PStructural Steel<br>- Timber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | New                        | d Report       |                         |          |               |            |           |   |

On the **Bridge Materials-Reinforcing Steel** window, **click** on the **Copy from library...** button and copy the **Grade 60** reinforcing steel to be used in the bridge as shown below.

|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                               | _                                                                                |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------|
| Name:                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| Description:                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| Material properties                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| Specified yield strength (fy):                                                                                                                                                                                                                                 | ksi                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| Modulus of elasticity (Es):                                                                                                                                                                                                                                    | ksi                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| Ultimate strength (Fu):                                                                                                                                                                                                                                        | ksi                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| Туре                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| O Plain                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| Ероху                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| Galvanized                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                |                                                                                                  |      |
| Library Data: Materials - Reinforcing Ste                                                                                                                                                                                                                      | el                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                | - 0                                                                                              |      |
| Library Data: Materials - Reinforcing Ste<br>Name                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                               | Library                                                                          | Units                                                                                                                    | Fy                                                                                        | Fu                                                                                             | — 🗆<br>Es                                                                                        |      |
|                                                                                                                                                                                                                                                                | el Description<br>300 MPa reinforcing steel                                                                                                                                                                                                                                                                                                   | Library<br>Standard                                                              | Units<br>SI / Metric                                                                                                     | Fy<br>300                                                                                 | Fu<br>500                                                                                      |                                                                                                  |      |
| Name                                                                                                                                                                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                                                                                                          |                                                                                           |                                                                                                | Es                                                                                               |      |
| Name<br>Grade 300                                                                                                                                                                                                                                              | Description<br>300 MPa reinforcing steel                                                                                                                                                                                                                                                                                                      | Standard                                                                         | SI / Metric                                                                                                              | 300                                                                                       | 500                                                                                            | Es<br>199948                                                                                     |      |
| Name<br>Grade 300<br>Grade 350                                                                                                                                                                                                                                 | Description<br>300 MPa reinforcing steel<br>350 MPa reinforcing steel (rail-steel)                                                                                                                                                                                                                                                            | Standard<br>Standard                                                             | SI / Metric<br>SI / Metric                                                                                               | 300                                                                                       | 500<br>550                                                                                     | Es<br>199948<br>199948                                                                           |      |
| Grade 300<br>Grade 350<br>Grade 40                                                                                                                                                                                                                             | Description           300 MPa reinforcing steel           350 MPa reinforcing steel (rail-steel)           40 ksi reinforcing steel                                                                                                                                                                                                           | Standard<br>Standard<br>Standard                                                 | SI / Metric<br>SI / Metric<br>US Customary                                                                               | 300<br>350<br>40.0000058                                                                  | 500<br>550<br>70.0000102                                                                       | Es<br>199948<br>199948<br>29000.004206                                                           |      |
| Name Srade 300 Grade 350 Grade 40 Grade 400                                                                                                                                                                                                                    | Description           300 MPa reinforcing steel           350 MPa reinforcing steel (rail-steel)           40 ksi reinforcing steel           400 MPa reinforcing steel                                                                                                                                                                       | Standard<br>Standard<br>Standard<br>Standard                                     | SI / Metric<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary                                                | 300<br>350<br>40.0000058<br>400                                                           | 500<br>550<br>70.0000102<br>600                                                                | Es<br>199948<br>199948<br>29000.004206<br>199948                                                 |      |
| Name           Grade 300           Grade 350           Grade 40           Grade 400           Grade 50                                                                                                                                                         | Description           300 MPa reinforcing steel           350 MPa reinforcing steel (rail-steel)           40 ksi reinforcing steel           400 MPa reinforcing steel           50 ksi reinforcing steel (rail-steel)                                                                                                                       | Standard<br>Standard<br>Standard<br>Standard<br>Standard                         | SI / Metric<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary                                                | 300<br>350<br>40.000058<br>400<br>50.0000073                                              | 500<br>550<br>70.0000102<br>600<br>80.0000116                                                  | Es<br>199948<br>199948<br>29000.004206<br>199948<br>29000.004206                                 |      |
| Name           Grade 300           Grade 350           Grade 40           Grade 400           Grade 50           Grade 50                                                                                                                                      | Description           300 MPa reinforcing steel           350 MPa reinforcing steel (rail-steel)           40 ksi reinforcing steel           400 MPa reinforcing steel           50 ksi reinforcing steel (rail-steel)           50 ksi reinforcing steel (rail-steel)           500 MPa reinforcing steel                                   | Standard<br>Standard<br>Standard<br>Standard<br>Standard                         | SI / Metric<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary<br>SI / Metric                                 | 300<br>350<br>40.0000058<br>400<br>50.0000073<br>500                                      | 500<br>550<br>70.0000102<br>600<br>80.0000116<br>700                                           | Es<br>199948<br>199948<br>29000.004206<br>199948<br>29000.004206<br>199948                       |      |
| Name           Grade 300           Grade 350           Grade 40           Grade 400           Grade 50           Grade 50           Grade 50           Grade 50           Grade 50           Grade 50                                                          | Description       300 MPa reinforcing steel       350 MPa reinforcing steel (rail-steel)       40 ksi reinforcing steel       400 MPa reinforcing steel       50 ksi reinforcing steel (rail-steel)       50 Nsi reinforcing steel (rail-steel)       500 MPa reinforcing steel       60 ksi reinforcing steel       75 ksi reinforcing steel | Standard<br>Standard<br>Standard<br>Standard<br>Standard<br>Standard<br>Standard | SI / Metric<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary                 | 300<br>350<br>40.000058<br>400<br>50.000073<br>500<br>60.000087                           | 500<br>550<br>70.0000102<br>600<br>80.0000116<br>700<br>90.0000131                             | Es<br>199948<br>29000.004206<br>29000.004206<br>29000.004206<br>199948<br>29000.004206           |      |
| Name           Grade 300           Grade 350           Grade 40           Grade 400           Grade 50           Grade 50 | Description       300 MPa reinforcing steel       350 MPa reinforcing steel (rail-steel)       40 ksi reinforcing steel       400 MPa reinforcing steel       50 ksi reinforcing steel (rail-steel)       50 Nsi reinforcing steel (rail-steel)       500 MPa reinforcing steel       60 ksi reinforcing steel       75 ksi reinforcing steel | Standard<br>Standard<br>Standard<br>Standard<br>Standard<br>Standard<br>Standard | SI / Metric<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary<br>US Customary | 300<br>350<br>40.000058<br>400<br>50.000073<br>500<br>60.000087<br>75.000109              | 500<br>550<br>70.000102<br>600<br>80.0000116<br>700<br>90.0000131<br>100.0000145               | Es<br>199948<br>199948<br>29000.004206<br>199948<br>29000.004206<br>29000.004206<br>29000.004206 |      |
| Name           Grade 300           Grade 350           Grade 40           Grade 400           Grade 50           Grade 50 | Description       300 MPa reinforcing steel       350 MPa reinforcing steel (rail-steel)       40 ksi reinforcing steel       400 MPa reinforcing steel       50 ksi reinforcing steel (rail-steel)       50 Nsi reinforcing steel (rail-steel)       500 MPa reinforcing steel       60 ksi reinforcing steel       75 ksi reinforcing steel | Standard<br>Standard<br>Standard<br>Standard<br>Standard<br>Standard<br>Standard | SI / Metric<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary<br>US Customary | 300<br>350<br>40.000058<br>400<br>50.000073<br>500<br>60.000087<br>75.000109              | 500<br>550<br>70.000102<br>600<br>80.0000116<br>700<br>90.0000131<br>100.0000145               | Es<br>199948<br>199948<br>29000.004206<br>199948<br>29000.004206<br>29000.004206<br>29000.004206 |      |
| Name           Grade 300           Grade 350           Grade 40           Grade 400           Grade 50           Grade 50 | Description       300 MPa reinforcing steel       350 MPa reinforcing steel (rail-steel)       40 ksi reinforcing steel       400 MPa reinforcing steel       50 ksi reinforcing steel (rail-steel)       50 Nsi reinforcing steel (rail-steel)       500 MPa reinforcing steel       60 ksi reinforcing steel       75 ksi reinforcing steel | Standard<br>Standard<br>Standard<br>Standard<br>Standard<br>Standard<br>Standard | SI / Metric<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary<br>SI / Metric<br>US Customary<br>US Customary | 300<br>350<br>40.000058<br>400<br>50.000073<br>500<br>60.000087<br>75.000109<br>33.000048 | 500<br>550<br>70.0000102<br>600<br>80.0000116<br>700<br>90.0000131<br>100.0000145<br>60.000087 | Es<br>199948<br>199948<br>29000.004206<br>199948<br>29000.004206<br>29000.004206<br>29000.004206 | ance |

The Bridge Materials – Reinforcing Steel window will be updated with material information as shown below.

| 🗣 Bridge Mat                 | terials - Reinforci | ing Steel  |         |            |    | -     |       | Х |
|------------------------------|---------------------|------------|---------|------------|----|-------|-------|---|
| Name:                        | Grade 60            |            |         |            |    |       |       |   |
| Description:                 | 60 ksi reinforci    | ng steel   |         |            |    |       |       |   |
| Material prop                | perties             |            |         |            |    |       |       |   |
| Specified yiel               | ld strength (fy):   | 60.000087  |         | ksi        |    |       |       |   |
| Modulus of e                 | elasticity (Es):    | 29000.0042 | 06      | ksi        |    |       |       |   |
| Ultimate stre                | ngth (Fu):          | 90.0000131 |         | ksi        |    |       |       |   |
| Type<br>Plain<br>Epo<br>Galv |                     |            |         |            |    |       |       |   |
|                              | Copy to             | o library  | Copy fr | om library | ОК | Apply | Cance | : |


Click **OK** to add the reinforcing steel material and close the window.

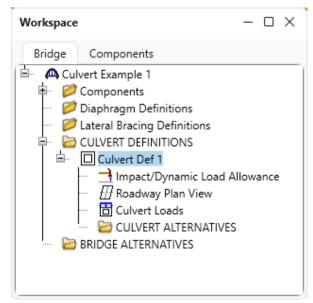
Similarly, add a new soil material by copying the **Standard Soil 1** from the library. The **Bridge Materials – Soil** window with material information updated is shown below.

| 🕰 Bridge Mat   | terials - Soil                             |          |     | -   |       | ×  |
|----------------|--------------------------------------------|----------|-----|-----|-------|----|
| Name:          | Standard Soil 1                            |          |     |     |       |    |
| Description:   | Standard Soil 1                            |          |     |     |       |    |
| Soil unit load | Ŀ                                          | 120      | pcf |     |       |    |
| Saturated so   | il unit load:                              | 125      | pcf |     |       |    |
| At-rest latera | I earth pressure coefficient (LRFD):       | 0.5      |     |     |       |    |
| At-rest latera | I earth pressure coefficient (LRFR):       |          |     |     |       |    |
| Active lateral | earth pressure coefficient (LRFD/LRFR):    | 0.33     |     |     |       |    |
| Passive latera | al earth pressure coefficient (LRFD/LRFR): | 3        |     |     |       |    |
| Maximum lat    | teral soil pressure (LFR):                 | 60       | pcf |     |       |    |
| Minimum lat    | eral soil pressure (LFR):                  | 30       | pcf |     |       |    |
|                |                                            |          |     |     |       |    |
|                | Copy to library Copy from lit              | orary OK | Арр | bly | Cance | el |

Click **OK** to add the soil material and close the window.

The **Components** tree updated with the three materials to be used by the culvert is shown below.




### Culvert Definition

Navigate to the **Bridge** tab of the **Bridge Workspace**. Double click on the **CULVERT DEFINITIONS** folder to create a new culvert definition. Enter the Culvert Definition **Name** as show below. The first Culvert Alternative added will automatically be assigned as the **Existing** and **Current** Culvert Alternative for this Culvert Definition.

| 🖣 Culvert Defi | nition     |                          |           |     | - | > |
|----------------|------------|--------------------------|-----------|-----|---|---|
| Name:          | Culvert De | ef 1                     |           |     |   |   |
| Description:   |            |                          |           |     |   |   |
| Default units: | US Custom  | ary V                    |           |     |   |   |
| Existing       | Current    | Culvert alternative name | Descripti | ion |   |   |
|                |            |                          |           |     |   |   |
|                |            |                          |           |     |   |   |
|                |            |                          |           |     |   |   |
|                |            |                          |           |     |   |   |
|                |            |                          |           |     |   |   |

Click **OK** to apply the data and close the window.

Click on the + button of the newly added culvert definition to expand the culvert definition tree as shown below.



### Culvert Loads

Double-click on the **Culvert Loads** node to open the **Culvert Loads** window. For this example, the default values specified in this window will be used. No change is required.

| 🕰 Culvert Loads  |          | _      | . 🗆 | ×     |
|------------------|----------|--------|-----|-------|
| Soil material:   | Standard | Soil 1 | ~   |       |
| Water unit load: | 62.4     | pcf    |     |       |
|                  | OK       | Apply  | C   | ancel |
|                  |          |        |     |       |

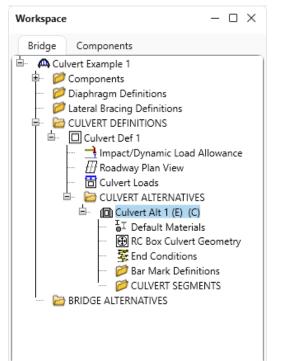
Click **OK** to close the window.

#### **Culvert Alternative**

Double-click on the **CULVERT ALTERNATIVES** folder to create a new culvert alternative for **Culvert Def 1**. Select **RC Box** in the **New Culvert Alternative** window and click **OK** to open the **Culvert Alternative Description** window as shown below.

| A New Culvert Alternative   | × |
|-----------------------------|---|
| Culvert type:               |   |
| RC Box                      |   |
| Metal pipe, arch, pipe arch |   |
| Metal Box                   |   |
|                             |   |
| OK Cancel                   |   |

| escription Specs Factors Con                                                                                                                                                                             | trol options           |                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------|
| escription:<br>efault units:<br>op slab exterior surface exposure factor:<br>tall exterior surface exposure factor:<br>fall exterior surface exposure factor:<br>terior surface exposure factor:<br>Soil | US Customary V<br>0.75 | Culvert type: RC Box<br>Construction type<br>Cast-in-plac<br>Precast<br>Default rating method: LFR ~ |
| Installation method:<br>Side fill condition<br>Compact Uncompact                                                                                                                                         | Embankment V           | RFD EH load factor         At-rest         Active                                                    |
| Soil-structure interaction factor (LRFD)<br>Soil-structure interaction factor (LFD):                                                                                                                     |                        | Passive                                                                                              |
|                                                                                                                                                                                                          |                        |                                                                                                      |


In the **Culvert Alternative Description** window, enter the data as shown below.

Navigate to the **Specs** tab of this window. **AASHTO Culvert LRFR** is selected as the analysis module for **LRFR** analysis.

| ulve |                         |                     |       |                       |                         |                                       |        |  |  |  |
|------|-------------------------|---------------------|-------|-----------------------|-------------------------|---------------------------------------|--------|--|--|--|
| ert  | alternatives: Culv      | ert Alt 1           |       |                       |                         |                                       |        |  |  |  |
| esci | ription Specs           | Factors Control op  | tions |                       |                         |                                       |        |  |  |  |
|      | Analysis method<br>type | Analysis module     |       | Selection type        | Spec version            | Factors                               |        |  |  |  |
|      | LFR                     | AASHTO Culvert LFR  | ~     | System Default $$     | MBE 3rd 2023i, Std 17th | 2002 AASHTO Std. Specifications       | $\sim$ |  |  |  |
|      | LRFD                    | AASHTO Culvert LRFD | ~     | System Default $$     | LRFD 9th                | 2020 AASHTO LRFD Specifications       | ~      |  |  |  |
| >    | LRFR                    | AASHTO Culvert LRFR | ~     | System Default $\sim$ | MBE 3rd 2023i, LRFD 9th | 2018 (2022 Interim) AASHTO LRFR Spec. | $\sim$ |  |  |  |
|      |                         |                     |       |                       |                         |                                       |        |  |  |  |
|      |                         |                     |       |                       |                         |                                       |        |  |  |  |
|      |                         |                     |       |                       |                         |                                       |        |  |  |  |

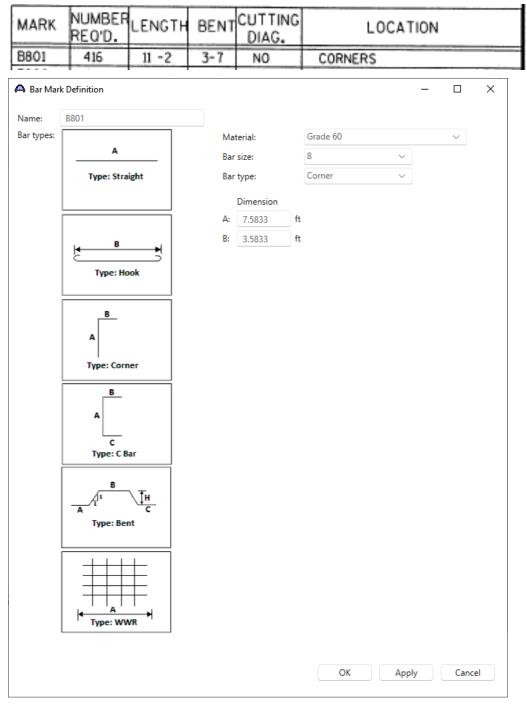
Click **OK** to apply the data and close the window.

The expanded tree for **Culvert Alt 1** is shown below. Note that the **Culvert Alt 1** is automatically assigned as the **Existing** and **Current** alternative shown by the **(E)** and **(C)** in the name. This culvert alternative is also updated as **Existing** and **Current** alternative in the **Culvert Definition** window as shown below.



| 🕰 Culvert Defi | nition     |                          |         |      |       | _ |       | ×  |
|----------------|------------|--------------------------|---------|------|-------|---|-------|----|
| Name:          | Culvert De | ef 1                     |         |      |       |   |       |    |
| Description:   |            |                          |         |      |       |   |       |    |
| Default units: | US Custom  | nary V                   |         |      |       |   |       |    |
| Existing       | Current    | Culvert alternative name | Descrip | tion |       |   |       |    |
| > 🗸            |            | Culvert Alt 1            |         |      |       |   |       | -  |
|                |            |                          | )       |      |       |   |       |    |
|                |            |                          |         |      |       |   |       |    |
|                |            |                          |         |      |       |   |       |    |
|                |            |                          |         |      |       |   |       | -  |
|                |            |                          |         | ОК   | Apply | / | Cance | el |

### RC Box Culvert Geometry


Double-click on the **RC Box Culvert Geometry** node in the **Bridge Workspace** tree. Enter the data as shown below.

| A R  | C Box (               | Culvert Ge    | ometr       | у           |             |                               |          | _   |       | × |
|------|-----------------------|---------------|-------------|-------------|-------------|-------------------------------|----------|-----|-------|---|
| Nur  | nber o                | f cells:      |             | 2 🗘         |             | Bottom slab present           |          |     |       |   |
| Cell | height                | t             | -           | 12          | ft          | Horiz. construction joint hei | ght: 5.5 | in  |       |   |
|      | Cell                  | Width<br>(ft) |             |             |             |                               |          |     |       |   |
| >    | 1                     | 12            |             |             |             |                               |          |     |       |   |
|      | 2                     | 12            |             |             |             |                               |          |     |       |   |
|      |                       |               |             |             |             |                               |          |     |       |   |
|      |                       |               | ۲           | launch Wic  | <b>i</b> th | Haunches                      |          |     |       |   |
|      | _                     |               |             | ]<br> Haunc | h Depth     | Top haunch width:             |          | in  |       |   |
|      | ĺ                     |               | <u>רן ד</u> |             |             | Top haunch depth:             |          | in  |       |   |
|      | <b>→</b> <sup>C</sup> | ell Width     | ┢           |             |             | Bottom haunch width:          |          | in  |       |   |
|      | с                     | ell Height    |             |             |             | Bottom haunch depth:          |          | in  |       |   |
|      | <u> </u>              |               | ♥/          |             |             |                               |          |     |       |   |
|      |                       |               |             | -           |             |                               |          |     |       |   |
|      |                       |               |             |             |             | O                             | K App    | oly | Cance | 2 |
|      |                       |               |             |             |             |                               |          |     |       |   |

Click **OK** to apply the data and close the window.

#### Bar Mark Definitions

Double-click on the **Bar Mark Definitions** folder in the **Bridge Workspace** tree to create a new bar mark definition for **Culvert Alt 1**. Enter the data for B801 as shown below.



Click **OK** to apply the data and close the window.

Repeat this process and add the following transverse bar mark definitions.

| MARK       | NUMBER<br>REQ'D. | LENGTH  | BENT | CUTTING<br>DIAG. |    | LOC      | ATION |        |   |
|------------|------------------|---------|------|------------------|----|----------|-------|--------|---|
| B802       | 400              | 7-4     | 3-7  | NO               | (  | ORNERS   |       |        |   |
| 🖨 Bar Mar  | k Definition     |         |      |                  |    |          | _     |        | × |
| Name:      | B802             |         |      |                  |    |          |       |        |   |
| Bar types: |                  |         |      | Material:        |    | Grade 60 |       | $\sim$ |   |
|            | A                |         |      | Bar size:        |    | 8        | ~     |        |   |
|            | Type: St         | traight |      | Bar type:        |    | Corner   | ~     |        |   |
|            |                  |         |      | Dimension        |    |          |       |        |   |
|            |                  |         |      | A: 3.75          | ft |          |       |        |   |
|            | La B             |         |      | B: 3.5833        | ft |          |       |        |   |
|            |                  |         |      |                  |    |          |       |        |   |
|            | Type:            | Hook    |      |                  |    |          |       |        |   |
|            |                  |         |      |                  |    |          |       |        |   |
|            | A                |         |      |                  |    |          |       |        |   |
|            | Type: Co         | orner   |      |                  |    |          |       |        |   |

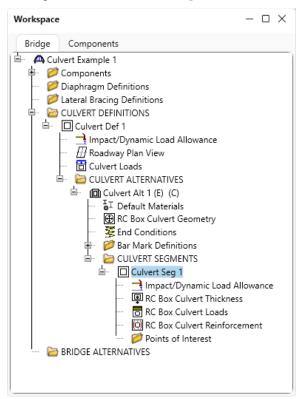
| MARK | NUMBER<br>REQ'D. | LENGTH | BENT | CUTTING<br>DIAG. | LOCATION           |
|------|------------------|--------|------|------------------|--------------------|
| B903 | 76               | 9-0    | NO   | NO               | BOTTOM SLAB TRANS. |
| B904 | 72               | 4-10   | NO   | NO               | BOTTOM SLAB TRANS. |
| B505 | 124              | 25-10  | NO   | NO               | BOTTOM SLAB TRANS. |
| B506 | 240              | 8-2    | NO   | NO               | BOTTOM SLAB TRANS. |
| B507 | 296              | 2-0    | NO   | NO               | WALLS-DOWELS VERT. |
| B408 | 136              | 2-0    | NO   | NO               | WALLS-DOWELS VERT. |
| B510 | 296              | 12 - 4 | NO   | NO               | WALLS VERT.        |
| B411 | 136              | 13 - 4 | 1-0  | NO               | WALLS VERT.        |
| B612 | 84               | 25-10  | NO   | NO               | TOP SLAB TRANS.    |
| B613 | 160              | 8-2    | NO   | NO               | TOP SLAB TRANS.    |
| B714 | 116              | 9-0    | NO   | NO               | TOP SLAB TRANS.    |
| B715 | 112              | 4-10   | NO   | NO               | TOP SLAB TRANS.    |

| 🗛 Bar Mark | Definition     |           |          | - |        | × |
|------------|----------------|-----------|----------|---|--------|---|
| Name:      | B903           |           |          |   |        |   |
| Bar types: |                | Material: | Grade 60 |   | $\sim$ |   |
|            | A              | Bar size: | 9        | ~ |        |   |
|            | Type: Straight | Bar type: | Straight | ~ |        |   |
|            |                | Dimension |          |   |        |   |
| Ĩ          |                | A: 9      | ft       |   |        |   |
|            | . в .          |           |          |   |        |   |

| 🕰 Bar Mar  | k Definition   |                         |          | _ |        | ×        |
|------------|----------------|-------------------------|----------|---|--------|----------|
| Name:      | B904           |                         |          |   |        |          |
| Bar types: |                | Material:               | Grade 60 |   | ~      |          |
|            | A              | Bar size:               | 9        | ~ |        |          |
|            | Type: Straight | Bar type:               | Straight | ~ |        |          |
|            |                | Dimension               |          |   |        |          |
|            |                | A: 4.8333               | ft       |   |        |          |
|            |                |                         |          |   |        |          |
|            | B H            |                         |          |   |        |          |
|            |                |                         |          |   |        |          |
| 🗛 Bar Mar  | k Definition   |                         |          | - |        | ×        |
| Name:      | B505           |                         |          |   |        |          |
| Bar types: |                | Material:               | Grade 60 |   | $\sim$ |          |
|            | Α              | Bar size:               | 5        | ~ |        |          |
|            | Type: Straight | Bar type:               | Straight | ~ |        |          |
|            |                |                         |          |   |        |          |
|            |                | Dimension<br>A: 25.8333 | ft       |   |        |          |
|            |                | A: 25.8555              | n        |   |        |          |
| 🗛 Bar Mar  | k Definition   |                         |          | _ |        | ×        |
| Name:      | B506           |                         |          |   |        |          |
| Bar types: |                | Material:               | Grade 60 |   | $\sim$ |          |
|            | A              | Bar size:               | 5        | ~ |        |          |
|            | Type: Straight | Bar type:               | Straight | ~ |        |          |
|            |                |                         |          |   |        |          |
|            |                | Dimension<br>A: 8.1667  | ft       |   |        |          |
|            |                | A: 8.1007               | it.      |   |        |          |
| 🗛 Bar Mar  | rk Definition  |                         |          | - |        | ×        |
| Name:      | B507           |                         |          |   |        |          |
| Bar types: |                | Material:               | Grade 60 |   | $\sim$ |          |
|            | A              | Bar size:               | 5        | ~ |        |          |
|            | Type: Straight | Bar type:               | Straight | ~ |        |          |
|            |                |                         | ·        |   |        |          |
|            |                | Dimension<br>A: 2       | ft       |   |        |          |
|            |                | A: 2                    | n        |   |        |          |
|            | B.,            |                         |          |   |        |          |
| 🗛 Bar Mar  | rk Definition  |                         |          | - |        | $\times$ |
| Name:      | B408           |                         |          |   |        |          |
| Bar types: |                | Material:               | Grade 60 |   | $\sim$ |          |
|            | A              | Bar size:               | 4        | ~ |        |          |
|            | Type: Straight | Bar type:               | Straight | ~ |        |          |
|            | 1 the or night |                         |          |   |        |          |
|            |                | Dimension               |          |   |        |          |
|            |                | A: 2                    | ft       |   |        |          |
|            | R .            |                         |          |   |        |          |

| 🗛 Bar Mark | Definition        |                    | _      |        | × |
|------------|-------------------|--------------------|--------|--------|---|
| Name:      | B510              |                    |        |        |   |
| Bar types: |                   | Material: Grade 60 |        | $\sim$ |   |
|            | A                 | Bar size: 5        | $\sim$ |        |   |
|            | Type: Straight    | Bar type: Straight | $\sim$ |        |   |
|            |                   | Dimension          |        |        |   |
| ſ          |                   | A: 12.3333 ft      |        |        |   |
|            | . в ,             |                    |        |        |   |
| 🕰 Bar Mark | Definition        |                    | _      |        | Х |
| Name:      | B411              |                    |        |        |   |
| Bar types: |                   | Material: Grade 60 |        | ~      |   |
|            | A                 | Bar size: 4        | $\sim$ |        |   |
|            | Type: Straight    | Bar type: Corner   | ~      |        |   |
|            |                   | Dimension          |        |        |   |
| [          |                   | A: 12.3333 ft      |        |        |   |
|            | l <b>≼ B</b> →    | B: 1 ft            |        |        |   |
|            | Type: Hook        |                    |        |        |   |
|            | Type: nook        |                    |        |        |   |
|            | A<br>Type: Corner |                    |        |        |   |
| 🗛 Bar Mark | Definition        |                    | -      |        | × |
| Name:      | B612              |                    |        |        |   |
| Bar types: |                   | Material: Grade 60 |        | ~      |   |
|            | A                 | Bar size: 6        | ~      |        |   |
|            | Type: Straight    | Bar type: Straight | $\sim$ |        |   |
|            |                   | Dimension          |        |        |   |
| Ī          |                   | A: 25.8333 ft      |        |        |   |
|            | . в ,             |                    |        |        |   |
| 🕰 Bar Mark | Definition        |                    | _      |        | × |
| Name:      | B613              |                    |        |        |   |
| Bar types: |                   | Material: Grade 60 |        | ~      |   |
|            | A                 | Bar size: 6        | ~      |        |   |
|            | Type: Straight    | Bar type: Straight | ~      |        |   |
|            |                   | Dimension          |        |        |   |
| ſ          |                   | A: 8.1667 ft       |        |        |   |
|            | . B               |                    |        |        |   |

| Bar Mar            | k Definition        |                        |               | -      |   | × |
|--------------------|---------------------|------------------------|---------------|--------|---|---|
| Name:              | B714                |                        |               |        |   |   |
| Bar types:         |                     | Material:              | Grade 60      |        | ~ |   |
|                    | A                   | Bar size:              | 7             | $\sim$ |   |   |
|                    | Type: Straight      | Bar type:              | Straight      | $\sim$ |   |   |
|                    |                     | Dimension              |               |        |   |   |
|                    |                     | A: 9                   | ft            |        |   |   |
|                    |                     |                        |               |        |   |   |
|                    | . B                 |                        |               |        |   |   |
| 🗛 Bar Mar          |                     |                        |               |        |   | × |
| 🕰 Bar Mar<br>Name: |                     |                        |               |        |   | × |
|                    | k Definition        | Material:              | Grade 60      | _      |   | × |
|                    | k Definition        | Material:<br>Bar size: | Grade 60<br>7 | -      |   | × |
| Name:              | k Definition B715   |                        |               | -      |   | × |
| Name:              | k Definition B715 A | Bar size:              | 7             |        |   | × |

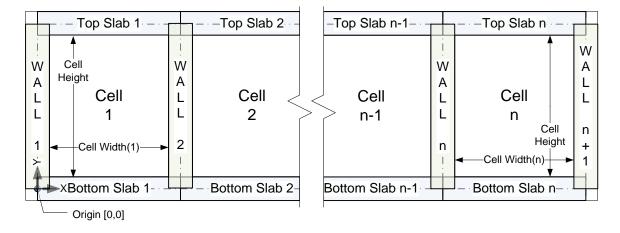

#### **Culvert Segments**

Double-click on the **CULVERT SEGMENTS** folder to create a new culvert segment for **Culvert Alt 1**. A culvert alternative may have one or more culvert segments. Enter the data as show below.

|              | egment                                             |        |    | - | × |
|--------------|----------------------------------------------------|--------|----|---|---|
| lame:        | Culvert Seg 1                                      |        |    |   |   |
| Description: |                                                    |        |    |   |   |
| Aaterial:    | Class A (US)                                       | -<br>- |    |   |   |
| Location     | along culvert structure definition reference line: |        |    |   |   |
| Distance     | from left end of culvert to start of segment:      |        | ft |   |   |
| Length o     | of segment:                                        | 134    | ft |   |   |
|              |                                                    |        |    |   |   |

Click **OK** to create a new culvert segment and close the window.

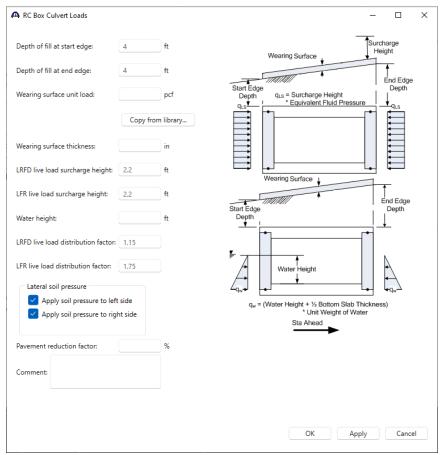
The expanded tree for **Culvert Seg 1** is shown below.




#### RC Box Culvert Thickness

Double-click on the **RC Box Culvert Thickness** node in the **Bridge Workspace** tree. Enter the slab and wall thicknesses as shown below.

| R | C Box ( | Culvert Thicl         | kness                    |  |   |      |                   | - | > |
|---|---------|-----------------------|--------------------------|--|---|------|-------------------|---|---|
|   | Cell    | Top slab<br>thickness | Bottom slab<br>thickness |  |   | Wall | Thickness<br>(in) |   |   |
|   |         | (in)                  | (in)                     |  | > | 1    | 11                |   |   |
| > | 1       | 12.5                  | 14                       |  |   | 2    | 11                |   |   |
|   | 2       | 12.5                  | 14                       |  |   | 3    | 11                |   |   |
|   |         |                       |                          |  |   |      |                   |   |   |
|   |         |                       |                          |  |   |      |                   |   |   |


Click **OK** to apply the data and close the window.



The following shows the components for a box culvert with n cells.

#### RC Box Culvert Loads

Double-click on **RC Box Culvert Loads** in the **Bridge Workspace** tree. Enter the culvert loads for **Culvert Seg 1** as shown below. Select the checkboxes under **Lateral soil pressure** shown below to apply soil pressure to both sides of the culvert. These checkboxes are provided to allow for the case where a culvert is widened by placing another culvert directly next to it so that side does not have lateral earth pressure.



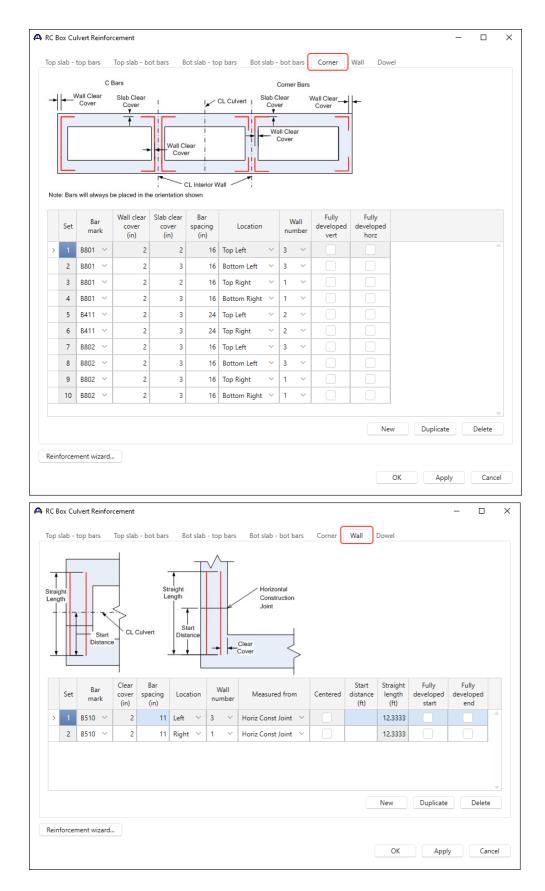
Click **OK** to apply the data and close the window.

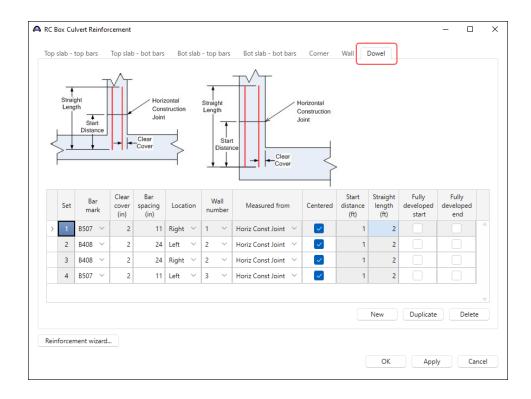
### RC Box Culvert Reinforcement

Double-click on the **RC Box Culvert Reinforcement** node in the **Bridge Workspace** tree. Enter the reinforcement data as shown below for each location.

| L Wall 1<br>Start<br>Clear<br>Cover (Typ.)<br>t Bar<br>(n) Start<br>Bar<br>(n) Start<br>Bar<br>(n) Start<br>Clear<br>Cover (Spc.)<br>Start<br>Distance<br>CL Wall 2<br>CL Wall 3<br>CL Wall 2<br>CL WAL | op slab - to      | op bars       | Top slab | - bot bars | Bot slab - top | bars Bot slab |           | Corner Wall D | owel   |           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|----------|------------|----------------|---------------|-----------|---------------|--------|-----------|-----------|
| Cover (Typ.)       Jainton         CL Wall 2       CL Wall 2       CL Wall 3         rs will always be placed in the orientation shown       Wall<br>number       Centered       Start<br>(ft)       Start<br>length       Fully<br>developed<br>end         Bar<br>mark       Clear<br>(m)       Bar<br>(in)       CL Wall V       2       V       Centered       Start<br>distance<br>(ft)       Fully<br>length       Fully<br>developed<br>end         B714       2       14       CL Wall V       2       V       4.5       9       0       0         B715       2       14       CL Wall V       2       V       2.41665       4.8333       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CL W              | /all 1        | St       | art        | ngth           |               |           | 1             | _      |           |           |
| s will always be placed in the orientation shown       Bar     Clear     Bar     Measured from     Wall     Centered     Start     Straight distance     Fully     Fully       B714 ∨     2     14     CL Wall ∨     2     ✓     ✓     4.5     9        B715 ∨     2     14     CL Wall ∨     2     ✓     ✓     4.8333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               | (Typ.)   |            | Distance       | CL Culvert    | CL Wall 3 | CL Wall 4     |        |           |           |
| Bar<br>mark     cover<br>(in)     spacing<br>(in)     Measured from<br>(in)     Wall<br>number     Centered<br>(in)     distance<br>(ift)     length<br>start     developed<br>end       B714     2     14     CL Wall     2     Image: View of the start     9     Image: View of the start       B715     2     14     CL Wall     2     Image: View of the start     2.41665     4.8333     Image: View of the start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i<br>Note: Bars w | vill always b |          |            |                |               | oc mano   |               |        |           |           |
| B714 × 2 14 CL Wall × 2 × 4.5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Set               |               | cover    | spacing    | Measured from  |               | Centered  | distance      | length | developed | developed |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |               | 2        |            |                | 2 ~           |           | 4.5           |        |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                 | B715 ~        | 2        | 14         | CL Wall V      | 2 ~           |           | 2.41665       | 4.8333 |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |               | 2        | 14         |                |               |           | 4.5           | 9      |           |           |
| New Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |          |            |                |               |           |               | New    | Duplicate |           |

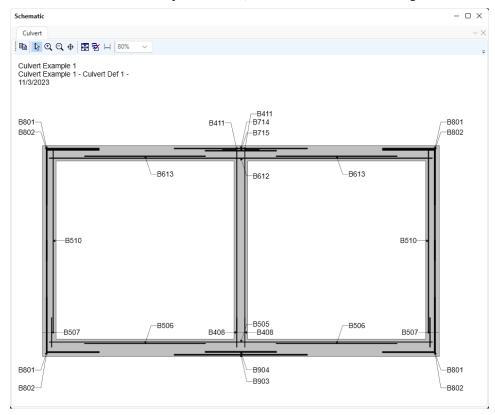
Click **Apply** to apply the data and not close the window.


| Int | e: Bars | Clea<br>Cover ( | Typ.)<br>Left Face     | Wall                   | ance       | rt<br>nce | - CL Culvert        | Start<br>Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ight Length               |                            |                             |                           |   |
|-----|---------|-----------------|------------------------|------------------------|------------|-----------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|-----------------------------|---------------------------|---|
|     | Set     | Bar<br>mark     | Clear<br>cover<br>(in) | Bar<br>spacing<br>(in) | Measured f | from      | Cell/Wall<br>number | Centered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Start<br>distance<br>(ft) | Straight<br>length<br>(ft) | Fully<br>developed<br>start | Fully<br>developed<br>end |   |
| >   | 1       | B612 ~          | 2                      | 20                     | CL Culvert | $\sim$    | ~                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.91665                  | 25.8333                    |                             |                           | ^ |
|     | 2       | B613 🗸          | 2                      | 20                     | CL Cell    | $\sim$    | 1 ~                 | <ul> <li>Image: A set of the set of the</li></ul> | 4.08335                   | 8.1667                     |                             |                           | ] |
|     | 3       | B613 🗸          | 2                      | 20                     | CL Cell    | $\sim$    | 2 ~                 | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.08335                   | 8.1667                     |                             |                           |   |
|     |         |                 |                        |                        |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | New                        | Duplicate                   | Delet                     |   |


Navigate to the Top slab - bot bars tab to add more reinforcement details.

|   |     |              | Left Face              | e Wali I<br>Clea       |                   | iht |                     | Start<br>Distance | CL Cell                   |                            |                             |                           |
|---|-----|--------------|------------------------|------------------------|-------------------|-----|---------------------|-------------------|---------------------------|----------------------------|-----------------------------|---------------------------|
| l | +   | —Straight Le | Distance               | Sta                    |                   |     | 4                   | Stra              | aight Length              |                            |                             |                           |
|   | Set | Bar<br>mark  | Clear<br>cover<br>(in) | Bar<br>spacing<br>(in) | Measured from     |     | Cell/Wall<br>number | Centered          | Start<br>distance<br>(ft) | Straight<br>length<br>(ft) | Fully<br>developed<br>start | Fully<br>developed<br>end |
| > | 1   | B505 🗸       | 2                      | 13                     | CL Culvert $\sim$ |     | $\sim$              |                   | 12.91665                  | 25.8333                    |                             |                           |
|   | 2   | 8506 V       | 2                      | 13                     | CL Cell 🛛 🗸       | 1   | $\sim$              |                   | 4.08335                   | 8.1667                     |                             |                           |
|   | 3   | 8506 V       | 2                      | 13                     | CL Cell $\sim$    | 2   | $\sim$              | $\sim$            | 4.08335                   | 8.1667                     |                             |                           |
|   |     |              |                        |                        |                   |     |                     |                   |                           | New                        | Duplicate                   | Delete                    |

Similarly, add reinforcement in each location as shown below.


| Note | e: Bar | s will always I        | be placed              | l in the orien         | tation shown      |                |           | 1                         |                            |                             |                           |   |
|------|--------|------------------------|------------------------|------------------------|-------------------|----------------|-----------|---------------------------|----------------------------|-----------------------------|---------------------------|---|
|      | - CL   | Wall 1<br>Cle<br>Cover | (Typ.)                 | - i i                  | Start Lengt       | ht i           | CL Wall 3 | CL Wall 4                 |                            |                             |                           |   |
|      | Set    | Bar<br>mark            | Clear<br>cover<br>(in) | Bar<br>spacing<br>(in) | Measured from     | Wall<br>number | Centered  | Start<br>distance<br>(ft) | Straight<br>length<br>(ft) | Fully<br>developed<br>start | Fully<br>developed<br>end | 1 |
| >    | 1      | 8903 V                 | 2                      | 22                     | CL Culvert $\sim$ | ~              |           | 4.5                       | 9                          |                             |                           |   |
|      | 2      | B904 $$                | 2                      | 22                     | CL Culvert $\sim$ | $\sim$         |           | 2.41665                   | 4.8333                     |                             |                           |   |
|      | 2      | b904 V                 | 2                      | 22                     | CL Cuivert V      |                |           | 2.41005                   | 4.8333                     |                             |                           |   |
|      |        |                        |                        |                        |                   |                |           |                           |                            |                             |                           |   |





#### Schematic – RC Box Culvert Reinforcement

Click on **RC Box Culvert Reinforcement** and select **Schematic** from the **WORKSPACE** ribbon (or right click and select **Schematic** from the drop down menu) to view the schematic showing reinforcement details for this bridge.



The description of the two-cell reinforced concrete box culvert is complete.

Perform AASHTO Culvert LRFR analysis and review results.

#### LRFR Analysis

To perform an LRFR Design Load Rating, click the **Analysis Settings** button from the **Analysis** group of the **DESIGN/RATE** ribbon.



#### Apply the analysis settings as shown below.

| Design review Rating Analysis type: Line Girder Analysis type: Analysis type: As Requested Vehicles Output Engine Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rating method:<br>Apply preference setting:  | LRFR None                                                                                                                                             | <ul> <li></li> <li></li> </ul> |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
| Traffic direction: Both directions  Vehicle selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Refresh<br>Vehicle summary<br>B-Rating vehic | /                                                                                                                                                     | Advanced                       |  |
| <ul> <li>⇒ Standard</li> <li>→EV2</li> <li>→EV3</li> <li>→H 15-44</li> <li>→H 20-44</li> <li>→H-93 (US)</li> <li>→H + 51-44</li> <li>→H 52 0 (SI)</li> <li>→HS 20 - 44</li> <li>→Lane-Type Legal Load</li> <li>→LRFD Fatigue Truck (SI)</li> <li>→LRFD Fatigue Truck (US)</li> <li>→NRL</li> <li>→SU4</li> <li>→SU4<th>Add to</th><th>gn load rating<br/>nventory<br/>'HL-93 (US)<br/>)perating<br/>HL-93 (US)<br/>atigue<br/>il coad rating<br/>locutine<br/>ipecialized hauling<br/>it load rating</th><th></th><th></th></li></ul> | Add to                                       | gn load rating<br>nventory<br>'HL-93 (US)<br>)perating<br>HL-93 (US)<br>atigue<br>il coad rating<br>locutine<br>ipecialized hauling<br>it load rating |                                |  |

Click **OK** to apply the data and close the window.

With **Culvert Seg 1** selected in the **Bridge Workspace** tree, click the **Analyze** button from the **Analysis** group of the **DESIGN/RATE** ribbon to start the rating process.



#### Tabular Results

When the rating is finished, results can be reviewed by clicking the **Tabular Results** button from the **Results** group of the **DESIGN/RATE** ribbon. The window shown below will open.

| BRIDGE WOR                       | -                    | orkspace - Culve<br>WORKSPACE | rt Example `<br>TOOLS        | 1<br>VIEW                    | ANALYSIS               |                          | ORTS             | ?               | -           | □ ×          |              |    |
|----------------------------------|----------------------|-------------------------------|------------------------------|------------------------------|------------------------|--------------------------|------------------|-----------------|-------------|--------------|--------------|----|
| Analysis Anal<br>Settings Anal   | yze Analys<br>Events |                               | cification I                 | Engine Resul<br>Dutputs Grap | ts Save                |                          |                  |                 |             |              |              |    |
| Analysis Resu<br>Print<br>Print  | ults - Culver        | t Seg 1                       |                              |                              |                        |                          |                  |                 |             |              | - 0          | ×  |
| eport type:<br>Rating Results Si | ummary               |                               | npact loadin<br>As requested |                              | Display F<br>Single ra | ormat<br>ating level per | row              | ~               |             |              |              |    |
| Live Load                        | Live Load<br>Type    | Rating Method                 | Rating<br>Level              | Load Rating<br>(Ton)         | Rating Factor          | Component                | Location<br>(ft) | Location<br>(%) | Limit State | Impact       | Lane         |    |
| HL-93 (US)                       | Axle Load            | LRFR                          | Inventory                    | 57.52                        | 1.598                  | Top Slab 2               | 7.20             | 60.000          | Flexure     | As Requested | As Requested | -  |
| HL-93 (US)                       | Axle Load            | LRFR                          | Operating                    | 74.56                        | 2.071                  | Top Slab 2               | 7.20             | 60.000          | Flexure     |              | As Requested |    |
| HL-93 (US)                       | Tandem               | LRFR                          | Inventory                    | 48.15                        | 1.338                  | Top Slab 2               | 6.00             | 50.000          | Flexure     | As Requested | As Requested |    |
| HL-93 (US)                       | Tandem               | LRFR                          | Operating                    | 62.42                        | 1.734                  | Top Slab 2               | 6.00             | 50.000          | Flexure     | As Requested | As Requested |    |
| ASHTO Culvert                    | -                    | Version 7.5.0.300             | 1                            |                              |                        |                          |                  |                 |             |              | Cla          | se |

### Specification Check Detail

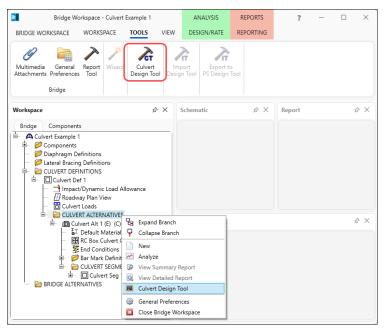
To review detailed rating results at the controlling location, click the **Specification Check Detail** button in the ribbon to open the **Specification** window. Expand the tree for **Top Slab 1** and select the **3.60 ft.** folder.

| Properties General       | Articles All articles Format Bullet list Report                                        |             |             |               |  |
|--------------------------|----------------------------------------------------------------------------------------|-------------|-------------|---------------|--|
| a 🚞 Culvert Component    | Specification reference                                                                | Limit State | Flex. Sense | Pass/Fail     |  |
| Ext. Wall 1              | 5.4.2.8 Concrete Density Modification Factor                                           |             | N/A         | General Comp. |  |
| 🕨 🚞 Int. Wall 1          | 5.5.4.2.BoxCulvert Strength Limit State - Resistance Factors                           |             | N/A         | General Comp. |  |
| Ext. Wall 2              | ✓ 5.6.3.2.BoxCulvert Flexural Resistance (Reinforced Concrete)                         |             | N/A         | Passed        |  |
| 🔺 🚞 Top Slab 1           | ✓ 5.6.3.3.BoxCulvert Minimum Reinforcement                                             |             | N/A         | Passed        |  |
| 🚞 0.00 ft.               | 5.6.7.Crack.BoxCulvert Control of Cracking by Distribution of Reinforcement            |             | N/A         | General Comp. |  |
| i 0.75 ft.               | 6A.4.2.1 Shear-5.12.7.3.BoxCulvert Design for Shear in Slabs of Box Culverts           |             | N/A         | General Comp. |  |
| iii 1.20 ft.             | 6A.4.2.1 Shear-5.6.3.3.BoxCulvert Minimum Reinforcement                                |             | N/A         | General Comp. |  |
| i 2.40 ft.               | 6A.4.2.1 Shear-5.7.3.4.BoxCulvert Procedures for Determining Shear Resistance          |             | N/A         | General Comp. |  |
| 3.60 ft.                 | ✓ 6A.4.2.1.BoxCulvert.Concrete Flexure General Load Rating Equation - Concrete Flexure |             | N/A         | Passed        |  |
| iiii 4.80 ft.            | ✓ 6A.4.2.1.BoxCulvert.Concrete Shear General Load Rating Equation - Concrete Shear     |             | N/A         | Passed        |  |
| i 6.00 ft.<br>i 7.20 ft. | Cracked_Moment_Of_Inertia_BoxCulvert Section Property Calculations                     |             | N/A         | General Comp. |  |
| 🚞 8.40 ft.               |                                                                                        |             |             |               |  |
| 🚞 9.60 ft.               |                                                                                        |             |             |               |  |
| 🚞 10.80 ft.              |                                                                                        |             |             |               |  |
| 🚞 11.24 ft.              |                                                                                        |             |             |               |  |
| 🚞 12.00 ft.              |                                                                                        |             |             |               |  |
| 🕨 🚞 Bottom Slab 1        |                                                                                        |             |             |               |  |
| Top Slab 2               |                                                                                        |             |             |               |  |
| Bottom Slab 2            |                                                                                        |             |             |               |  |

Double-click on the 6A.4.2.1 BoxCulvert Concrete Flexure General Load Rating Equation - Concrete Flexure

specification reference to open the Spec Check Detail window.

| A.4.2 Gen<br>A.4.2.1 C<br>Extended                                                                                                                        |                                                                                | cedures<br>Rating<br>exure G<br>and DW                                                                          | Equation                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | n 2023 I                                                     | Interims                                                           | 3)                                                                         |                                                                      |                                                              |                                                                                       |                                                              |                                                                                           |                                                                                   |                                                                                   |                                                                                                |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|
| op Slab 1                                                                                                                                                 | - At Loca                                                                      | tion =                                                                                                          | 3.6000 (ft) -                                                                                                                                                               | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |                                                              |                                                                    |                                                                            |                                                                      |                                                              |                                                                                       |                                                              |                                                                                           |                                                                                   |                                                                                   |                                                                                                |                       |
| nput:                                                                                                                                                     |                                                                                |                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                              |                                                                    |                                                                            |                                                                      |                                                              |                                                                                       |                                                              |                                                                                           |                                                                                   |                                                                                   |                                                                                                |                       |
| C Moment<br>N Moment<br>V Moment<br>V Load                                                                                                                |                                                                                | =<br>=<br>=                                                                                                     | 1.6105 (kip-ft<br>0.0000 (kip-ft<br>4.6135 (kip-ft<br>0.0000 (kip/ft                                                                                                        | :)<br>:)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                                                              |                                                                    |                                                                            |                                                                      |                                                              |                                                                                       |                                                              |                                                                                           |                                                                                   |                                                                                   |                                                                                                |                       |
| Moment<br>Moment<br>nsider t<br>pth of f                                                                                                                  |                                                                                | =<br>=<br>ckfill<br>Limit                                                                                       | 3.3089 (kip-ft<br>0.0000 (kip-ft<br>0.0000 (kip-ft<br>from negligib)<br>density are kr<br>Live Load<br>Effect                                                               | ;)<br>;)<br>.e LL: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DW                                                                 | LL                                                           | Load Fa<br>AW                                                      | actors<br>EV                                                               | EH                                                                   | ES                                                           | LL<br>(kip-ft)                                                                        | Phi                                                          | Mn<br>(kip-ft)                                                                            | K<br>(Mr/Mmin)                                                                    | RF                                                                                | Capacity<br>(Ton)                                                                              |                       |
| pth of f<br>.oad                                                                                                                                          | ill and ba                                                                     | =<br>ffects<br>ckfill<br>Limit<br>State                                                                         | 0.0000 (kip-ft<br>0.0000 (kip-ft<br>from negligibl<br>density are kr<br>Live Load<br>Effect                                                                                 | :)<br>:)<br>Lown: No<br>DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DW                                                                 |                                                              | AW                                                                 | EV                                                                         |                                                                      |                                                              | (kip-ft)                                                                              |                                                              | (kip-ft)                                                                                  | (Mr/Mmin)                                                                         |                                                                                   | (Ton)                                                                                          | _                     |
| Moment<br>Moment<br>nsider t<br>pth of f<br>oad<br>                                                                                                       | Vehicle                                                                        | =<br>ffects<br>ckfill<br>Limit<br>State<br>STR-I                                                                | 0.0000 (kip-ft<br>0.0000 (kip-ft<br>from negligib)<br>density are kr<br>Live Load<br>Effect<br>+LL Moment                                                                   | )<br>)<br>LE LL: No<br>NOWN: NO<br>DC<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DW<br>1.50                                                         | 1.75                                                         | AW<br>1.75                                                         | EV                                                                         | 1.35                                                                 | 1.50                                                         | (kip-ft)<br>4.97                                                                      | 0.90                                                         | (kip-ft)<br>24.00                                                                         | (Mr/Mmin)                                                                         | 2.076                                                                             | (Ton)<br>74.72                                                                                 | -2                    |
| Moment<br>Moment<br>nsider t<br>pth of f<br>oad<br><br>esignInv<br>esignInv                                                                               | ill and ba                                                                     | =<br>ffects<br>ckfill<br>Limit<br>State<br>STR-I<br>STR-I                                                       | 0.0000 (kip-ft<br>0.0000 (kip-ft<br>from negligibl<br>density are kr<br>Live Load<br>Effect                                                                                 | :)<br>;)<br>ke LL: No<br>kown: No<br>DC<br>1.25<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DW<br>1.50<br>1.50                                                 |                                                              | AW                                                                 | EV                                                                         | 1.35                                                                 |                                                              | (kip-ft)                                                                              |                                                              | (kip-ft)                                                                                  | (Mr/Mmin)                                                                         |                                                                                   | (Ton)                                                                                          | 20                    |
| Moment<br>Moment<br>nsider t<br>pth of f<br>oad<br>esignInv<br>esignInv<br>esignInv                                                                       | Vehicle                                                                        | =<br>ffects<br>ckfill<br>Limit<br>State<br>STR-I<br>STR-I<br>STR-I                                              | 0.0000 (kip-ft<br>0.0000 (kip-ft<br>from negligib)<br>density are kr<br>Live Load<br>Effect<br>                                                                             | )<br>)<br>LE LL: No<br>NOWN: NO<br>DC<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DW<br>1.50                                                         | 1.75                                                         | AW<br>1.75<br>1.75                                                 | EV<br>1.30<br>1.30                                                         | 1.35                                                                 | 1.50                                                         | (kip-ft)<br>4.97<br>-0.54                                                             | 0.90                                                         | (kip-ft)<br>24.00<br>24.00                                                                | (Mr/Mmin)<br>1.00<br>1.00                                                         | 2.076                                                                             | (Ton)<br>74.72<br>3564.00                                                                      | -<br>2<br>0<br>2      |
| Moment<br>Moment<br>nsider t<br>pth of f<br>oad<br>esignInv<br>esignInv<br>esignInv                                                                       | Vehicle                                                                        | =<br>ffects<br>ckfill<br>Limit<br>State<br><br>STR-I<br>STR-I<br>STR-I<br>STR-I                                 | 0.0000 (kip-ft<br>0.0000 (kip-ft<br>from negligib)<br>density are kr<br>Live Load<br>Effect<br>                                                                             | :)<br>:)<br>:e LL: No<br>lown: No<br>DC<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DW<br>1.50<br>1.50<br>1.50                                         | 1.75<br>1.75<br>1.75                                         | AW<br>1.75<br>1.75<br>1.75                                         | EV<br>1.30<br>1.30<br>1.30                                                 | 1.35<br>1.35<br>1.35                                                 | 1.50<br>1.50<br>0.75                                         | (kip-ft)<br>4.97<br>-0.54<br>4.97                                                     | 0.90<br>0.90<br>0.90                                         | (kip-ft)<br>24.00<br>24.00<br>24.00                                                       | (Mr/Mmin)<br>1.00<br>1.00<br>1.00                                                 | 2.076<br>99.000<br>2.076                                                          | (Ton)<br>74.72<br>3564.00<br>74.72                                                             | -<br>2<br>0<br>2<br>0 |
| Moment<br>Moment<br>nsider t<br>pth of f<br>oad<br>esignInv<br>esignInv<br>esignInv<br>esignInv<br>esignInv                                               | Vehicle                                                                        | =<br>ffects<br>ckfill<br>Limit<br>State<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I                   | 0.0000 (kip-ft<br>from negligib)<br>density are kr<br>Live Load<br>Effect<br>                                                                                               | :)<br>:)<br>:e LL: No<br>DC<br><br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DW<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50                 | 1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75         | AW<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75                 | EV<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30                         | 1.35<br>1.35<br>1.35<br>1.35<br>0.90<br>0.90                         | 1.50<br>1.50<br>0.75<br>0.75<br>1.50<br>1.50                 | (kip-ft)<br>4.97<br>-0.54<br>4.97<br>-0.54<br>4.97<br>-0.54                           | 0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90                 | (kip-ft)<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00                   | (Mr/Mmin)<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 2.076<br>99.000<br>2.076<br>99.000<br>1.904<br>99.000                             | (Ton)<br>74.72<br>3564.00<br>74.72<br>3564.00<br>68.56<br>3564.00                              | 202060                |
| Moment<br>Moment<br>nsider t<br>pth of f<br>oad<br>esignInv<br>esignInv<br>esignInv<br>esignInv<br>esignInv<br>esignInv                                   | Vehicle<br>Vehicle<br>1<br>1<br>1<br>1<br>1<br>1                               | =<br>ffects<br>ckfill<br>Limit<br>State<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I                   | 0.0000 (kip-fi<br>from negligib)<br>density are kr<br>Live Load<br>Effect<br>                                                                                               | :)<br>:)<br>:e LL: No<br>Lown: No<br>DC<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DW<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50         | 1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75 | AW<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75 | EV<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30         | 1.35<br>1.35<br>1.35<br>1.35<br>0.90<br>0.90<br>0.90                 | 1.50<br>1.50<br>0.75<br>0.75<br>1.50<br>1.50<br>0.75         | (kip-ft)<br>4.97<br>-0.54<br>4.97<br>-0.54<br>4.97<br>-0.54<br>4.97                   | 0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90         | (kip-ft)<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00                   | (Mr/Mmin)<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                 | 2.076<br>99.000<br>2.076<br>99.000<br>1.904<br>99.000<br>1.904                    | (Ton)<br>74.72<br>3564.00<br>68.56<br>3564.00<br>68.56                                         | -2020606              |
| Moment<br>Moment<br>nsider t<br>pth of f<br>oad<br>esignInv<br>esignInv<br>esignInv<br>esignInv<br>esignInv<br>esignInv                                   | Vehicle<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                 | =<br>ffects<br>ckfill<br>Limit<br>State<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I          | 0.0000 (kip-ff<br>from negligib)<br>density are kr<br>Live Load<br>Effect<br>+LL Moment<br>-LL Moment<br>-LL Moment<br>-LL Moment<br>-LL Moment<br>-LL Moment<br>-LL Moment | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DW<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50         | 1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75 | AW<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75 | EV<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30 | 1.35<br>1.35<br>1.35<br>1.35<br>0.90<br>0.90<br>0.90<br>0.90         | 1.50<br>1.50<br>0.75<br>0.75<br>1.50<br>1.50<br>0.75<br>0.75 | (kip-ft)<br>-0.54<br>4.97<br>-0.54<br>4.97<br>-0.54<br>4.97<br>-0.54<br>4.97<br>-0.54 | 0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90 | (kip-ft)<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00          | (Mr/Mmin)<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 2.076<br>99.000<br>2.076<br>99.000<br>1.904<br>99.000<br>1.904<br>99.000          | (Ton)<br>74.72<br>3564.00<br>68.56<br>3564.00<br>68.56<br>3564.00                              | 20206060              |
| Moment<br>Moment<br>Insider t<br>ppth of f<br>oad<br>VesignInv<br>VesignInv<br>VesignInv<br>VesignInv<br>VesignInv<br>VesignInv<br>VesignInv<br>VesignInv | Uehicle<br>Vehicle<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | =<br>ffects<br>ckfill<br>Limit<br>State<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I | 0.0000 (kip-ff<br>from negligib)<br>densivy are kr<br>Live Load<br>Effect<br>                                                                                               | )<br>)<br>e LL: No<br>lown: No<br>DC<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1 | DW<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50 | 1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75 | AW<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75 | EV<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>0.90         | 1.35<br>1.35<br>1.35<br>1.35<br>0.90<br>0.90<br>0.90<br>0.90<br>1.35 | 1.50<br>1.50<br>0.75<br>1.50<br>1.50<br>0.75<br>0.75<br>1.50 | (kip-ft)                                                                              | 0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90 | (kip-ft)<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00 | (Mr/Mmin)<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 2.076<br>99.000<br>2.076<br>99.000<br>1.904<br>99.000<br>1.904<br>99.000<br>2.288 | (Ton)<br>74.72<br>3564.00<br>74.72<br>3564.00<br>68.56<br>3564.00<br>68.56<br>3564.00<br>82.30 | -202060606            |
| Moment<br>Moment<br>I Moment<br>Insider t<br>pth of f<br>esignInv<br>esignInv<br>esignInv<br>esignInv<br>esignInv<br>esignInv<br>esignInv                 | Vehicle<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                 | =<br>ffects<br>ckfill<br>Limit<br>State<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I<br>STR-I | 0.0000 (kip-ff<br>from negligib)<br>density are kr<br>Live Load<br>Effect<br>+LL Moment<br>-LL Moment<br>-LL Moment<br>-LL Moment<br>-LL Moment<br>-LL Moment<br>-LL Moment | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DW<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50         | 1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75 | AW<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75 | EV<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30<br>1.30 | 1.35<br>1.35<br>1.35<br>1.35<br>0.90<br>0.90<br>0.90<br>0.90         | 1.50<br>1.50<br>0.75<br>0.75<br>1.50<br>1.50<br>0.75<br>0.75 | (kip-ft)<br>-0.54<br>4.97<br>-0.54<br>4.97<br>-0.54<br>4.97<br>-0.54<br>4.97<br>-0.54 | 0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90 | (kip-ft)<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00          | (Mr/Mmin)<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 2.076<br>99.000<br>2.076<br>99.000<br>1.904<br>99.000<br>1.904<br>99.000          | (Ton)<br>74.72<br>3564.00<br>68.56<br>3564.00<br>68.56<br>3564.00                              | -2020606060           |


### Engine Outputs

To review engine outputs, select the **Engine Outputs** button in the ribbon. Double-clicking on the **Summary Output** or **Detail Output** will open the engine output file in a separate window.

| A Culvert Example 1                                      | - | × |
|----------------------------------------------------------|---|---|
| Culvert Example 1Culvert Def 1Culvert Alt 1Culvert Seg 1 |   | Ī |
| 4                                                        |   | • |

### Culvert Design Tool

Select the **CULVERT ALTERNATIVES** folder in the **Bridge Workspace** tree. Click the **Culvert Design Tool** button in the **TOOLS** ribbon (or right click and select **Culvert Design Tool**) to open the **RC Box Culvert Design Tool** as shown below.

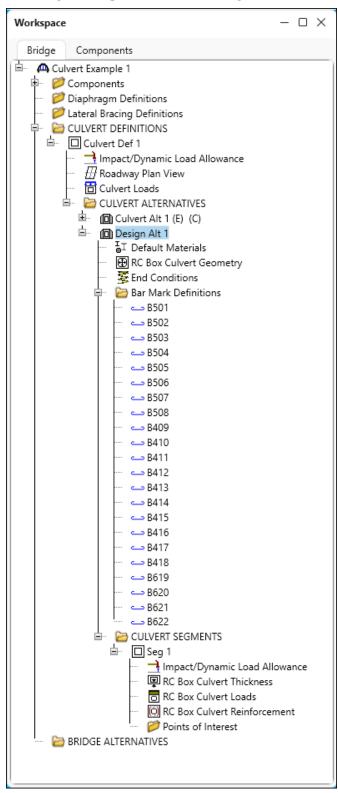


Enter the data as shown below and click the Next button.

| Aaterial:       Class A (US)       ✓         einforcement:       Grade 60       ✓         lear cover:       2       in         ottom slab clear cover:       2       in         Epoxy coated rebars       0       in         O None       2       0         All       12       ft         Cell       Width       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | Design Al   | t 1           |      | Segment name:         | Seg 1       |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|---------------|------|-----------------------|-------------|----|
| einforcement: Grade 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Iternative description: |             |               |      | Segment description:  |             |    |
| Clear cover:     2     in       Olar cover:     2     in       Minimum slab trickness:     10     in       None     0     0       All     12     ft       Cell     Width<br>(ft)     1       12     1     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aaterial:               | Class A (US | 5)            | ~    | Consider haunche      | s in design |    |
| ottom slab clear cover:     2     in     Imminute ductors in the second secon                                             | einforcement:           | Grade 60    |               | ~    | Minimum wall thicknes | is: 10      | in |
| Epoxy coated rebars Number of cells: 2<br>None Cell height: 12 ft<br>All<br>Top slab only<br>LL 02 Decime Reference Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lear cover:             | 2           | in            |      | Minimum slab thickne  | is: 10      | in |
| None     Cell height:     12     ft       All     Cell     Width<br>(ft)     1     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ottom slab clear cover: | 2           | in            |      | 🗹 Bottom slab prese   | nt          |    |
| All Top slab only III 02 Decime Residence (III 02 Decime Residence (IIII 02 Decime Residence (IIIII 02 Decime Residence (IIII 02 Decime Residence (I | Epoxy coated rebars     |             |               |      | Number of cells:      | 2 🗘         |    |
| Top slab only     Cell     Width<br>(ft)       1     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O None                  |             |               |      | Cell height:          | 12          | ft |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |             |               |      |                       |             |    |
| esign template: HL 93 Design Review View 2 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |             |               |      | > 1 12                |             | A  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | esign template:         | HL 93 Desi  | gn Review 🗸 🗸 | View | 2 12                  |             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |             |               |      |                       |             | v  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |             |               |      |                       |             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |             |               |      |                       |             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |             |               |      |                       |             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |             |               |      |                       |             |    |

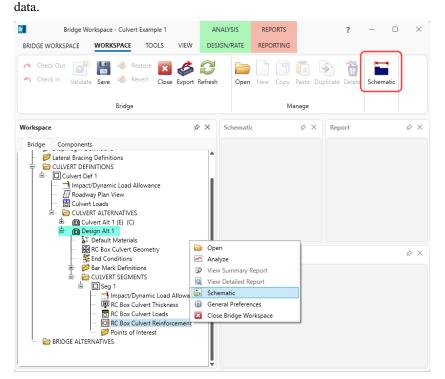
Enter the data as shown below.

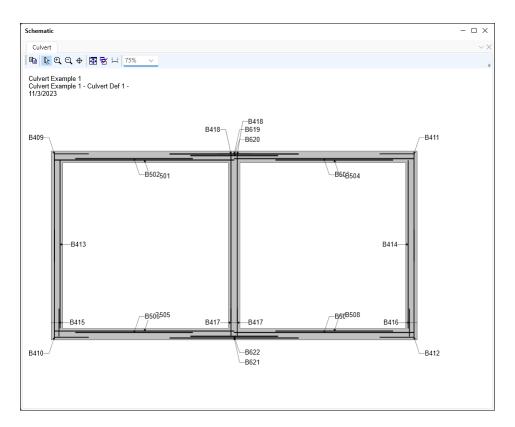
| Depth of fill at start edge:    | 4           | ft           |                                   |
|---------------------------------|-------------|--------------|-----------------------------------|
| Depth of fill at end edge:      | 4           | ft           | Depth of fill                     |
| Wearing surface                 |             |              |                                   |
| Copy from library               |             |              |                                   |
| Wearing surface unit load:      |             | pcf          | End edge                          |
| Wearing surface thickness:      |             | in           |                                   |
| RFD live load surcharge height: | 2.2         | ft           | Roadway Sta Ahd                   |
| Water                           |             |              | C End conditions                  |
| Water height:                   | ft          |              | Moment release at top of walls    |
| Water unit load: 62.4           | pcf         |              | Moment release at bottom of walls |
|                                 |             |              | Provide side sway support         |
| Soil                            | <b>C</b> 1- | ndard Soil 1 | Provide spring support            |
| Soil material:                  |             | bankment     | Subgrade modulus: pci             |
| Installation method:            | Em          | Dankment     | LRFD earth pressure coefficient   |
| Side fill condition             |             |              | At-rest                           |
| Compact Uncor                   | npact       |              | Active                            |
| Soil-structure interaction fact | tor:        |              | Passive                           |
| EH load factor                  |             |              |                                   |
| At-rest Active                  |             |              |                                   |
| Lateral soil pressure           |             |              |                                   |
| Apply soil pressure to          | left side   |              |                                   |
| Apply soil pressure to          | right side  |              |                                   |
|                                 |             |              |                                   |
|                                 |             |              |                                   |


Click Finish to start the design process. Click OK to close the RC Box Culvert Design Tool Progress window after

the design is completed.

The **Culvert Design Tool Results** window is shown below. Click **Create** to accept the design and click **Close** to close the window.


| 🗛 Culvert Design Tool                                                                                                                                                                                                                                 | Results                                                                                                       |                 |             | ×      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------|-------------|--------|--|--|--|--|--|
| Wall thickness:                                                                                                                                                                                                                                       | 10                                                                                                            | in              |             |        |  |  |  |  |  |
| Top slab thickness:                                                                                                                                                                                                                                   | 10                                                                                                            | in              |             |        |  |  |  |  |  |
| Bottom slab thickness:                                                                                                                                                                                                                                |                                                                                                               | in              |             |        |  |  |  |  |  |
| AASHTO Culvert LRFD                                                                                                                                                                                                                                   | Engine - Vers                                                                                                 | ion: 7.5.0.3001 |             | 8      |  |  |  |  |  |
| 11/3/2023 7:52:14 AM                                                                                                                                                                                                                                  |                                                                                                               |                 |             |        |  |  |  |  |  |
|                                                                                                                                                                                                                                                       | Analysis Preference Setting: None<br>LRFD Specification: AASHTO LRFD Bridge Design Specifications 9th Edition |                 |             |        |  |  |  |  |  |
| UserInput:<br>                                                                                                                                                                                                                                        |                                                                                                               |                 |             |        |  |  |  |  |  |
| Identification:<br>Number of cells:<br>Cell Width: 1:<br>Cell Height:<br>Depth of Fill at Start:<br>Depth of Fill at End:<br>Live Load Distribution<br>Run Type:<br>Design Vehicle Option<br>Pavement Reduction I<br>Skew Angle:<br>Surcharge Height: | 4.000 (ft)<br>Factor: 1.150<br>LRFD<br>Factor: 1.000<br>0.0<br>2.200 (ft)<br>0.00 (ft)<br>ess: 10.0 (Inc      | )<br>hes)       |             | Ψ<br>Þ |  |  |  |  |  |
|                                                                                                                                                                                                                                                       |                                                                                                               |                 | Create Clos | e      |  |  |  |  |  |


The Bridge Workspace tree with the Design Alt 1 is shown below.



#### Schematic - RC Box Culvert Reinforcement

Select the **RC Box Culvert Reinforcement** node under **Design Alt 1** in the **Bridge Workspace** tree. Click the **Schematic** button from the **WORKSPACE** ribbon (or right click and select **Schematic**) to review the reinforcement



