AASHTOWare BrDR 7.5.0 Feature Tutorial F1 – Flared Girder Example

Framing Plan

This example describes entering a girder system with flared girders and performing a rating of one of the members. The term "flared girders" describes a situation where the girder spacing or deck overhang varies along the length of the superstructure. Flared girders are also sometimes called splayed girders.

Topics covered:

- Flared girder geometry
- <u>Std distribution factor ranges</u>
- <u>LFR rating</u>

For this example, we are going to add a girder system superstructure with flared girders to **BID1** (**TrainingBridge1**) in the BrDR sample database. Open the Bridge Workspace for BID1.

Double click on SUPERSTRUCTURE DEFINITIONS, select Girder system superstructure, and click OK.

Enter the following	data to describe	the superstructure	definition.
U		1	

Girder System Superstructure Defini	tion		- 🗆 X
Definition Analysis Specs	Engine		
Name: Flared Girder			Modeling Multi-girder system MCB With frame structure simplified definition
Description:			Deck type: Concrete Deck
Default units: US Customary Number of spans: 1 Number of girders: 4	Enter span lengths along the reference line: Span Length (ft) > 1 50.00	×	For PS/PT only Average humidity:
Horizontal curvature	Distance from PC to first support line:	ft	
Superstructure alignment	Start tangent length:	ft	
 Curved Tangent, curved, tangent Tangent, curved 	Radius: Direction:	ft Left v	
O Curved, tangent	End tangent length:	ft	
	Distance from last support line to PT:	ft	
	Design speed:	mph	
	superelevation:	70	
			OK Apply Cancel

Note that the span length along the reference line is 50' but the actual length of each girder will be different due to the flared orientation of the girders.

Click **OK** to save the data to memory and close the window.

Open the **Load Case Description** window of the new superstructure and use the **Add default load case descriptions** button to create the following load cases.

Load case name	Description	Stage	T	ype	Time* (days)	
DC1	DC acting on non-composite section	Non-composite (Stage 1)	D,DC	-		
DC2	DC acting on long-term composite section	Composite (long term) (Stage 2) *	D,DC	*		
W	DW acting on long-term composite section	Composite (long term) (Stage 2) *	D,DW	*		
SIP Forms	Weight due to stay-in-place forms	Non-composite (Stage 1)	D,DC	-		

Click **OK** to save the data to memory and close the window.

Flared girder geometry

Framing Plan Details

Open the **Framing Plan Details** window and enter the following data. You must select **Along support** as the girder spacing orientation to be able to enter the girder spacing at the end of the girder.

Structure Framing Plan Details		—		>
umber of spans: 1 Number of gird	rs: 4			
Layout Diaphragms Lateral bracing range				
Support Skew (degrees)	Girder spacing orientation O Perpendicular to girder O Along support			
1 0.000 2 0.000	Girder spacing (ft) bay Start of End of oirder			
	▶ 1 8.00 10.00			
	2 8.00 10.00			
	3 8.00 10.00			
	ОК	Apply	Canc	el

Click **OK** to save the data to memory and close the window, then open the **Framing Plan Schematic** by either right clicking on Framing Plan Detail and selecting **Schematic** or clicking on **Schematic** on the Workspace ribbon.

The girders are not oriented correctly until we enter their locations relative to the edge of deck in the **Structure Typical Section** window. The leftmost girder in the structure typical section will be oriented with respect to the left edge of the deck. Then the remaining girders are oriented relative to the leftmost girder according to the girder spacing entered on the **Framing Plan Details** window.

We will enter the diaphragm locations after we visit the **Structure Typical Section** window to correctly orient the girders.

Structure Typical Section

1		·	•							U				
A Structure	Typical Section											_		×
	Distance from k	eft edge of a	deck to	Distance from	right e	dge of a	deck to							
		Deel	. IIrie	Superstructure	ture D	efinition		1						
		+ thickne	ess	Reference	Line									
		Ť						Ì						
Left overhang	← →							Right	overhang					
Deck [eck (cont'd)	Parapet	Medi	an Railing	G	eneric	Side	walk	Lane position	Striped lanes	Wearing surface			
Superstru	cture definition	reference	line is	within		Ƴ th	e bridg	e decl	¢.					
				Start	_		nd							
Superstru	rom left edge o cture definition	reference	line:	15.00	ft	18.0	0	ft						
Distance superstru	from right edge cture definition	of deck to reference	o line:	15.00	ft	1.00		ft						
Left over	iang:			3.00	ft	3.00		ft						
Compute	d right overhan			2.00	4	-141	00	4						
compute	u right överhan	g:		5.00	п	- 14,	00	n						
											OK	Apply	Canc	el
A Structure	Typical Section											-		Х
	Distance from k	eft edge of a	deck to	Distance from	right e	dge of a	leck to							
		definition ref	line	superstructure	ture D	tion ref. efinition	line /							
	\leq	Deck ↓thickne	ess	Reference	Line		2							
		t				_		l						
Left overhang	$ \rightarrow $					_		Right	overhang					
Deck [eck (cont'd)	Parapet	Medi	an Railing	G	eneric	Side	walk	Lane position	Striped lanes	Wearing surface			
Deck con	crete:	45	i00 psi C	Concrete				~						
Total decl	thickness:	7.0	0000	in										
Load case	:	En	igine As	signed	\sim									
Deck crac	k control paran	neter:		kip/in										
Sustained	modular ratio	factor: 3.0	000											
Deck exp	osure factor:													
L														
											OK	Apply	Canc	el

Open the Structure Typical Section window and enter the following information.

🕰 Str	ucture Typical Section								_		×
Back	Front										
De	ck Deck (cont'd) Parapet	Median	Railing Gen	eric Sidewalk	Lane position	n Striped	lanes V	Vearing surface			
	Name	Load case	e Measure to	Edge of deck dist. measured from	Distance at start (ft)	Distance at end (ft)	Front fac orientatio	ie on			
	Jersey Barrier	DC2	* Back *	Left Edge 🔹	0.00	0.00	Right	*			A
	Jersey Barrier	DC2	* Back *	Right Edge 🛛 👻	0.00	0.00	Left	-			
								New	Juplicate	Delete	*
								INEW L	upicate	Delete	
								ОК	Apply	Car	cel

Use the **Compute** button on the **Lane Position** tab to compute the following lane positions:

A Structure Typical Section	-		×
(A) (B) Superstructure Definition Reference Line Travelway 1 Travelway 2 Travelway 2			
Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Travelway number Distance from left edge of travelway to superstructure definition reference line at start (Å) Distance from right edge of travelway to superstructure definition reference line at start (B) Distance from left edge of travelway to superstructure definition reference line at end (Å) Distance from right edge of travelway to superstructure definition reference line at end (B) Distance from right edge of travelway to superstructure definition reference line at end (B) Distance from right edge of travelway to superstructure definition reference line at end (B)			
1 -13.25 13.25 -16.25 -0.75		-	
LRFD fatigue Lanes available to trucks: Override Truck fraction: Compute New Duplication:	ate	Delete]
OK A	Apply	Cance	1

Click $\mathbf{O}\mathbf{K}$ to close the window and save the data to memory.

Framing Plan Schematic

Re-open the Framing Plan Schematic. We can now see that the girders are correctly oriented.

Diaphragms

Bay 1 Di	aphragms	Bay 2 Di	aphragms	Bay 3 Diaphragms				
Girder 1	Girder 2	Girder 2	Girder 3	Girder 3	Girder 4			
(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000			
25.044960	25.005000	25.005000	25.005000	25.005000	25.044960			
50.089919	50.009999	50.0099999	50.009999	50.009999	50.089919			

Open the **Framing Plan Details** window, go to the **Diaphragms** tab and enter the following data. The diaphragms are entered manually for this example. The following table lists the diaphragm locations.

The preceding table lists the diaphragm locations down to the 6th decimal place precision. For our example we will enter the middle diaphragms at the 25.00' approximate location. The slight difference between the approximate location and the exact mathematical location will not cause a significant change in the computed unbraced lengths.

Enter the following data to locate the diaphragms at the start, at the middle and at the end of the structure.

tru	cture	Fram	ing Plan Deta	iils										-		>
mb	er of	spans	: 1	Number o	f girders: 4											
.ayo	out	Dia	phragms	Lateral bracing	ranges											
iird	er ba	y: 1		~	Copy bay t	0	Diap wi:	ohragm zard								
	Sup	port nber	S dist (tart tance (ft)	Diaphragm spacing	Number of spaces	Length (ft)	E dist (nd ance ft)	Load (kip)	Diaphra	gm				
			Left girder	Right girder	(ft)			Left girder	Right girder							
Þ	1	*	0.00	0.00	0.00	1	0.00	0.00	0.00		Not	*				-
	1	*	25.04	25.01	0.00	1	0.00	25.04	25.01		Not	-				
																•
											New		Duplicate		Delete	
										[OK		Apply		Cano	el:

A Structure Framing Plan Details \times _ Number of girders: 4 Number of spans: 1 Layout Diaphragms Lateral bracing ranges Diaphragm wizard... Girder bay: 2 ~ Copy bay to... Start End Diaphragm distance Number distance Support Length Load spacing (ft) Diaphragm (ft) (ft) number of spaces (ft) (kip) Left girder Right girder Left girder Right girder 0.00 0.00 0.00 0.00 0.00 0.00 1 --Not... Ŧ 1 1 + 25.01 25.01 0.00 1 0.00 25.01 25.01 --Not... -Ŧ 50.01 50.01 0.00 0.00 50.01 50.01 Ŧ 1 1 --Not... New Duplicate Delete OK Cancel Apply

The diaphragms in Bay 2 are entered as follows:

The diaphragms in Bay 3 are entered as follows:

Strue	cture	Fram	ing Plan Deta	ils										-		
imbe Layo	er of out	Diap	: 1 ohragms L	Number o	f girders: 4		Diap	hragm								
	Sup	port	Si dist (tart tance (ft)	Diaphragm spacing	Number of spaces	Length (ft)	Edist	nd tance ft)	Load (kip)	Diaphrag	ım				
			Left girder	Right girder	(14)			Left girder	Right girder							
	1	Ŧ	0.00	0.00	0.00	1	0.00	0.00	0.00		Not	*				*
	1	*	25.01	25.04	0.00	1	0.00	25.01	25.04		Not	-				
	1	*	50.01	50.09	0.00	1	0.00	50.01	50.09		Not	*				
																~
											New		Duplicate		Delete	
										[OK		Apply	,	Cano	el

Member Alternative

Open the **Member** window for member **G2**. Note the computed member length is slightly different than the span length of 50' that we entered on the **Superstructure Definition** window. This is due to the flared orientation of the member.

🕰 Member		-		×
Member name:	G2 Link with: None			
Description:				
	Existing Current Member alternative name Description			
				<u> </u>
				-
Number of spans	x 1 ○ Span length (ft) x 1 50.009999			
	T.			
	OK Appl	у	Cance	1

Create a Steel Rolled Beam Member Alternative for member G2.

A New Member Alternative	×
Material type:	Girder type:
Post tensioned concrete	Built-up
Prestressed (pretensioned) concrete	Plate
Reinforced concrete	Rolled
Steel	
Timber	
	OK Cancel

ember alterna	tive: Int	Beam							
Description	Specs	Factors	Engine	Import	Control options			 	
Description:					Material type:	Steel			
					Girder type:	Rolled			
					Modeling type	e: Multi Girder Syst	tem		
					Default units:	US Customary	\checkmark		
Cross-s	ection ba	sed	Left: Right:		in				
Self load		Engine Acc	ianed		Default rating met	hod:			
Additional	self load:	Lingine Ass	kip/ft		LFK	¥			
Additional	self load:		%						
								 	_

We will now describe the properties for this member.

Girder Profile

Open the **Girder Profile** window and in **Shape** tab click **New** to add a row to the grid. Select **Create a new shape** from the drop-down list in the **Shape** column.

	nied snape			-					
hape	Top cover plate	Bottom	cover plate					 	
	Shape	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Material			
<i>r</i>	-	1 -	0.00		0.00	Grade 50W	•		
	Create new shape								
		_							

This opens the Steel I Shape window. Select the Copy from Library button.

A Steel I Shape	×
Name: Description: Dimensions Properties I in I I I I I I I I I I I I I I I I I I	Rolled shape type W shape M shape S shape HP shape
Copy to library Copy from library OK	Apply Cancel

D, I	Steel Shape Selection				brary) Standard) Agency defined	Vnit system
	Shape	Year	Depth (in)	Load (lb/ft)	Sxx (in^3)	
	W 24x103	2011	24.5000	103.000	244.898	
	W 24x104	1994	24.0600	104.000	257.689	
	W 24x104	2011	24.1000	104.000	257.261	
	W 24x117	1994	24.2600	117.000	291.838	
Þ	W 24x117	2011	24.3000	117.000	291.358	
	W 24x131	2011	24.5000	131.000	328.163	
	W 24x131	1994	24.4800	131.000	328.431	
	W 24x146	2011	24.7000	146.000	370.850	•
					OK	Cancel

Select the W24x117 shape from Year 2011 and click the OK button.

This will populate the Steel I Shape window with the W24x117 properties. Click **OK** to close the Steel I Shape window. This will copy the shape to the Bridge and populate the Shape Designation on the Girder Profile window.

Enter **50.00** as the length and click **Apply**. You will get a message stating that the Beam length is 50.009999' long. This is the beam length computed by BrDR based on the flared orientation of the girder. Select **Yes** and BrDR will change the length of the range to match the length of the girder. This procedure of entering a slightly smaller span length can be used to allow BrDR to compute the exact length with the correct number of decimal places.

Gi	irde	r Profile				ē 🗅		(⊘ <	-		×
Туре	:	Rolled Shape		Pattan an								
31	ар		rplate	bottom cov	erplate							_
		Shape	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Material					
	n 1	W 24x117 👻	1 -	0.00	50.009999	50.01	Grade 50W	Ŧ			4	-
									ОК Арріу		Cance	el

Deck Profile

Open the **Deck Profile** window. Enter the following data on the **Shear connectors** tab to have the section considered as composite.

₼	Dec	c Profile									-		×
Ту	pe:	Rolled											
	Dec	k concrete	Reinfor	cement	Shear conne	ectors							
		Support number	Start distance (ft)	Length (ft)	End distance (ft)	Connector ID	Number of spaces	Number per row	Transverse spacing (in)				
	I	1 *	0.00	50.009999	50.01	Composite *						-	
												-	r
		Shear stud design too	1	View calcs						New Duplicat	e 🗌	Delete	
_										ОК Арг	ly	Cance	:

This needs to be entered before computing effective flange widths from structure typical section. If shear connector details are not entered, then the program gives the following message:

Bridge De	sign & Rating	\times
?	Girder is non-composite because shear connector ranges are not entered on the Shear Connectors tab. Press 'Yes' if you want the computation to proceed assuming the entire length of girder is composite. Otherwise press 'No' to cancel the computation.	
	Yes No	

Click on the **Deck concrete** tab to Click the **Compute from typical section** button to have BrDR compute the effective flange widths for you.

A Compute Deck Profile From Structure Typical Section		×
Total deck thickness entered on the Structure Typical Section window =	7.0000	in
Enter a structural thickness to use when computing the effective flange width:	6.5	in
	ОК	Cancel

Compute from New Duplicate											Rolled
Material Support number Start distance (ft) Length (ft) End distance (ft) Start effective distance (in) End effective Start effective (Sd) Start effective (Sd) End effective (Sd) End effective (Sd) End effective (Sd) End effective (Sd) End effective (Sd) End effective (Sd) In effective (Sd) End effective (Sd) <tht< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ctors</th><th>hear conne</th><th>ement S</th><th>ck concrete Reinford</th></tht<>								ctors	hear conne	ement S	ck concrete Reinford
4500 psi Concrete v 1 v 0.00 50.01 50.01 6.5000 78.0000 95.9809 119.9713 7.500	n	End effective flange width (LRFD) (in)	Start effective flange width (LRFD) (in)	End effective flange width (Std) (in)	Start effective flange width (Std) (in)	Structural thickness (in)	End distance (ft)	Length (ft)	Start distance (ft)	Support number	Material
Compute from typical section	7.500	119.9713	95.9809	78.0000	78.0000	6.5000	50.01	50.01	0.00	1 -	4500 psi Concrete
typical section											
	 										Compute from

The Std effective flange widths are computed as follows:

At Start of Structure:

¹/₄ Span Length = 50.009999'/4 = 12.5025' = 150.03"

Girder spacing = 8.0' = 96''

12 times structural slab thickness = 12*6.5" = 78" Controls

At End of Structure:

¹/₄ Span Length = 50.009999'/4 = 12.5025' = 150.03"

Girder spacing = 10.0' = 120"

12 times structural slab thickness = 12*6.5" = 78" Controls

Haunch Profile

Open the **Haunch Profile** window. Select the Haunch Type and enter **50.00** as the length and click **Apply**. You will get a message stating that the Beam length is 50.009999' long. This is the beam length computed by BrDR based on the flared orientation of the girder. Select **Yes** and BrDR will change the length of the range to match the length of the girder. This procedure of entering a slightly smaller span length can be used to allow BrDR to compute the exact length with the correct number of decimal places.

Enter other details as shown below and click OK**50.00** as the length and click **Apply**. You will get a message stating that the Beam length is 50.009999' long. This is the beam length

A Steel Haunch Profile	_		×
Haunch type:			
SupportStart distanceLength (ft)End distanceZ1 (in)Z2 (in)Y1 $1 \rightarrow 0.00$ 50.009999 50.01 1.0000			•
New Duplicat	e	Delete Cance	2

Lateral Support

Lateral Support	-		×
Start Distance Length			
Ranges Locations Flange lateral bending			
Top flange			
Support Start Length distance (ft) (ft)			
I 1 · · 0.00 50.009999 50.01		4	ň.,
New	uplicate	Delete	
		6	

Open the Lateral Support window. On the Ranges tab click on New and add the following details:

Enter **50.00** as the length and click **Apply**. You will get a message stating that the Beam length is 50.009999' long. This is the beam length computed by BrDR based on the flared orientation of the girder. Select **Yes** and BrDR will change the length of the range to match the length of the girder. This procedure of entering a slightly smaller span length can be used to allow BrDR to compute the exact length with the correct number of decimal places.

Bridge Design & Rating						
End Distance is 50.0000000 ft. Beam length is 50.0099990 ft. Do you want to change the length?						
Yes No						

Std Distribution Factor Ranges

Now open the **Live Load Distribution** window. Select **Use advanced method** as the **Distribution factor input method**. This method allows you to enter ranges of distribution factors over the length of the girder. It also allows the distribution factor to vary based on the varying girder spacing. You could also use the Simplified method if you simply want to enter an average distribution factor.

The varying distribution factors are used in the following manner. For each range, the user enters the distribution factor for a given effect (moment, shear, or deflection) at the beginning and the end of the range. The program assumes that the given distribution factor varies linearly within a range. When an influence line for a given effect is analyzed for a moving load, the program calculates the influence line ordinate for the position of axle load, and it also calculates the distribution factor for the given effect from the corresponding range of the distribution factor assuming a linear variation. The load effect for a given position of the axle load is calculated by multiplying the axle load, the influence line ordinate and the distribution factor. The load effect for each axle load is calculated as described above and then all load effects are added to calculate the total live load effect. This procedure is illustrated below:

Influence Line for Moment at A MA = P1*DF1*I1 + P2*DF2*I2 + P3*DF3*I3

The effect of lane loading at each point is calculated by adding the effects of uniform load and corresponding concentrated loads as described below:

(1) The influence line for the action at a point is multiplied by the distribution factor at each ordinate of the influence line. The effect of the uniform load at the point is then calculated by computing the area of the modified influence curve and multiplying that by the load intensity. In maximizing the effect of uniform loads, at most two regions with the largest effects are considered in the analysis.

(2) The effect of each concentrated load is calculated by multiplying the load, the influence line ordinate and the distribution factor at the location of the load. These effects are then added to calculate the total effect of the concentrated loads.

This procedure is illustrated below:

Influence Line for Moment at A (Adjusted by multiplying by distribution factors found at each influence ordinate)

The Standard distribution factors are computed as follows:

Deflection

DF = Number wheels/number of girders. The distribution factor is constant over the length of the member.

1 Lane DF = 2 wheels/4 girders = 0.500

Multi Lane DF = 2*2 wheels/4 girders = 1.000

Moment

DF found using AASHTO Table 3.23.1.

1 Lane DF = S/7.0

Multi Lane DF = S/5.5

At start of structure:

1 Lane DF = 8.0/7.0 = 1.143

Multi Lane DF = 8.0/5.5 = 1.455

At end of structure:

1 Lane DF = 10.0/7.0 = 1.429

Multi Lane DF = 10.0/5.5 = 1.818

Shear

Shear at Supports found by simple beam distribution:

At start of structure:

Start of Structure

1 Lane DF = 1.0 + 2.0/8.0 = 1.25

Multi Lane DF = 1.0 + 2.0/8.0 + 4.0/8.0 = 1.75

At end of structure:

End of Structure

1 Lane DF = 1.0 + 4.0/10.0 = 1.40

Multi Lane DF = 1.0 + 4.0/10.0 + 6.0/10.0 = 2.0

Shear distribution factors at locations other than a support are the same as the moment distribution factors.

Deflection

🐴 Live Load Distril	bution								-		×
Standard LR	FD										
Distribution	factor input	method									
Use simpl	ified metho	d 🔍 U	se advanced m	iethod 🔿 l	Jse advanced m	ethod with 199	4 auide specs				
							5				
Allow distri	bution facto	ors to be us	ed to compute	effects of perm	it loads with rou	utine traffic					
Action: Deflect	ion 🗸										
	Start				Distribution f	actor at start	Distribution f	factor at end			
Support	distance	Length (ft)	End distance (ft)	Variation	(wheels)		(wheels)				
	(ft)	((14)		1 lane	Multi-lane	1 lane	Multi-lane			
▶ 1	0.00	50.000	50.00	Constant *	0.500	1.000	0.500	1.000			<u> </u>
Compute from typical section	m V n	iew calcs					New	Duplicat	e	Delete	
							0	К Ар	ply	Canc	el

Enter the preceding values for the deflection distribution factor. The deflection distribution factor does not vary over the length of the member.

Enter **50.00** as the length of the range and click **Apply**. You will get a message stating that the Beam length is 50.009999' long. This is the beam length computed by BrDR based on the flared orientation of the girder. Select **Yes** and BrDR will change the length of the range to match the length of the girder. This procedure of entering a slightly smaller span length can be used to allow BrDR to compute the exact length with the correct number of decimal places.

Moment

Select Moment from the drop-down menu of Action and enter the moment distribution factors in a similar manner.

Live	Load Distri	bution								_		
Star	ndard LF	RFD										
	Distribution	factor input	t method -									
0	Use simp	lified metho	d 🔍 U	se advanced m	ethod Ou	lse advanced m	ethod with 199	4 auide specs				
_) 030 Simp			Se darancea m				, gaine spees				
	Allow distri	bution facto	ors to be us	ed to compute	effects of perm	it loads with rou	utine traffic					
cti	on: Mome	nt 🗸										
		Start				Distribution f	actor at start	Distribution	factor at end			
	Support	distance	Length (ft)	End distance (ft)	Variation	(wheels)		(wheels)				
	number	(ft)	(14)	(14)		1 lane	Multi-lane	1 lane	Multi-lane			
Þ.	1 *	0.00	50.000	50.00	Linear *	1.143	1.455	1.429	1.818			^
C ty	ompute fro /pical sectio	m \	/iew calcs					New	Duplicat	te	Delete	v
								C	К Ар	ply	Canc	el

Shear

The AASHTO Specifications do not specify a length over which the shear at supports distribution factor is to be applied. In our example, we are applying these distribution factors over a 2' length adjacent to the support. In your actual production usage of BrDR, you should determine this length based on the structure you are modeling using your own engineering judgment.

0	Use simp	lified meth	od 💿 Us	e advanced me	ethod 🔾 Us	e advanced me	thod with 1994	guide specs		
<u></u>	Allow distri	bution fact	ors to be use	d to compute e	effects of permit	loads with rou	tine traffic			
tio	n: Shear	~								
Support Start distance		Length	End distance	Variation	Distribution factor at start (wheels)		Distribution factor at end (wheels)			
	number	(ft)	(ft)	(ft)		1 lane	Multi-lane	1 lane	Multi-lane	
ŀ	1 -	0.00	2.000	2.00	Constant *	1.250	1.750	1.250	1.750	
c •	1 -	2.00	46.009999	48.01	Linear *	1.143	1.455	1.429	1.818	
	1 -	48.01	2.000	50.01	Constant 👻	1.400	2.000	1.400	2.000	

LFR Rating

Analysis Settings

To perform an LFR rating, select the **Analysis Settings** button on the Analysis group of the DESIGN/RATE ribbon. Click on **Open template** and select **HS 20 LFR Rating** template to be used in the rating and click **OK**. The Analysis Settings window will be populated as shown below. Click **OK** to save the analysis settings to memory and close the window.

Analysis Settings		_	
O Design review Rating Analysis type:	Rating method: Analysis option:	LFR DL, LL and Spec-Checking	
Lane / Impact loading type: As Requested	Apply preference setting:	None	
Vehicles Output Engine Description Traffic direction: Both directions Vehicle selection Image: Standard Image: Standar	Add to Ad	Temporary vehicles Advanced / des y 0-44 leg 0-44 erating wentory perating	
Reset Clear Open template Save ten	nplate	OK Apply	Cancel

View Tabular Results

Select **Int Beam** member alternative in the Bridge Workspace tree and Click the **Analyze** button on the Analysis group of the DESIGN/RATE ribbon to start the rating process. Once the analysis is complete, click the **Tabular Results** button on the Results group of the DESIGN/RATE ribbon to review the results.

Analysis Results - Int B	Beam									_		×
Print												
Report type:	- Lane/Imp	act loading type	Display Format									
Rating Results Summary	As rec	uested O Detailed	Single rating level	per row								
Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane		
HS 20-44	Axle Load	LFR	Inventory	36.53	1.015	25.00	1 - (50.0)	Design Flexure - Steel	As Requested	As Requested		
HS 20-44	Axle Load	LFR	Operating	61.00	1.695	25.00	1 - (50.0)	Design Flexure - Steel	As Requested	As Requested		
HS 20-44	Lane	LFR	Inventory	53.29	1.480	25.00	1 - (50.0)	Design Flexure - Steel	As Requested	As Requested		
HS 20-44	Lane	LFR	Operating	88.99	2.472	25.00	1 - (50.0)	Design Flexure - Steel	As Requested	As Requested		
												~
AASHTO LFR Engine Versio	on 7.5.0.3001											
Analysis preference setting	g: None											
											Clo	ose