AASHTOWare BrDR 7.5.0 Feature Tutorial Field Verified Wearing Surface Thickness

Topics Covered

• Field verified wearing surface thickness for LRFR analysis.

Note: Field measured wearing surface thickness is used only in the LRFR analysis. LFR and ASR analysis do not use this feature.

Field verified wearing surface thickness for LRFR analysis.

Br			AASHTOWare Bridge Design and Rating					?	-	□ ×
BRIDGE EXPLORER BRIDGE FOLDER	RATE	TOOLS VIEW								
Import 🚲 🖻 📋	1 P	A A A								
New Open Batch - Find Conv. Paste		Remove Delete								
new open nud copy rust	To *	From								
Bridge	Manage									
	BIE	Bridge ID	Bridge Name	District	County	Facility	Location	Route	Featur	e Inters
Recent Bridges	•	1 TrainingBridge1	Training Bridge 1(LRFD)	Unknown	Unknown (P)	SR 0051	Pittsburgh	0051	SR 606	j0 🔺
- MII Bridges	1	2 TrainingBridge2	Training Bridge 2(LRFD)	Unknown	Unknown (P)	N/A	N/A	-1	N/A	
E Peletad Bridger	1	3 TrainingBridge3	Training Bridge 3(LRFD)	Unknown	Unknown (P)	1-79	Pittsburgh	0079	Ohio F	liver
Deleted bridges	4	PCITrainingBridge1	PCI TrainingBridge1(LFD)					-1		
		5 PCITrainingBridge2	PCITrainingBridge2(LRFD)					-1		
		5 PCITrainingBridge3	PCI TrainingBridge3(LFD)					-1		
		7 PCITrainingBridge4	PCITrainingBridge4(LRFD)					-1		
	1	8 PCITrainingBridge5	PCI TrainingBridge5(LFD)					-1		
	9	PCITrainingBridge6	PCITrainingBridge6(LRFD)					-1		
	1	Example7	Example 7 PS (LFD)					-1		
	1	RCTrainingBridge1	RC Training Bridge1(LFD)					-1		
	13	2 TimberTrainingBridge1	Timber Tr. Bridge1 (ASD)					-1		
	1	8 FSys GFS TrainingBridge1	FloorSystem GFS Training Bridge 1	Unknown	Unknown (P)	NJ-Turnpike	NJCity	-1		
	14	FSys FS TrainingBridge2	FloorSystem FS Training Bridge 2	Unknown	Unknown (P)	1-95	NYC	-1		
	1	5 FSys GF TrainingBridge3	FloorSystem GF Training Bridge 3	Unknown	Unknown (P)	1-95	ATL	-1		
	10	5 FLine GFS TrainingBridge1	FloorLine GFS Training Bridge 1	Unknown	Unknown (P)	1-75	JAX	-1		
	1	7 FLine FS TrainingBridge2	FloorLine FS Training Bridge 2	Unknown	Unknown (P)	1-75	GNV	-1		
	18	FLine GF TrainingBridge3	FloorLine GF Training Bridge 3	Unknown	Unknown (P)	1-95	NY	15		
	19	TrussTrainingExample	Truss Training Example					5		
	20	LRFD Substructure Example 1	LRFD Substructure Example 1							
	2	LRFD Substructure Example 2	LRFD Substructure Example 2			SR 4034	ERIE COUNTY	4034	FOUR	MILE C
	2	2 LRFD Substructure Example 3	LRFD Substructure Example 3							
	2	B LRFD Substructure Example 4	LRFD Substructure Example 4 (NHI Hammer Head)					-1		
	24	Visual Reference 1	Visual Reference 1	Unknown	Unknown (P)	1-76	WAITSFIELD	I-76	MAD F	RIVER
	2	5 Culvert Example 1	Culvert Example 1					STH60		
	2	5 LFD Curved Guide Spec	LFD Curved Guide Spec Example					1		
	2	7 MultiCell Box Examples	Multi Cell Box Examples					100		
	2	3 Gusset Plate Example	Gusset Plate Example	Unknown			Some Highway			
	2	9 Splice Example	Splice Example					-1		
	30	Simple DL-Cont LL-Splice	Simple DL Splice	Unknown	Unknown (P)	N/A	N/A	-1	N/A	
	3	MetalCulvertExample1	MetalCulvertExample 1					1		*
	•									•
						T . 10.11	<u> </u>	22		
						lotal Bridge	Count	32		

Open BrDR. From the Bridge Explorer select **TrainingBridge1** (**BID 1**) and double click (or right click and select Open) to open it.

To evaluate a fatigue truck, the $ADTT_{SL}$ values need to be entered. To do this, double-click on **Training Bridge1** in the Bridge Workspace to open the **TrainingBridge1** window. Click on **Traffic** tab and enter the values as shown below:

A TrainingBridge1			- 🗆	×
Bridge ID: TrainingBridge1	NBI structure ID (8): TrainingBridge1	☐ Template ✓ Bridge completely defined	Superstructures Culverts Substructures	
Description Description (cont	d) Alternatives Global reference point Traffic	Custom agency fields		_
Truck PCT: ADT: Directional PCT: Recent ADTT: Design ADTT: Exp. annual ADTT _{SL} growth rate: Fatigue importance factor:	% Compute 2500 Main Arterial Interstate Other			
	Importance factor override			
(ADTT _{SL}) ₀ :	1000			
(ADTT _{SL})PRESENT:	2000			
(ADTT _{SL})LIMIT:	2500			
Bridge association	BrR 🖉 BrD 🗌 BrM	OK A	pply Cancel	

Click the **OK** button to save and close the window.

In the Bridge Workspace tree, expand the **Simple Span Structure** node located under **SUPERSTRUCTURE DEFINITIONS** by clicking on the + button. Expand the **MEMBERS**, **G1** and **Plate Girder** (E) (C) nodes as shown below:

Select the member alternative **Plate Girder** (E) (C), and then click on the **Analysis Settings** button located on the **Analysis** group of the **DESIGN/RATE** ribbon as shown below.

Br							ANALYS	IS	REPORTS
BRIDGE	WORKSPA		NORKSPA	CE TOO	LS VIE	w	DESIGN/R	ATE	REPORTING
*	6₽*				6	X	έ 🖪		
Analysis Settings	Analyze A	Analysis Events	Tabular Results	Specification Check Detail	n Engine I Outputs	Resu Grap	lts Save h Results		
	Analysis				Results				

Analysis Settings

Click the **Open template** button in the **Analysis Settings** window as shown below.

Design review Rating		Rating me	thod:	LFR	~		
alysis type: Line Girder	~						
e / Impact loading type: As Requested	~	Apply pre	ference setting	None	~		
/ehicles Output Engine Description							
Traffic direction: Both directions	•		Refresh	Temporary vehicles	Advanced]	
Vehicle selection			Vehicle summa	У			
■ Vehicles ← Standard → Atternate Military Loading → EV3 → H 15-44 → H 20-44 → H 3 5-44 → H 3 20-44 → NRL → SU4 → SU4 → SU4 → SU6 → SU7 → Type 33 → Type 352 → Agency → User defined → Temporary		Add to >> Remove from <<	Bi-Rating vehi —Invento —Operati —Legal o —Permit —Permit	cles ry ng pretating niventory pperating			

Open Template

Select the LRFR Design Load Rating template. Click Open to apply this template.

Templates		Description	Analysis	Owner	Public / Private	
HL 93 Design Revie	ew HI	. 93 Design Review	LRFD		Public	
HS 20 LFR Rating	H	5 20 LFR Rating	LFR		Public	
LRFR Design Load	Rating LF	FR Design Load Rating	LRFR		Public	
LRFR Legal Load R	ating LF	FR Legal Load Rating	LRFR		Public	

The Analysis settings window with the selected vehicles is shown below.

Click the **OK** button to save and close the **Analysis Settings** window.

To Analyze, click the **Analyze** button on the Analysis group of the **DESIGN/RATE** ribbon to start the rating process as shown below

Tabular Results

Once the analysis is complete, click the **Tabular Results** button on the **Results** group of the **DESIGN/RATE** ribbon to review the results as shown below.

On the **Analysis Results** window select Display Format as **Single rating level per row** to display analysis results as shown below.

🐴 Analysis Results - Plate Girder										-		×
Print Print												
Report type:	Lane/Impact load	ding type Disj	play Format									
Rating Results Summary	As requested	Detailed Sir	ngle rating level per rov	v								
	live load		Rating	Load Rating		location	location					
Live Load	Туре	Rating Method	Level	(Ton)	Rating Factor	(ft)	Span-(%)	Limit State	Impact	Lane		
HL-93 (US)	Truck + Lane	LRFR	Inventory	19.45	0.540	80.50	1 - (50.0)	STRENGTH-I Steel Flexure Stress	As Requested	As Reques	ted	-
HL-93 (US)	Truck + Lane	LRFR	Operating	25.22	0.700	80.50	1 - (50.0)	STRENGTH-I Steel Flexure Stress	As Requested	As Reques	ted	
HL-93 (US)	Tandem + Lane	LRFR	Inventory	23.07	0.641	80.50	1 - (50.0)	STRENGTH-I Steel Flexure Stress	As Requested	As Reques	ted	
HL-93 (US)	Tandem + Lane	LRFR	Operating	29.91	0.831	80.50	1 - (50.0)	STRENGTH-I Steel Flexure Stress	As Requested	As Reques	ted	
LRFD Fatigue Truck (US)	Axle Load	LRFR	Inventory	45.54	1.518	80.50	1 - (50.0)	FATIGUE-I Steel Fatigue Stress	As Requested	As Reques	ted	
												V
AASHTO LRFR Engine Version 7.5.0	.3001											
Analysis preference setting: None												
											Clos	se

Specification Check Detail

Select the **Specification Check Detail** button on the **Results** group of the **DESIGN/RATE** ribbon to open the **Specification Checks** window as shown below.

Expand Stage 3 -> Plate Girder and select Span 1 – 80.50 ft. (midpoint of span 1). This displays a list of articles checked for this location. Select and open article 6A.4.2.1 General Load Rating Equation – Steel Flexure Stress by double clicking on it.

A Specification Checks for Plate G	rder - 46 of 954				_	×
Properties Specification filter	Articles All articles v Format Bullet list v					
	Specification reference	Limit State	Flay Sanca	Dace/Fail		^
Stage 1	6.10.7.2.2 Nominal Flexural Resistance	Linni State	N/A	General Comp.		
Stage 2	 6.10.7.3 Flexural Resistance - Ductility Requirement 		N/A	Passed		
🔺 🚞 Stage 3	NA 6.10.8.1.1 Discretely Braced Flanges in Compression		N/A	Not Applicable		
🔺 🚞 Plate Girder	NA 6.10.8.1.2 Discretely Braced Flanges in Tension		N/A	Not Applicable		
🚞 Span 1 - 0.00 ft.	NA 6.10.8.1.3 Continuously Braced Flanges in Tension or Compression		N/A	Not Applicable		
🚞 Span 1 - 13.66 ft.	6.10.8.2.1 General		N/A	General Comp.		
🚞 Span 1 - 16.10 ft.	6.10.8.2.2 Local Buckling Resistance		N/A	General Comp.		
i Span 1 - 27.31 ft.	6.10.8.2.3 Lateral Torsional Buckling Resistance		N/A	General Comp.		
Span 1 - 32.20 ft.	6.10.8.2.3.Cb Lateral Torsional Buckling Resistance - Cb Calculation		N/A	General Comp.		
Span 1 - 40.73 ft.	6.10.8.2.3.rt Lateral Torsional Buckling Resistance - rt and Lp Calculatic		N/A	General Comp.		
Span 1 - 46.50 ft.	6.10.8.3 Flexural Resistance Based on Tension Flange Yielding		N/A	General Comp.		- 10
Span 1 - 64.40 ft	✓ 6.10.9 LRFD Shear Resistance		N/A	Passed		
Span 1 - 67.56 ft.	6.10.9.1 Shear Resistance - General		N/A	General Comp.		
Span 1 - 80.50 ft.	× 6.10_General_Flexural_Results		N/A	Failed		
Span 1 - 80.98 ft.	✓ 6.6.1.2.2 Design Criteria		N/A	Passed		
Span 1 - 94.39 ft.	✓ 6A.4.2.1 General Load Rating Equation - Steel Flexure Moment		N/A	Passed		
in Span 1 - 96.60 ft.	X 6A.4.2.1 General Load Rating Equation - Steel Flexure Stress		N/A	Failed		
🚞 Span 1 - 107.81 ft	✓ 6A.4.2.1 General Load Rating Equation - Steel Shear		N/A	Passed		
🚞 Span 1 - 112.70 ft	6A.4.2.1.fl		N/A	General Comp.		
🚞 Span 1 - 121.23 ft	X 6A.6.4.2.2 Service Limit State		N/A	Failed		
🚞 Span 1 - 128.80 ft	X 7.2 Load-Induced Fatigue-Damage Evaluation		N/A	Failed		
🚞 Span 1 - 134.64 ft	7.2.6 Fatigue Serviceability Index		N/A	General Comp.		
in Span 1 - 144.90 ft	APPD6.1 Plastic Moment		N/A	General Comp.		
i Span 1 - 147.82 ft	APPD6.2 Yield Moment		N/A	General Comp.		
🚞 Span 1 - 161.00 ft	APPD6.3.1 In the Elastic Range (Dc)		N/A	General Comp.		
	APPD6.3.2 Depth of the Web in Compression at Plastic Moment		N/A	General Comp.		
	Steel Elastic Section Properties		N/A	General Comp.		
	Unbraced Length Calculations		N/A	General Comp.		\checkmark

Field Verified Wearing Surface Thickness

This opens the spec check detail computation of the article. The Load Factors **DW-WS** is considered as 1.50 according to MBE Table 6A.4.2.2 -1.

Spec Check Det	ail for 6A.4.2	1 General L	oad Rating Equation	- Steel Flexure Stres	is																-	D X
Top Flange Ra	ting																					^
Load	Load Combo	Limit State	Component	Flexure Type	LL (kip-ft)	Adj. LLz (kip-ft)	Adj. LLl (kip-ft)	DC	DW	DW-WS	LL	Unfactored fLLz (ksi)	fl (ksi)	Adj. fLL (ksi)	Factored User Input fl DL (ksi)	Factored User Input fl LL (ksi)	Phi	fR (ksi)	Overr: Phi	ide fR (ksi)	RF	Capacity (Ton)
DesignInv DesignInv DesignOp DesignInv DesignInv DesignInv DesignOp DesignOp	1 1 2 2 2 2	STR-I STR-I STR-I STR-I STR-I STR-I STR-I STR-I	Top Flange Top Flange Top Flange Top Flange Top Flange Top Flange Top Flange Top Flange	Pos Pos Pos Pos Pos Pos Pos Pos	5340.2 0.0 5340.2 0.0 4502.2 0.0 4502.2 0.0			1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	1.75 1.75 1.35 1.35 1.75 1.75 1.35 1.35	-3,80 0,00 -3,80 0,00 -3,20 0,00 -3,20 0,00	0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00	-50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00		 	1.301 99.000 1.687 99.000 1.544 99.000 2.001 99.000	46.85 3564.00 60.73 3564.00 55.57 3564.00 72.04 3564.00
Legend: Top flange Bottom Flange	Rating	aly suppo	commonant	ige lateral str	cesses are s	Adj.	Adj.	DC.	na	76-63	T	Unfactored	e1	Adj.	Factored	Factored		FD	Overr	ide	DF	Capacity
Load	Combo	State	Component	Type	(kip-ft)	(kip-ft)	(kip-ft)	DC	LW	DM-M2	LL	(ksi)	(ksi)	(ksi)	(ksi)	(ksi)	Phi	(ksi)	Phi	(ksi)	K2	(Ton)
DesignInv DesignOp DesignOp DesignInv DesignInv DesignOp DesignOp	1 1 1 2 2 2 2 2	STR-I STR-I STR-I STR-I STR-I STR-I STR-I	Bot Flange Bot Flange Bot Flange Bot Flange Bot Flange Bot Flange Bot Flange	Pos Pos Pos Pos Pos Pos Pos	5340.2 0.0 5340.2 0.0 4502.2 0.0 4502.2 0.0			1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	1.50 1.50 1.50 1.50 1.50 1.50 1.50	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	1.75 1.75 1.35 1.35 1.75 1.75 1.75 1.35	15.76 0.00 15.76 0.00 13.29 0.00 13.29 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00			0.540 99.000 0.700 99.000 0.641 99.000 0.831 99.000	19.45 3564.00 25.22 3564.00 23.07 3564.00 29.91 3564.00
																						OK

Close the article and the Specification Check Detail window. Again, navigate to the **SUPERSTRUCTURE DEFINITIONS** -> **Simple Span Structure**. Double click on the **Structure Typical Section** to open this window.

Structure Typical Section

On the **Structure Typical Section** window go to the **Wearing Surface** tab. Select field measured wearing surface thickness by checking the check box for **Thickness field Measured** (**DW** = **1.25 if checked**). Click the **OK** button to save and close the **Structure Typical Section** window. Now rerun the analysis by clicking the **Analyze** button on the **Analysis** group of the **DESIGN/RATE** ribbon.

Structure Typical Section Distance from left superstructure de	t edge of deck to 'Distance from right edge of deck to elimition ref. line superstructure definition ref. line	_		×
Left overhang	Deck Superstructure Definition			
Deck Deck (cont'd)	Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Wearing surface material:	Asphalt			
Description:	Asphalt - 25 psf			
Wearing surface thickness	: 2.7800 in Thickness field measured (DW = 1.25 if checked)			
Wearing surface density:	108.000 pcf			
Load case:	DW Copy from library			
	ОК Арг	y	Cance	el

After the analysis is completed open the **Specification Checks** window by clicking on the **Specification Check Detail** button on the **Results** group of the **DESIGN/RATE** toolbar. From the spec articles list open spec article **6A.4.2.1 General Load Rating Equation – Steel Flexure Stress** for Stage 3, **Span 1 – 80.50ft**.

In this article the load factors for DW-WS are now taken as 1.25 according to MBE Table 6A.4.2.2-1 foot note point 3.

Flange Rati	ng																					
						Adj.	Adj.					Unfactored		Adj.	Factored	Factored			Overri	ide		
ad	Load Combo	Limit State	Component	Type	LL (kip-ft)	LLz (kip-ft)	LL1 (kip-ft)	DC	DW	DW-WS	LL	fLLz (ksi)	fl (ksi)	fLL (ksi)	User Input fl DL (ksi)	User Input fl LL (ksi)	Phi	fR (ksi)	Phi	fR (ksi)	RF	Capaci (Ton
signInv	1	STR-I	Top Flange	Pos	5340.2			1.25	1.50	1.25	1.75	-3.80	0.00		0.00	0.00	1.00	-50.00			1.363	49.05
signInv	1	STR-I	Top Flange	Pos	0.0			1.25	1.50	1.25	1.75	0.00	0.00		0.00	0.00	1.00	-50.00			99.000	3564.0
signOp signOp	1	SIR-I STR-I	Top Flange	Pos	0.0			1.25	1.50	1.25	1.35	0.00	0.00		0.00	0.00	1.00	-50.00			99.000	3564.
signInv	2	STR-I	Top Flange	Pos	4502.2			1.25	1.50	1.25	1.75	-3.20	0.00		0.00	0.00	1.00	-50.00			1.616	58.1
ignInv	2	STR-I STR-T	Top Flange	Pos	4502 2			1.25	1.50	1.25	1.75	0.00	0.00		0.00	0.00	1.00	-50.00			99.000	3564.
signOp	2	STR-I	Top Flange	Pos	0.0			1.25	1.50	1.25	1.35	0.00	0.00		0.00	0.00	1.00	-50.00			99.000	3564.
xm Flange R	ating																					
4	Load	Limit	Component	Flexure	LL.	Adj.	Adj.	DC	DH	DM-MS	LL	Unfactored fLLz	fl	Adj. fLL	Factored User Input fl DL	Factored		fB	Overri	ide	RF	Capa
	Combo	State	component	Type	(kip-ft)	(kip-ft)	(kip-ft)					(ksi)	(ksi)	(ksi)	(ksi)	(ksi)	Phi	(ksi)	Phi	(ksi)		(T
IgnInv	1	STR-I	Bot Flange	Pos	5340.2			1.25	1.50	1.25	1.75	15.76	0.00		0.00	0.00	1.00	50.00			0.566	20.3
Lauop	1	SIR-I STR-I	Bot Flange	Pos	5340.2			1.25	1.50	1.25	1.75	15.76	0.00		0.00	0.00	1.00	50.00			0.733	26.
gnOp	1	STR-I	Bot Flange	Pos	0.0			1.25	1.50	1.25	1.35	0.00	0.00		0.00	0.00	1.00	50.00			99.000	3564
lanInv	2	STR-I STR-I	Bot Flange	Pos	4502.2			1.25	1.50	1.25	1.75	13.29	0.00		0.00	0.00	1.00	50.00			99.000	3564
LgnOp	2	STR-I	Bot Flange	Pos	4502.2			1.25	1.50	1.25	1.35	13.29	0.00		0.00	0.00	1.00	50.00			0.870	31.
ıgnOp	2	STR-1	Bot Flange	Pos	0.0			1.25	1.50	1.25	1.35	0.00	0.00		0.00	0.00	1.00	50.00			99.000	3564

6A.4.2.2-Limit States

C6A.4.2.2

Strength is the primary limit state for load rating; service and fatigue limit states are selectively applied in accordance with the provisions of this Manual. Applicable limit states are summarized in Table 6A.4.2.2-1. Service limit states that are relevant to load rating are discussed under the articles on resistance of structures (see Articles 6A.5, 6A.6, and 6A.7).

Fable 6A.4.2.2-1-	-Limit States and	Load Factors for	r Load Rating
-------------------	-------------------	------------------	---------------

				Desig	n Load		
		Dead Load	Dead Load	Inventory	Operating	Legal Load	Permit Load
Bridge Type	Limit State*	YDC	Yow	γ_{LL}	γ_{LL}	γ_{LL}	YLL
	Strength I	1.25	1.50	1.75	1.35	Tables 6A.4.4.2.3a-1 and 6A.4.4.2.3b-1	-
Steel	Strength II	1.25	1.50		-		Table 6A.4.5.4.2a-1
	Service II	1.00	1.00	1.30	1.00	1.30	1.00
	Fatigue	0.00	0.00	0.75			_
Reinforced	Strength I	1.25	1.50	1.75	1.35	Tables 6A.4.4.2.3a-1 and 6A.4.4.2.3b-1	
Concrete	Strength II	1.25	1.50		-		Table 6A.4.5.4.2a-1
	Service I	1.00	1.00	_			1.00
Prostranged	Strength I	1.25	1.50	1.75	1.35	Tables 6A.4.4.2.3a-1 and 6A.4.4.2.3b-1	_
Concrete	Strength II	1.25	1.50				Table 6A.4.5.4.2a-1
concicie	Service III	1.00	1.00	0.80		1.00	
	Service I	1.00	1.00				1.00
Wood	Strength I	1.25	1.50	1.75	1.35	Tables 6A.4.4.2.3a-1 and 6A.4.4.2.3b-1	-
	Strength II	1.25	1.50	_	—	_	Table 6A.4.5.4.2a-1

* Defined in the AASHTO LRFD Bridge Design Specifications.

Notes:

Shaded cells of the table indicate optional checks.

Service I is used to check the 0.9 F_y stress limit in reinforcing steel.

Load factor for DW at the strength limit state may be taken as 1.25 where thickness has been field measured.

Fatigue limit state is checked using the LRFD fatigue truck (see Article 6A.6.4.1).

MBE Table 6A.4.2.2 -1.