AASHTOWare BrDR 7.5.0
Prestressed Concrete Structure Tutorial PS12 - Three Span Prestressed I Beam Stirrup Design Example

PS12 - Three Span Prestressed I Beam Stirrup Design Example

PS12 - Three Span Prestressed I Beam Stirrup Design Example


Typical Section

PS12 - Three Span Prestressed I Beam Stirrup Design Example


Strand Pattern for all Spans


## Material Properties

Beam Concrete: f'c $=7.0 \mathrm{ksi}, \mathrm{f}$ 'ci $=5.5 \mathrm{ksi}$
Deck Concrete: $\mathrm{f}^{\mathrm{c}} \mathrm{C}=4.0 \mathrm{ksi}$
Prestressing Strand: 1/2" dia., 7 Wire strand, Fu = 270 ksi, Low Relaxation

BrDR Training
PS12－Three Span Prestressed I Beam Stirrup Design Example

From the Bridge Explorer open the bridge PCITrainingBridge6（BID 9）by double clicking on BID 9 （or by selecting BID 9 and clicking on the Open button from the BRIDGE ribbon or right click and select Open）as shown below．


The partially expanded Bridge Workspace tree is shown below．

| Workspace | －－$\times$ |
| :---: | :---: |
| Bridge Components |  |
| E．A PCITrainingBridge6 <br> （．）Components <br> Diaphragm Definitions <br> Lateral Bracing Definitions <br> SUPERSTRUCTURE DEFINITIONS <br> 由－ mmH Structure Definition \＃1 <br> BRIDGE ALTERNATIVES <br> 的 $\boldsymbol{M}$ Bridge Alternative \＃1（E）（C） <br> 回 SUPERSTRUCTURES <br> 自 $\boldsymbol{Z}$ Structure \＃1 <br> SUPERSTRUCTURE ALTERNATIVES |  |

Expand the SUPERSTRUCTURE DEFINITIONS tree, and then expand the Structure Definition \#1. Expand MEMBERS, G2, MEMBER ALTERNATIVES and finally expand Member Alternative \#2 (9.9.6)(E)(C).


## PS Shear Reinforcement Ranges

Select the Shear Reinforcement Ranges node in the Bridge Workspace tree and click the Open button from the Manage group of the WORKSPACE ribbon (or right click on the Shear Reinforcement Ranges node and select

Open from the drop-down menu).


Click on the Stirrup design tool button to open the Shear Stirrup Design Tool.


Enter the data in the Shear Stirrup Design Tool window and click on the Continue button as shown below.


## PS12 - Three Span Prestressed I Beam Stirrup Design Example

Using the design tool causes previously entered stirrup data to be deleted and replaced by newly computed stirrup data.

## Distance to first stirrup

This is the distance to the first stirrup from the end of the beam. Typically, this will be 2 to 4 inches. Entering a number too high will provide a stirrup range that starts too far from the support. This will result in zero ratings and failed end shear resistance. Not entering a value will incorrectly put the first stirrup at the end face of the beam. Enter $\mathbf{3}$ inches for this example.

## Maximum jump in spacing between ranges

This is the maximum jump in stirrup spacing that the module assumes from one range to the next. If this value is not entered, the default value used is $\mathbf{2 4}$ " (i.e., the maximum stirrup spacing).

The effect of leaving this field blank and using the default value of $\mathbf{2 4 "}$ permits a change in spacing from range to range of any amount (since the maximum allowable spacing is $\mathbf{2 4}$ "). This will provide the most efficient stirrup ranges. Leave this value blank for this example.

## Override maximum allowable spacing.

Enter a value for the desired maximum spacing of shear stirrups. If left blank, BrDR will use LRFD Article 5.8.2.7 to compute the maximum allowable spacing. For this example, this value will be left blank and allow the application to calculate the maximum shear steel spacing.

## Number of Stirrup Definitions

The user may set the design tool to use one or two stirrup definitions. Some beams may benefit by having more robust steel sizes at the beam-ends where shear resistance is required and less robust steel sizes within the span where the shear resistance is less necessary. This example will use 1 stirrup definition.

## Definition 1 minimum range length

This range is the minimum distance from end of beam over which the Stirrup Definition 1 is to be used. This is disabled when one stirrup definition is being used. The design of the bars is based on the stirrup area entered for each $1 / 10$ th point location (and critical distance). When those values are passed into the design module that calculate the final ranges, the shear areas for the design are based on the minimum range length and are then carried along as the ranges are being developed. The range length is a minimum and the final range length computed by the stirrup module will always be greater than or equal to this input. Since one stirrup definition is used, this need not be considered.

## Stirrup Entry Method

Choose to either use existing stirrup definition(s) or create new stirrup definition(s). The user can define stirrups in the Bridge Workspace tree, or a new definition can be created using the design tool. For this example, use the design tool to create a new definition.

## Extends into deck

Check this box if the reinforcing bars extend into the concrete deck. In this example, stirrups will be extended into the deck.

## Stirrup Definition (1 or 2)

Under each of the Existing stirrup definition sections, select an existing Vertical Shear Reinforcement Definition from the drop down menu. This is available when the Use existing stirrup definition button is selected.

## New Stirrup Definition

When using the design tool to create a stirrup definition, this section will be available. The user will enter the material and a bar size from the two drop-down lists. The number of legs is then entered. The inclination is always 90 degrees. In this example, Grade 60 will be used as the Material and \#4 Bar size that have $\mathbf{2}$ legs.

Click Continue to compute the required stirrup spacing at each tenth point and the critical dv point. The Ps Stirrup Design Tool Progress window appears. Once the analysis is complete, click OK.


## PS12 - Three Span Prestressed I Beam Stirrup Design Example

The Stirrup Design Tool Results window will appear as shown below. This window has a table showing the Required stirrup spacing at each analysis location throughout the beam for each span. The user can select the Span from the drop-down list and see the results for each span. Using the results from the analysis the user can construct the desired stirrup layout scheme by selecting the maximum number of ranges and the number of minimum stirrups per range. In this example, default value of $\mathbf{3}$ ranges and at least $\mathbf{3}$ stirrups per range will be used. For each span, enter the data as shown below and click on the Create ranges button and then click Apply. Once completed, close the window by clicking on the Close button.


PS12 - Three Span Prestressed I Beam Stirrup Design Example

| - Generated ranges |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum number ranges per span: |  | $3 \vee$ | Minimum stirrups per range: |  | $3 \hat{}$ |  | Create ranges |
| Name | Extends into deck | Start distance (ft) | Number of spaces | Spacing <br> (in) | Length <br> (ft) | End distance (ft) |  |
| Wizard Sti... $\vee$ | $\checkmark$ | 0.25 | 1 | 0 | 0 | 0.25 | $\wedge$ |
| Wizard Sti... $\checkmark$ | $\checkmark$ | 0.25 | 19 | 6 | 9.5 | 9.75 |  |
| Wizard Sti... $\checkmark$ | $\checkmark$ | 9.75 | 2 | 4.7 | 0.783333 | 10.533333 |  |
| Wizard Sti... $\checkmark$ | $\checkmark$ | 10.533333 | 34 | 8.5 | 24.083333 | 34.616666 |  |
| Wizard Sti... $\vee$ | $\checkmark$ | 34.616667 | 2 | 14.3 | 2.383333 | 37 |  |
| Wizard Sti... $\checkmark$ | $\checkmark$ | 37 | 18 | 24 | 36 | 73 |  |
| Wizard Sti $\vee$ | V | 72 | 2 | 143 | )282323 | 75282322 | - |
| Note: Existing vertical shear reinforcement ranges will be deleted if you apply the results of this wizard. |  |  |  |  |  | Apply | Close |

The results are displayed in the PS Shear Reinforcement Ranges window as shown below.


## Schematic - Structure Typical Section

A schematic view of the member alternative can be viewed by selecting the member alternative Member Alternative \#2 (9.9.6) node in the Bridge Workspace tree and clicking on the Schematic button from the WORKSPACE ribbon (or by right clicking on the Member Alternative \#2 (9.9.6) node and selecting Schematic from the menu) as shown below.


## PS12 - Three Span Prestressed I Beam Stirrup Design Example

Prestressed Concrete Control Options for BrDR - Consider splitting resistance
Double click on the member alternative Member Alternative \#2 (9.9.6) in the Bridge Workspace tree to open the
Member Alternative Description window and navigate to the Control options tab as shown below.


The user may select this option to consider the splitting resistance of the pretensioned anchorage zone as per LRFD 5.9.4.4.1. For this example, turn on the splitting resistance article in the control options for LRFD and run the LRFD analysis as shown below. In the spec check, open the LRFD 5.9.4.4.1 article.

## PS12 - Three Span Prestressed I Beam Stirrup Design Example

## LRFD Design Review

To perform an LRFD design review on the member alternative Member Alternative \#2 (9.9.6), select the Analysis
Settings button on the Analysis group of the DESIGN/RATE ribbon to open the window shown below.

| Bridge Workspace - PCITrainingBridge6 |  |  |  |  | ANALYSIS | REPORTS | ? |  | $\square$ | $x$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BRIDGE WORKSPACE |  | WORKSPACE | TOOLS | VIEW | DESIGN/RATE | REPORTING |  |  |  | $\wedge$ |
| Analysis Settings | Analyze Analysis Events Analysis |  |  |  |  |  |  |  |  |  |

Select the Design Review button, LRFD as the Design method and HL-93 (US) vehicle in Design Loads as shown below.


Click OK to save the settings and close the window.

Next click the Analyze button on the Analysis group of the DESIGN/RATE ribbon to perform the rating.


Specification Check Details
The specification checks can be viewed by selecting the Specification Check Detail button from the Results group of the DESIGN/RATE ribbon.

| Bridge Workspace - PCITrainingBridge6 |  |  |  | ANALYSIS | REPORTS | ? | - | $\square$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BRIDGE WORKSPACE | WORKSPACE | TOOLS | VIEW | DESIGN/RATE | REPORTING |  |  |  | $\wedge$ |
|  |  |  |  |  |  |  |  |  |  |

Expand the Stage 1 node in the Superstructure Component tree and select Span $\mathbf{1 - 0 . 0 0} \mathbf{f t}$. Double-click on the article 5.9.4.4.1 Splitting Resistance to open the article details.


```
5 Concrete Structures
5.9 Prestressing
5.9.4 Details for Pretensioning
5.9.4.4 Pretensioned Anchorace Zones
5.9.4.4.1 Splitting Resistance
(AASHTO LRFD Bridge Design Specifications, Ninth Edition)
PS I Wide - At Location = 0.0000 (ft) - Right Stage 1
INPUT
Prestressed beam type: PS Beam I Wide
Area of shear reinforcing, As = 1.2000 (in^2)
Area of prestressing strands, Aps = 6.7320 (in^2)
Jacking stress, fj = 202.5000 (ksi)
Initial losses, ES Loss = 18.7478 (ksi)
Stress in strands at transfer, fpt = 183.7522 (ksi)
h = 72.0000 (in)
SUMMARY:
Maximum stress allowed in reinforcing, fs = 20.0000 (ksi)
Total resistance available, Pru = fs * As = 24.0000 (kip)
Force in strands at transfer, Fpt = fpt * Aps = 1237.0200 (kip)
Minimum resistance required, }\textrm{Pr}=.04*\mathrm{ *pt = 49.4808 (kip)
Design ratio, DR = 0.485
Status
FAIL
```

As is the area of steel within the distance from $\mathrm{h} / 4$ from the end of beam. The area of steel in this zone needs to be increased.
$P_{r u}=54.53$ kips $=f_{s} * A_{s}$
$A_{s} \geq 2.73$ in $^{2}$
$\mathrm{h} / 4=72 \mathrm{in} / 4=18 \mathrm{in}$
We have 3 \#4 stirrups within the distance of $h / 2$ at 6 in spacing.
$A_{s}=3 * 0.20 \mathrm{in}^{2} * 2$ legs $=1.2 \mathrm{in}^{2}$
As of each bar $=2.73 \mathrm{in}^{2} / 3=0.91 \mathrm{in}^{2}$ for 6 in spacing or use $3 \# 7$ bars or As $=3.6 \mathrm{in}^{2}$.
As of each bar $=2.73 \mathrm{in}^{2} / 5=0.55 \mathrm{in}^{2}$ for 4 in spacing or use $5 \# 5$ bars or As $=3.1 \mathrm{in}^{2}$.

The \#5 bars at 4 inches over 16 inches from the first stirrup will be used. The stirrups will be pushed 1 inch closer to the end of the beam to ensure the stirrups fall within the $\mathrm{h} / 4$ distance.

## PS12 - Three Span Prestressed I Beam Stirrup Design Example

Navigate back to the Stirrup design tool in Shear Reinforcement Ranges window and enter the following data.


## PS12 - Three Span Prestressed I Beam Stirrup Design Example

Set the Minimum number of stirrups per range to $\mathbf{5}$. Create ranges and Apply the ranges to all $\mathbf{3}$ spans.


Rerun the AASHTO LRFD analysis and check the specification article LRFD 5.9.4.4.1 at Span 1 - 0.0' for Stage 1.

```
B% Spec Check Detail for 5.9.4.4.1 Splitting Resistance
5 Concrete Structures
5.9 Prestressing
5.9.4 Details for Pretensioning
5.9.4.4 Pretensioned Anchorage Zones
5.9.4.4.1 Splitting Resistance
(AASHTO LRFD Bridge Design Specifications, Ninth Edition)
PS I Wide - At Location = 0.0000 (ft) - Right Stage 1
INPUT:
```


$\qquad$

## PS12 - Three Span Prestressed I Beam Stirrup Design Example

Tensile rating in the top of the beam
This section compares LRFR rating results when tensile rating in the top of the beam is considered vs ignored.

Consider tensile rating in the top of the beam.
Member Alternative Description - Control options
Double click on the member alternative Member Alternative \#2 (9.9.6) in the Bridge Workspace tree to open the Member Alternative Description window and navigate to the Control options tab as shown below. Uncheck the Ignore tensile rating in top of beam checkbox under LRFR.


Click OK to apply the data and close the window.

LRFR Analysis
To perform an LRFR rating, select the Analysis Settings button on the Analysis group of the DESIGN/RATE ribbon to open the window shown below.

| 8 | Bridge Workspace - PCITrainingBridge6 |  |  |  | ANALYSIS | REPORTS | ? | - | $\square$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BRIDGE WORKSPACE |  | WORKSPACE | TOOLS | VIEW | DESIGN/RATE | REPORTING |  |  |  | $\wedge$ |
|  | Analyze Analysis Events <br> Analysis | Tabular Specification Engine Results Save Results Check Detail Outputs Graph Results Results |  |  |  |  |  |  |  |  |

Select LRFR as the Rating method and HL-93 (US) vehicle in Inventory as shown below.


Click OK to save the analysis settings and close the window.

Next click the Analyze button on the Analysis group of the DESIGN/RATE ribbon to perform the rating.

| Bridge Workspace - PCITrainingBridge6 |  |  |  | ANALYSIS | REPORTS | $?$ | - | $\square$ | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BRIDGE WORKSPACE | WORKSPACE | TOOLS | VIEW | DESIGN/RATE | REPORTING |  |  |  | $\wedge$ |
|  |  | cation Detail Res | ine Resu puts G | ts Save h Results |  |  |  |  |  |

## Specification Check Details

Once the analysis is complete, the specification checks can be viewed by selecting the Specification Check Detail button from the Results group of the DESIGN/RATE ribbon.

| Bridge Workspace - PCITrainingBridge6 |  |  |  | ANALYSIS | REPORTS | ? | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BRIDGE WORKSPACE | WORKSPACE | TOOLS | VIEW | DESIGN/RATE | REPORTING |  | $\wedge$ |
| Analysis Analyze Analysis Settings Events Analysis |  |  |  |  |  |  |  |

Expand the Stage 3 node in the Superstructure Component tree and select Span $\mathbf{1 - 9 9 . 0 0} \mathbf{f t}$. Double-click on the article 6A.4.2.1 Design Load Rating Prestress Service III Tensile Stress to open the article details.


Ignore tensile rating in the top of the beam.
Member Alternative Description - Control options
Double click on the member alternative Member Alternative \#2 (9.9.6) in the Bridge Workspace tree to open the Member Alternative Description window and navigate to the Control options tab as shown below. Check the Ignore tensile rating in top of beam checkbox under LRFR.


Click OK to apply the data and close the window.

## PS12 - Three Span Prestressed I Beam Stirrup Design Example

LRFR Analysis
Re-run the LRFR analysis as described in the previous section and compare the same specification article 6A.4.2.1
Design Load Rating Prestress Service III Tensile Stress. at the same location. (See image below.)


Flowcharts for PS Stirrup Design Tool


PS12 - Three Span Prestressed I Beam Stirrup Design Example

## A. General Procedure to Compute Vc



## B. Simplified Procedure to Compute Vc



## C. Simplified Vci, Vcw Procedure to Compute Vc




fs = service stress in the stirrup steel, limited to 20ksi
For I beams:
As is the total area of vertical reinforcement within $\mathrm{h} / 4$ from the end of member where $\mathrm{h}=$ height of beam.
For box beams with no voids or circular voids:
As is the total area of horizontal reinforcement within $\mathrm{h} / 4$ from the end of member where $\mathrm{h}=$ overall width of beam. Opis will assume that each vertical leg of stirrup contributes 1 horizontal leg of reinforcement.


For box beams:
As is the area of vertical or horizontal reinforcement within $h / 4$ from the end of member where $h$ $=\min$ (overall height, overall width) of beam. Opis will assume that each vertical leg of stirrup contributes 1 horizontal leg of reinforcement.
Pr is evaluated twice:
once for the Aps in the bottom flange and the horizontal As
and once for the Aps above the bottom flange and the vertical As
For U beams:
As is the area of vertical or horizontal reinforcement within $h / 4$ from the end of member where $h$ $=\min$ (overall height, overall width) of beam. Opis will assume that 2 vertical legs of stirrup
 $=$ min(overall height, overall width) of beam.
Pr is evaluated twice:
once for the Aps in the bottom flange and the horizontal As
and once for the Aps above the bottom flange and the vertical As
For T beams:
As is the total area of vertical reinforcement within $h / 4$ from the end of member where $h=o v e r a l l$ height of beam.
fpbt = stress in prestress steel at transfer (= jacking stress without losses)
Aps = area of prestressing steel, does not take into account the reduced area at the CL bearing due to transfer and development length


Figure C5.10.10.1-1—Precast Trapezoidal Tub Girder

PS12 - Three Span Prestressed I Beam Stirrup Design Example


