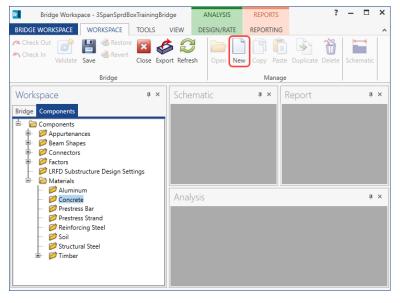
AASHTOWare BrDR 7.5.0 Prestressed Concrete Structure Tutorial PS2 – Three Span Spread PS Box Beam Example

BrDR Training


PS2 - Three Span Spread PS Box Beam Example

Bridge ID: 35panSprdBoxTrainingBrid NBI structure ID (B): 3SpanSprdBoxTra Bridge completely defined Culverts Description Description (cont'd) Alternatives Global reference point Traffic Custom agency fields Name: 3Span Sprd Box Trn Bridge Year built:	3SpanSprdBox Trainin	gBridge						-		
Name: 3Span Sprd Box Tm Bridge Year built: Description: 3 span spread PS box beam bridge made continuous for live load through Location: Length: ft Facility carried (7): Route number: -1 Feat. intersected (6): Mi. post: Default units: US Customary V	ridge ID: 3SpanSprd	/BoxTrainingBrid	NBI structur	e ID (8): 3SpanSprdBo	xTra		etely defined	Culver	ts	5
3 span spread PS box beam bridge made continuous for live load through continuity Location: Length: ft Facility carried (7): Route number: -1 Feat. intersected (6): Mi. post: Default units: US Customary V	Description Desc	cription (cont'd)	Alternatives	Global reference poi	nt Traffic	Custom agency field	ds			
Description: continuity Length: ft Facility carried (7): ft Route number: -1 Feat. intersected (6): Mi. post: Default units: US Customary V	Name:	3Span Sprd Box	Trn Bridge			Year built:				
Facility carried (7): Route number: -1 Feat. intersected (6): Mi. post: Default units: US Customary V	Description:		S box beam bri	idge made continuous	for live load th	rough				
Feat. intersected (6): Mi. post: Default units: US Customary	Location:					Length:		ft		
Default units: US Customary	Facility carried (7):					Route number:	-1			
	Feat. intersected (6):					Mi. post:				
Bridge association	Default units:	US Customary	~							
Bridge association BrR BrD BrM Sync with BrM										
	Bridge associa	ation 🗸 🖉 B	rR 🗹 BrD 🗌	BrM Sync with BrM	1					

From the **Bridge Explorer** create a **new bridge** and enter the following description data:

Bridge Materials

To add a new concrete material, in the **Components** tab of the **Bridge Workspace**, expand the **Materials** node by clicking the I button, select **Concrete**, and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Concrete** and select **New**).

The window shown below will open. Enter the values above the **Compute** button and click on the **Compute** button to compute the remaining values as shown below.

🐴 Bridge Mate	rials - Concrete			-		×
Name:	б ksi Beam Concrete					
Description:						
Compressive st	trength at 28 days (f'c):	6	ksi			
Initial compres	sive strength (f'ci):	5.1	ksi			
Composition o	f concrete:	Normal	~			
Density (for de	ad loads):	0.15	kcf			
Density (for mo	odulus of elasticity):	0.15	kcf			
Poisson's ratio		0.2				
Coefficient of t	thermal expansion (α):	0.000006	1/F			
Splitting tensile	e strength (fct):		ksi			
LRFD Maximun	n aggregate size:		in			
	Compute					
Std modulus o	f elasticity (Ec):	4695.982325	ksi			
LRFD modulus	of elasticity (Ec):	4877.010345	ksi			
Std initial mod	ulus of elasticity:	4329.481782	ksi			
LRFD initial mo	odulus of elasticity:	4622.340373	ksi			
Std modulus o	f rupture:	0.580948	ksi			
LRFD modulus	of rupture:	0.587878	ksi			
Shear factor:		1				
	Сору	to library Co	py from library OK	Apply	Canc	el

Click OK to apply the data and close the window

Create another new concrete material to be used for the deck concrete. Add the concrete material by selecting from the Concrete Materials Library by clicking the **Copy from Library** button. The following window opens:

	Name	Description	Library	Units	f'c	f'ci	alpha	DL density	Modulus density	Std modulus of elasticity	LRFD modulus of elasticity	Poisson's ratio	Modulus of rupture	
	Class A	Class A cement concrete	Standard	SI / Metric	28.00		0.0000108000	2400.00	2320.00	25426.08	27730.36	0.200	3.33	
Þ	Class A (US)	Class A cement concrete	Standard	US Customary	4.000		0.0000060000	0.150	0.145	3644.15	3986.55	0.200	0.480	
	Class B	Class B cement concrete	Standard	SI / Metric	17.00		0.0000108000	2400.00	2320.00	19811.84	23520.23	0.200	2.60	
	Class B (US)	Class B cement concrete	Standard	US Customary	2.400		0.0000060000	0.150	0.145	2822.75	3368.12	0.200	0.372	
	Class C	Class C cement concrete	Standard	SI / Metric	28.00		0.0000108000	2400.00	2320.00	25426.08	27730.36	0.200	3.33	
	Class C (US)	Class C cement concrete	Standard	US Customary	4.000		0.0000060000	0.150	0.145	3644.15	3986.55	0.200	0.480	

Select the **Class A** (**US**) material and click **OK**. The selected material properties are copied to the **Bridge Materials** – **Concrete** window as shown below.

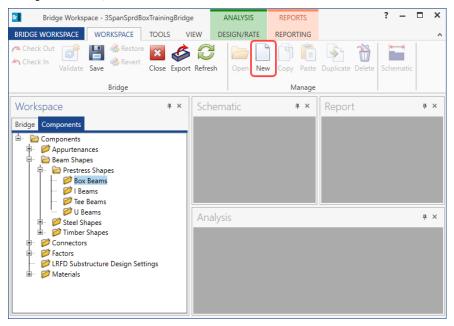
🕰 Bridge Mat	terials - Concrete			_		×
Name:	Class A (US)					
Description:	Class A cement concrete	e				
Compressive	strength at 28 days (f'c):	4.000006	ksi			
Initial compre	essive strength (f'ci):		ksi			
Composition	of concrete:	Normal V				
Density (for o	dead loads):	0.15	kcf			
Density (for r	modulus of elasticity):	0.145	kcf			
Poisson's rati	0:	0.2				
Coefficient of	f thermal expansion (α):	0.000006	1/F			
Splitting tens	ile strength (fct):		ksi			
LRFD Maxim	um aggregate size:		in			
	Compute					
Std modulus	of elasticity (Ec):	3644.149254	ksi			
LRFD modulu	us of elasticity (Ec):	3986.548657	ksi			
Std initial mo	dulus of elasticity:		ksi			
LRFD initial n	nodulus of elasticity:		ksi			
Std modulus	of rupture:		ksi			
LRFD modulu	us of rupture:	0.479857	ksi			
Shear factor:		1				
	Сору	to library Copy	from library OK App	ly	Cance	:

Click **OK** to apply the data and close the window

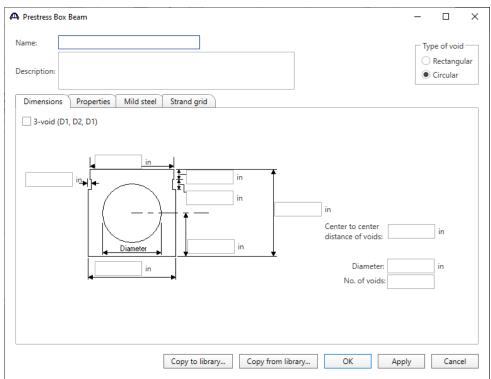
J	terials - Reinforc	J						
Name:	Grade 60							
Description:	60 ksi reinforci	ng steel						
Material prop	perties							
Specified yiel	ld strength (fy):	60.000087		ksi				
Modulus of e	elasticity (Es):	29000.00420	6	ksi				
Ultimate stre	ngth (Fu):	90.0000131		ksi				
Type Plain Epo: Galv								
	Copy t	o library	Copy fr	om library	OK	Apply	Cance	:1

Add the following reinforcement steel in the same manner.

Click **OK** to apply the data and close the window


Add the following prestress strand in the same manner.

lame:	1/2" (7W-270) L	R					
Description:	Low relaxation 1	/2"/Seven \	Wire/fpu = 2	2 <mark>70</mark>			
Strand diame	ter:	0.5	in				
Strand area:		0.153	in^2				
Strand type:		Low Relaxa	ation \checkmark				
Ultimate tens	ile strength (Fu):	270	ksi				
Yield strengtl	h (fy):	243	ksi				
Modulus of e	elasticity (E):	28500	ksi				
	Compute	•					
Transfer leng	th (Std):	25	in				
Transfer leng	th (LRFD):	30	in				
Unit load per	length:	0.52	lb/ft				
		Epoxy					


Click **OK** to apply the data and close the window

Beam Shape

To enter a prestress beam shape to be used in this bridge, expand the tree labelled **Beam Shapes** and **Prestress Shapes** as shown below and click on the **Box Beams** node in the **Components** tree, select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Box Beams** and select **New** or double click on **Box Beams** in the **Components** tree).

The Prestress Box Beam window shown below will open.

Select the **Type of Void** as **Rectangular** and click on the **Copy from Library** button. The window shown below appears.

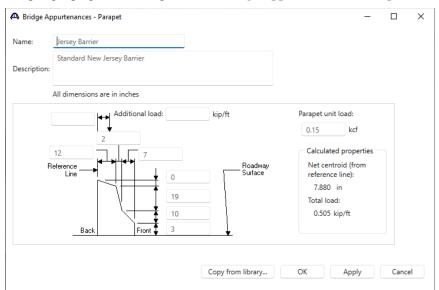
	Name	Description	Library	Units	Depth	Top width	Bottom width	Top slab thickness		Top haunch width	Top haunch height	Bottom haunch width	Bottom haunch height	Shear key height	Shear key depth	
	BI-36	AASHTO-PCI BI-36	Standard	US Customary	27.0000	35.2500	36.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BI-48	AASHTO-PCI BI-48	Standard	US Customary	27.0000	47.2500	48.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BII-36	AASHTO-PCI BII-36	Standard	US Customary	33.0000	35.2500	36.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
Þ	BII-48	AASHTO-PCI BII-48	Standard	US Customary	33.0000	47.2500	48.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BIII-36	AASHTO-PCI BIII-36	Standard	US Customary	39.0000	35.2500	36.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BIII-48	AASHTO-PCI BIII-48	Standard	US Customary	39.0000	47.2500	48.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BIV-36	AASHTO-PCI BIV-36	Standard	US Customary	42.0000	35.2500	36.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BIV-48	AASHTO-PCI BIV-48	Standard	US Customary	42.0000	47.2500	48.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	

Select **BII-48** (**AASHTO-PCI BII-48**) and click **OK**. The beam properties are copied to the **PS Box Beam** window as shown below.

A Prestress B	ox Beam	_		Х
Name: Description:	AASHTO-PCI BII-48	0	of void Rectangula Circular	ar
Dimension	s Properties Mild steel Strand grid 0.75 in	in in in in		
	Copy to library Copy from library OK Ap	ply	Cance	!

Click **OK** to apply the data and close the window

Bridge - Appurtenances


To enter the appurtenances to be used within the bridge, expand the tree branch labeled **Appurtenances**. To define a parapet, select **Parapet** and click on **New** from the **Manage** button on the **WORKSPACE** ribbon (or double click on **Parapet** in the **Components** tree).

Bridge Workspace - 3SpanSprdBoxTrainingBridg	ge	ANALYSIS	REPORTS		?	- 🗆	×
BRIDGE WORKSPACE WORKSPACE TOOLS	VIEW	DESIGN/RATE	REPORTING				^
Check Out Check In Validate Save Close Expon	t Refre		Copy Paste	Duplicate Delete	Schen	Matic	
Bridge			Manage				
Workspace # ×	Sch	nematic	ų×	Report		L	ч×
Bridge Components							
₽ 🗭 Connectors ₽ 芦 Factors	An	alysis				1	¥ ×
← 🧭 LRFD Substructure Design Settings ֎ー ờ Materials							

Add the parapet by clicking the **Copy from Library** button. The following window opens:

.	Library Data: A	ppurtenances - Parapet		_	C
	Name	Description	Library	Units	
,	Jersey Barrier	Standard New Jersey Bar	Agency Defined	US Customary	
			ОК	Apply	Cancel

Select Jersey Barrier and click OK.

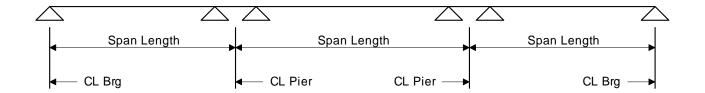
The parapet properties are copied to the Bridge Appurtenances - Parapet window as shown below.

Click OK to apply the data and close the window

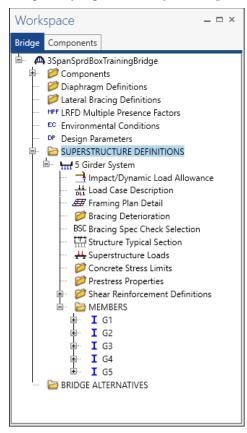
The default impact factors, standard LRFD and LFR factors will be used. Bridge Alternatives will be added after entering the Structure Definition.

Superstructure Definition

Returning to the **Bridge** tab of the **Bridge Workspace**, double click on **SUPERSTRUCTURE DEFINITIONS** (or click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the **Manage** group of the **WORKSPACE** ribbon or right mouse click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the popup menu) to create a new structure definition. The window shown below will appear.


A New Superstructure Definition		×
Girder system superstructure		
◯ Girder line superstructure	Superstructure definition wizard	
Floor system superstructure		
Floor line superstructure		
 Truss system superstructure 		
 Truss line superstructure 		
Reinforced concrete slab system superstructure		
Concrete multi-cell box superstructure		
Advanced concrete multi-cell box superstructure		
	OK Cancel	

Select **Girder system superstructure**, click **OK** and the **Girder System Superstructure Definition** window will open. Enter the data as shown below.


	Engine		
lame: 5 Girder Syst	em		Modeling Multi-girder system MCB
Vescription: Us Customar lumber of spans: 3 0 lumber of girders: 5 0	y V Enter span lengths along the reference line: Span Length (ft) 2 60.00 3 60.00		With frame structure simplified definition Deck type: Concrete Deck For PS/PT only Average humidity: % Member alt. types Steel P/S R/C Timber
	rence line	v	□ P/T
Horizontal curvature along refer	Distance from PC to first support line:	ft	
Horizontal curvature Superstructure alignment	Distance from PC to first support line: Start tangent length:	ft ft	
Horizontal curvature			
Horizontal curvature Superstructure alignment Curved Tangent, curved, tangent	Start tangent length: Radius:	ft ft	
Horizontal curvature Superstructure alignment Curved Tangent, curved, tangent Tangent, curved	Start tangent length: Radius: Direction:	ft ft Left v	
Horizontal curvature Superstructure alignment Curved Tangent, curved, tangent Tangent, curved	Start tangent length: Radius: Direction: End tangent length:	ft ft Left V ft	

Click **OK** to apply the data and close the window

Note: Span lengths for a prestressed beam structure made continuous for live load should be entered as follows:

The partially expanded Bridge Workspace tree is shown below:

BRIDGE ALTERNATIVES

Navigate to the **BRIDGE ALTERNATIVES** node in the **Bridge Workspace** tree and create a new bridge alternative by double-clicking on **BRIDGE ALTERNATIVES** (or click on **BRIDGE ALTERNATIVES** and select **New** from the **Manage** group of the **WORKSPACE** ribbon). Enter the following data.

	- □ >
Global positioning	
Distance: 0	ft
Offset: 0	ft
Elevation:	ft
Start tangent length:	ft
Curve length:	ft
Radius:	ft
Direction:	~
End tangent length:	ft
ОК Ар	ply Cancel
	Distance: 0 Offset: 0 Elevation: Start tangent length: Curve length: Radius: Direction: End tangent length:

Click **OK** to apply the data and close the window.

Expand the **Bridge Alternative 1** node in the **Bridge Workspace** tree. Double-click on the **SUPERSTRUCTURES** node (or select **SUPERSTRUCTURES** and click **New** from the **Manage** group of the **WORKSPACE** ribbon) and enter the following new superstructure.

A Superstructure	2							-		×
Superstructure na	ame:	Superstru	icture #1							
Description	Alte	ernatives	Vehicle path	Engine	Substructures					
Description:										
Reference I	line									
Distance:		0	ft							
Offset:		0	ft							
Angle:		0	Degrees							
Starting sta	ation:		ft							
						ОК	App	ly	Canc	el

Expand the **Superstructure #1** node in the **Bridge Workspace** tree. Double-click on the **SUPERSTRUCTURE ALTERNATIVES** node (or select **SUPERSTRUCTURE ALTERNATIVES** and click **New** from the **Manage** group of the **WORKSPACE** ribbon) and enter the following new superstructure alternative. Select the superstructure definition **5 Girder System** as the current superstructure definition for this Superstructure Alternative.

Superstru	ucture Alternativ	e	_	
ernative r	name:	Superstructure Alternative #1		
cription:				
erstructu	ure definition:	5 Girder System V		
erstructu	ire type:	Girder		
mber of r	main members:	5		
Span	Length (ft)			
1	75	A		
2	60			
3	60			
		ОК	Apply	Cancel
	ernative r acription: eerstructu mber of r Span 1 2	ernative name: cription: eerstructure definition: merstructure type: mber of main members: Span Length (ft) 1 75 2 60	cription: erstructure definition: 5 Girder System erstructure type: Girder mber of main members: 5 Span Length (ft) 1 75 2 60 3 60	ernative name: Superstructure Alternative #1 cription: 5 Girder System v erstructure definition: 5 Girder T mber of main members: 5 Span Length (ft) 1 75 2 60 3 60

Re-open the **Superstructure #1** window and navigate to the **Alternatives** tab. The **Superstructure Alternative #1** will be shown as the **Existing** and **Current** alternative for **Superstructure #1**.

	-		×
rstructure #1			
es Vehicle path Engine	Substructures		
Superstructure alternative nam	Description		
Superstructure Alternative #1			
			v
	OK Apply	Cano	cel
	es Vehicle path Engine Superstructure alternative nam	es Vehicle path Engine Substructures Superstructure alternative #1	rstructure #1 es Vehicle path Engine Substructures Superstructure alternative #1 Superstructure Alternative #1

The partially expanded Bridge Workspace tree is shown below.

Workspace – 🗆 🔻	<
Bridge Components	
A 3SpanSprdBoxTrainingBridge Components Diaphragm Definitions Lateral Bracing Definitions PL Lateral Bracing Definitions PT LRFD Multiple Presence Factors C Environmental Conditions PD Design Parameters SUPERSTRUCTURE DEFINITIONS TT 5 Girder System BRIDGE ALTERNATIVES A Bridge Alternative #1 (E) (C) A Bridge Alternative #1 (E) (C) SUPERSTRUCTURES SUPERSTRUCTURE ALTERNATIVES SUPERSTRUCTURE ALTERNATIVES TT Superstructure Alternative #1 (E) (C) (5 Girder System) TY Stiffness Analysis PIERS	

Load Case Description

Navigate back to the Superstructure definition **5** Girder System. Double-click on the Load Case Description node in the Bridge Workspace tree to open the Load Case Description window and define the dead load case as shown below. The completed Load Case Description window is shown below.

Load case name	Description	Stage	Туре	Time* (days)	
Dead Load 2		Composite (long term) (Stage 2) 🔹	D,DC	-	
Add defa					

Click **OK** to apply the data and close the window

Structure Framing Plan Detail – Layout

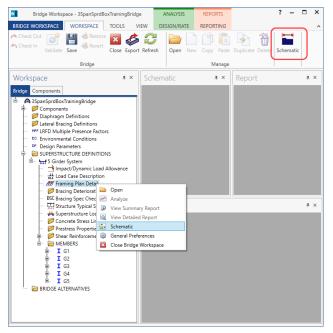
Double-click on the **Framing Plan Detail** node in the **Bridge Workspace** tree to describe the framing plan in the **Structure Framing Plan Details** window. Enter the data as shown below.

🗅 Stru	ucture Frami	ng Plan Details										-		×
Num	ber of spans:		Number of gird	lers:	5									
Lay	out Diap	hragms												
				G	irder spa	cing orien	ation							
	Support	Skew (degrees)) Perpend) Along s	dicular to g upport	girder							
	▶ <u>1</u>	0.000		_										
	2	0.000			Girder	Girder : (f								
	3	0.000			bay	Start of								
	4	0.000				girder	girder							
				Þ	1	7.50	7.50	^						
					2	7.50	7.50							
					3	7.50	7.50							
				H	4	7.50	7.50							
L								×						
										OK	A	pply	Canc	el

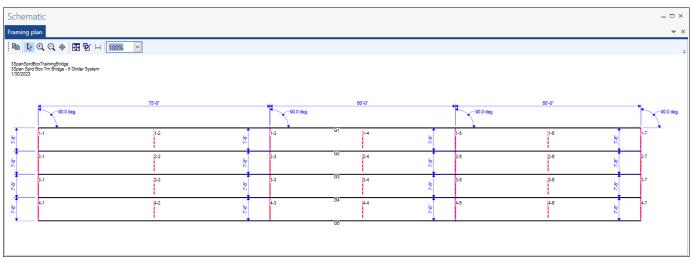
Structure Framing Plan Detail – Diaphragms

Switch to the **Diaphragms** tab to enter the diaphragm spacing. Click the **Diaphragm wizard...** button to add diaphragms for the entire structure. **Select the desired framing plan system** and click the **Next** button. Enter the following data on the window shown below.

🕰 Diaphragm Wizard	×
Select the desired framing plan system:	
< Back Next > Cancel	


	aphragm	Diaphra Diaphra Diaphra Diaphra Diaphra Diaphra	gm spacing number of equ equal spacing groups of equa	per span	span	
		Support di	aphragm load:	1.0000	kip	
		Interior dia	aphragm load:	1.0000	kip	
	Span	Length (ft)	Number of equal spaces			
	1	75.00	2			-
	2	60.00	2			
Þ	3	60.00	2			
						*
			<	Back	Finish	Cancel

Click the **Finish** button to add the diaphragms. The **Diaphragm Wizard** will create diaphragms and loads for all the girder bays in the structure. The diaphragms created for **Girder bay 1** are shown below.


der b	bay: 1		>	Copy bay t	to		phragm vizard				
	Support d		tart tance (ft)	Diaphragm spacing	Number of spaces	Length (ft)	dist	ind tance (ft)	Load (kip)	Diaphragm	
		Left girder	Right girder	(ft)			Left girder	Right girder			
1	*	0.00	0.00	0.00	1	0.00	0.00	0.00	1.0000	Not Assigned 🔻	
1	-	0.00	0.00	37.50	1	37.50	37.50	37.50	1.0000	Not Assigned 🔻	
2	*	0.00	0.00	0.00	1	0.00	0.00	0.00	1.0000	Not Assigned 🔹	
2	*	0.00	0.00	30.00	1	30.00	30.00	30.00	1.0000	Not Assigned 🔻	
3	*	0.00	0.00	0.00	1	0.00	0.00	0.00	1.0000	Not Assigned 🔹	
3	*	0.00	0.00	30.00	1	30.00	30.00	30.00	1.0000	Not Assigned 🔹	
3	*	60.00	60.00	0.00	1	0.00	60.00	60.00	1.0000	Not Assigned 🔻	
										New Duplica	Delete

Schematic - Framing Plan Detail

While **Framing Plan Detail** is selected in the **Bridge Workspace** tree, open the schematic for the framing plan by selecting the **Schematic** button on the **WORKSPACE** ribbon (or right click on **Framing Plan Detail** in the Bridge Workspace and select **Schematic** from the menu).

The following schematic will be displayed.

Structure Typical Section - Deck

Next define the structure typical section by double-clicking on the **Structure Typical Section** node in the **Bridge Workspace** tree. Input the data describing the typical section as shown below.

A Structure Typical Section							-		\times
Distance from left edge of deck to	Distance from	right edge of	deck to						
superstructure definition ref. line	superstructure	ture Definition	*						
			÷						
Left overhang)[← Right	overhang					
Deck Deck (cont'd) Parapet Me	dian Railing	Generic	Sidewalk	Lane position	Striped lanes	Wearing surface			
Superstructure definition reference line is	within	√ t	he bridge deck						
	Start		End						
Distance from left edge of deck to superstructure definition reference line:	18.75	ft 18.	75 ft						
Distance from right edge of deck to superstructure definition reference line:	18.75	ft 18.	75 ft						
Left overhang:	3.75	ft 3.7	5 ft						
Computed right overhang:	3.75	ft 3.7	5 ft						
						ОК	Apply	Cane	cel

Structure Typical Section – Deck (cont'd)

The **Deck (cont'd)** tab is used to enter information about the **Deck concrete** and the **Total deck thickness**. The material to be used for the deck concrete is selected from the list of bridge materials. Enter the data as shown below.

A Structure Typical Section	-		×
Distance from left edge of deck to Distance from right edge of deck to superstructure definition ref. line superstructure definition ref. line			
Deck Superstructure Definition			
Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Deck concrete: Class A (US)			
Total deck thickness: 8.0000 in			
Load case: Engine Assigned			
Deck crack control parameter: kip/in			
Sustained modular ratio factor: 2.000			
Deck exposure factor:			
		-	
OK	Apply	Cance	21

Structure Typical Section – Parapets

Select the New button on the Parapets tab of this window. Add two parapets as shown below.

Front	
k Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position	Striped lanes Wearing surface
Name Load case Measure to dist. measured start er	nce at nd orientation
Jersey Barrier v Dead Load 2 v Back Left Edge v 0.00	0.00 Right -
Jersey Barrier • Dead Load 2 • Back • Right Edge • 0.00	0.00 Left -

Structure Typical Section – Lane Positions

Select the **Lane position** tab and use the **Compute...** button to compute the lane positions. A window showing the results of the computation opens. Click **Apply** to apply the computed values.

4	Compute La	ne Positions				×
	Travelway number	Distance from left edge of travelway to superstructure definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at end (B) (ft)	
►	1	-17.00	17.00	-17.00	17.00	-
						*
					Apply Ca	ncel

Stru	cture Typical	Section				-		
	Travely		are Definition Reference Line					
)eci	Deck (co	nt'd) Parapet Median	Railing Generic Sidewa	alk Lane position Striped	l lanes Wearing surface			
	Travelway number	Distance from left edge of travelway to superstructure definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at end (B) (ft)			
Þ	1	-17.00	17.00	-17.00	17.00		<u></u>	1
							v	
[ilable to trucks:	Compute		New Dup	licate	Delete	1

The Lane Position tab is populated as shown below.

Click **OK** to apply the data and close the window

Concrete Stress Limits

A Stress Limit defines the allowable concrete stresses for a given concrete material. Double click on the **Concrete Stress Limits** node in the **Bridge Workspace** tree to open the **Stress Limit Sets – Concrete** window. Enter data shown above the **Compute** button, select **Moderate** for the **Corrosion condition** and select the **6 ksi Beam Concrete** material from the drop-down menu of the **Concrete material**. Click the **Compute** button. Default values for the allowable stresses will be computed based on the **Concrete material** selected and the AASHTO Specifications. The default value for **Final allowable slab compression** is not computed since the deck concrete is typically different from the concrete used in the beam. Enter this value manually as shown below.

A Stress Limit Sets -	Concrete					-		×
Name:	6 ksi Stress	Limit						
Description:								
Corrosion condition:	Moderate		~					
Final allowable to	ension stress	limit coef. (U	5) override:					
Concrete material:	6 ksi Beam (Concrete	~					
	Compute							
		LFD		LRFD				
Initial allowable com	pression:	3.06	ksi	3.315	ksi			
Initial allowable tensi	on:	0.2	ksi	0.2	ksi			
Final allowable comp	ression:	3.6	ksi	3.6	ksi			
Final allowable tensio	on:	0.4654031	ksi	0.4654031	ksi			
Final allowable DL co	mpression:	2.4	ksi	2.7	ksi			
Final allowable slab c	ompression:	2.4	ksi	2.4	ksi			
Final allowable comp (LL+1/2(Pe+DL))	ression:	2.4	ksi	2.4	ksi			
				C	ж А	Apply	Canc	el

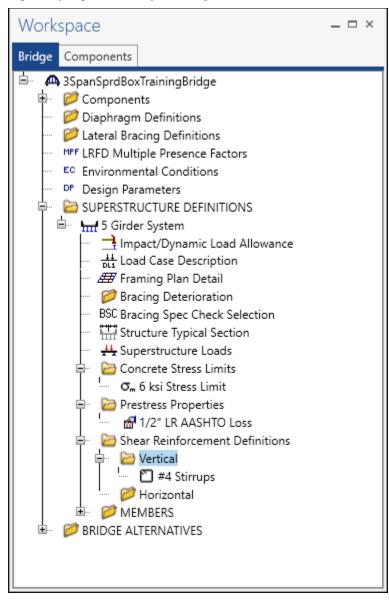
Click **OK** to apply the data and close the window.

Prestress Properties

Double click on the **Prestress Properties** node in the **Bridge Workspace** tree to open the **Prestress Properties** window. Define the prestress properties as shown below. Since the **AASHTO Approximate** method is used to compute the losses, only the information on the **General P/S data** tab is required.

A Prestress Properties				_		×
Name: 1/2" LR AASHTO Loss						
General P/S data Loss data - lump sum Loss d	lata - PCI					
P/S strand material: 1/2" (7W-270) LR	~	Jacking stress ratio:	0.750]		
Loss method: AASHTO Approximate	~	P/S transfer stress ratio:]		
		Transfer time:	24.0	Hours		
		Age at deck placement:	30.00	Days		
		Final age:	18250.00	Days		
Loss data - AASHTO Percentage DL: 0.0 %						
			ОК	Apply	Cance	al

Shear Reinforcement


Define the vertical shear reinforcement to be used by the girders. Expand the **Shear Reinforcement Definitions** on the **Bridge Workspace** tree, select the **Vertical** node and click on **New** from the **Manage** group of the **WORKSPACE** ribbon (or double click on **Vertical**).

The I shape shown is for illustrative purposes only, it is not meant to display the actual beam shape. Enter the data as shown below.

A Shear Reinforcement Definition - Vertical	_		×
Name: #4 Stirrups			
Material: Grade 60 Bar size: 4 Number of legs: 2.00 Inclination (alpha): 90.0 Degrees Shear Reinforcement			
OK Apply		Cance	

Click **OK** to apply the data and close the window.

A partially expanded **Bridge Workspace** tree is shown below.

Describing a member

Expand the **MEMBERS** node in the **BWS** tree and double click on **G2**. The **Member** window shows the data that was generated when the structure definition was created. No changes are required in this window. The first Member Alternative created will automatically be assigned as the **Existing** and **Current member alternative** for this Member.

A Member		_	\Box \times
Member name: G2	Link with: None 🗸		
Description:			
Existing	Current Member alternative name Description		
			<u>_</u>
			-
Number of spans: 3	Span Span length no. (ft)		
-	1 75.00		
-	2 60.00		
	3 60.00		
	v.		
	ОК Ар	ply	Cancel

Defining a Member Alternative

Double-click on **MEMBER ALTERNATIVES** in the **Bridge Workspace** tree for member **G2** to create a new member alternative. The **New Member Alternative** window shown below will open. Select **Prestressed** (pretensioned) concrete for the **Material type** and **PS Precast Box** for the **Girder Type**.

A New Member Alternative	×
Material type:	Girder type:
Post tensioned concrete	PS Precast Box
Prestressed (pretensioned) concrete	PS Precast I
Reinforced concrete	PS Precast Tee
Steel	PS Precast U
Timber	
	OK Cancel

Click **OK** to close the window and create a new member alternative.

The Member Alternative Description window will open. Enter the data as shown below. The **Schedule based Girder property input method** is the only input method available for a prestressed concrete beam.

Description	Specs	Factors	Engine	Import	Control options			
Description:								
					Material type:	Prestressed (Pretensioned)		
					Girder type:	PS Precast Box		
					Modeling type:	Multi Girder System		
					Default units:	US Customary		
Additional Additional Crack cont Bottom of	self load: rol param	eter (Z)	kip/ft %	Exposure Bottom c		Use creep		

Beam Details

Next describe the beam by double clicking on the **Beam Details** node in the **Bridge Workspace** tree. Enter the data in each tab of the **Beam Details** window as shown below.

	n detail 🗋	Continuous	support	t detail	Stress limit ra	anges	Slab interface	Contin	uity diap	nragm		
	Span				Girder		Prestress			Beam p	projection	
	number	Beam sh	nape		material		properties		n	Left end (in)	Right end (in)	
Þ	1	BII-48	*	6 ksi Bear	n Concrete	*	1/2" LR AASHTO I	Loss *		9.0000	6.0000	
	2	BII-48	*	6 ksi Bear	n Concrete	*	1/2" LR AASHTO I	Loss *		6.0000	6.0000	
	3	BII-48	Ŧ	6 ksi Bear	n Concrete	Ŧ	1/2" LR AASHTO I	Loss *		6.0000	9.0000	

The **Continuous Support Detail** tab is only available for a multi-span structure. The following data describes the distances from the centerlines of bearing to the centerlines of the piers.

			~				
Spar	n detail	Continuous su	pport detail	Stress limit ranges	Slab interface	Continuity diaphragm	
CL (on L	of Bearing .eft +	¦2 <u>SL ∦ SR</u> K—CLa	↓ ↓ CL of Bearing ★ on Right of Pier	1			
	Support number	Support distance on left, SL (in)	Support distance on right, SR (in)				
Þ	2	9.0000	9.0000				-
	3	9.0000	9.0000				

Note that the **Stress Limit Ranges** are defined over the entire length of the precast beam, including the projections of the beam past the centerline of bearing which were entered on the **Span Detail** tab. The stress limit names appearing in the drop down menu of the **Name** column correspond to the stress limits associated with the concrete material specified for that span on the **Span Detail** tab.

ра	an detail		Continuous support detail	S	tress limit ra	nges S	lab interface	Continuity diaphragm		
	Span numbe		Name		Start distance (ft)	Length (ft)	End distance (ft)			
Þ	1	Ŧ	6 ksi Stress Limit	Ŧ	0.00	75.50	75.50			
	2	•	6 ksi Stress Limit	*	0.00	59.50	59.50			
	3	-	6 ksi Stress Limit	*	0.00	60.50	60.50			

The defaults on the **Slab interface** tab are shown below and are acceptable.

Span detail	Continuous support deta	il Stress lir	mit ranges Slab interface Continuity diaphragm
nterface type	2:	Intentionally	Roughened 🔽
Default interf	ace width to beam widths:	 Image: A start of the start of	
nterface wid	th:		in
Cohesion fact	tor:	0.100	ksi
Friction facto	r:	1.000	
(1:		0.300	
(2:		1.800	ksi

The **Continuity diaphragm** tab is only available for multi-span structures. The data on this tab defines the cast-inplace diaphragms used to make the structure continuous for live load. Press **F1** while on this tab to view the continuity diaphragm help topic describing the use of this information.

pa	an	detail	Continuous su	pport detail	Stress li	mit ranges	Slab interfa	ce Cont	inuity diaphi	ragm		
				Left sup	port			Right su	pport			
	1	Span number	Material	Distance (in)	Bar count	Bar size	Material	Distance (in)	Bar count	Bar size	e	
Þ	1	1 -				-	Grade 60 🔻	3.0000	6	5	*	^
	2	2 '	Grade 60 👻	3.0000	6	5 -	Grade 60 🔻	3.0000	6	5	-	
	3	3 ,	Grade 60 👻	3.0000	6	5 -	Ŧ				*	

Strand Layout – Span 1

Expand the **Strand Layout** in the **Bridge Workspace** tree and double-click on **Span 1**. Place the cursor in the schematic view on the right side of the screen. Use the **Zoom** buttons to shrink/expand the schematic of the beam shape so that the entire beam is visible.

Select the **Description type** as **Strands in rows** and the **Strand configuration type** as **Harped**. The **Mid span** radio button will now become active. Strands can now be defined at the middle of the span by selecting strands in the right hand schematic. Select the bottom 26 strands in the schematic so that the CG of the strands is 2.31 inches.

A Strand Layout	- Span 1			-	
Description typ	e			B B Q Q ⊕ 🖽 🗟 🛏 160% 🔽	Ŧ
O P and CGS c	only	s		Notes: Strand positions generated by the REVISED method.	
Strand configur	ration type	Symmetry		Please refer to Help for a description of this method.	
O Straight/Del		ojimiten j			
Harped					
⊖ Harped and	straight debonded			x x	
Mid span					
◯ Left end _		Harp point locations		x x	
Right end	Harp point	Distance (ft)	Radius (in)	×	
	Left	0.00	0.0000 🔶		
	Right	0.00	0.0000		
		ΟΚ Αρ	ply Cancel	Number of strands = 28 Number of harped strands = 0 CG of strands (measured from bottom of section) = 2.31 in Legend: No strand at this position at the current section location. Korand at this position at the current section location. A strand occupies this position at the current section location. The strand is debonded from the end of the beam to the current section location. The strand is debonded from the mid-span to the current section location. The strand is debonded from the mid-span to the current section location. The strand is debonded at other section location. The strand is debonded at the mid-span to the current section location. The induce of a harped strand. The mid-span position of a norther strand and the harped position of another strand.	

Now select the **Left end** radio button to enter the following harped strand locations at the left end of the precast beam. Enter 22.5' as the distance from the left end of the precast beam to the harp point.

Enter the following data for Spans 2 and 3 in the same manner as described above. **Span 2** is shown below, **Span 3** has the same information as Span 2.

🗛 Strand Layo	ut - Span 2			-	×
Description t	уре			🛍 💽 Q, Q, 🕂 🗃 🗟 🛏 160%	
O P and CG	S only	ows		Notes: Strand positions generated by the REVISED method.	
Strand config	guration type	✓ Symmetry		Please refer to Help for a description of this method.	
◯ Straight/[Debonded	U Symmetry			
Harped				$\bullet \times \times$	
O Harped a	nd straight debonded				
O Mid span					
Left end		Harp point locations			
Right end	Harp point	Distance (ft)	Radius (in)		
	 Left 	19.00	0.0000		
	Right	19.00	0.0000		
				 Aumber of strands = 24 Mumber of harped strands = 4 Cof of strands (measured from bottom of section) = 0.50 in Legendi No strand at this position at the current section location. A strand is debonded from the end of the barne of hacurent section location. A strand is debonded from the end of the survent section location. The strand is debonded from the end of the survent section location. The strand is debonded from the end of the survent section location. The strand is debonded from the end of the survent section location. The strand is debonded at other section location. The strand is debonded at other section location. The mid-span position of a harped strand. The mid-span position of a harped strand. The mid-span position of a harped strand. 	
		ОК Ар	Cancel	 I he mid-span position of one strand and the harped position of another strand. Mild steel. 	

Deck Profile – Deck concrete

Next open the **Deck Profile** window by double-clicking the **Deck Profile** node in the **Bridge Workspace** tree and enter the data describing the structural properties of the deck. The window is shown below.

🗛 De	eck	k Profile													-		×
Туре	=	PS Precast E															
D	ecł	k concrete	Reinforce	ement													
		Mate	rial	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Structural thickness (in)	Start effective flange width (Std) (in)	End effective flange width (Std) (in)	Start effective flange width (LRFD) (in)	End effective flange width (LRFD) (in)	n				
	Þ	Class A (US)	Ŧ	1 -	0.00	195.00	195.00	7.5000	90.0000	90.0000	90.0000	90.0000					<u>~</u>
																	*
		Compute fro typical sectio												New Dup	licate	Delete	
														ОК	Apply	Cance	el

Deck Profile – Reinforcement

Navigate to the **Reinforcement** tab of this window and enter the deck reinforcement data in the negative moment regions as shown below.

lec	k concrete	R	einforcem	ent										
	Material		Support number	Start distance (ft)	Length (ft)	End distance (ft)	Std bar count	LRFD bar count	Bar size	Distance (in)	Row		Bar spacing (in)	
Þ	Grade 60	Ŧ	1 -	60.00	30.00	90.00	11.00	11.00	6 -	3.5000	Top of Slab	*		
	Grade 60	•	1 -	60.00	30.00	90.00	11.00	11.00	5 -	2.0000	Bottom of Slab	*		
	Grade 60	•	2 *	45.00	30.00	75.00	11.00	11.00	6 -	3.5000	Top of Slab	*		
	Grade 60	-	2 *	45.00	30.00	75.00	11.00	11.00	5 -	2.0000	Bottom of Slab	-		
														New Duplicate Delete

Click **OK** to apply the data and close the window

Haunch Profile

Double-click on the Haunch Profile node in the Bridge Workspace tree to open the PS Haunch Profile window.

The I shape shown is for illustrative purposes only. Enter the data as shown below.

PS F	Haunch Pr	ofile									-		
Ļ		IY3	n] 										
	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Z1 (in)	Z2 (in)	Y1 (in)	Y3 (in)					
÷.	1 *	0.00	195.00	195.00			0.5000						
									New	Duplica	te	Delete	

Interior Diaphragms

Double-click on the **Interior Diaphragms** node in the **Bridge Workspace** tree to open the **Interior Diaphragms** window. The interior diaphragms for the box beam are entered as follows.

	Sp num		Start distance (ft)	Diaphragm spacing (ft)	Number of spaces	Length (ft)	End distance (ft)	Diaphragm thickness (in)	Diaphragm Ioad (kip)		
Þ	1	Ŧ	0.00	38.25	1	38.25	38.25		0.8000		-
	1	*	0.75	0.00	1	0.00	0.75		0.8000		
	1	Ŧ	75.00	0.00	1	0.00	75.00		0.8000		
	2	*	0.00	29.75	1	29.75	29.75		0.8000		
	2	*	0.50	0.00	1	0.00	0.50		0.8000		
	2	*	59.00	0.00	1	0.00	59.00		0.8000		
	3	*	0.00	29.75	1	29.75	29.75		0.8000		
	3	Ŧ	0.50	0.00	1	0.00	0.50		0.8000		
	3	*	59.75	0.00	1	0.00	59.75		0.8000		
								New OK	Duplicate Apply	Delet	

Shear Reinforcement Ranges

Double-click on the **Shear Reinforcement Ranges** node in the **Bridge Workspace** tree to open the **PS Shear Reinforcement Ranges** window. The shear reinforcement ranges for each span are entered as described below. The vertical shear reinforcement is defined as extending into the deck on the **Vertical** tab of this window. This indicates composite action between the beam and the deck. Data does not have to be entered on the Horizontal tab to indicate composite action since that has been defined by extending the vertical bars into the deck.

Span 1

PS She	ear Reinforcemen	t Ranges							-		×
↓	Start Distance	Spa	acing								
Vertic											
Span:	1 🗸	Copy sp	an to								
	Name	Extends into deck	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)				
▶ #	#4 Stirrups 🔹 👻	1	0.75	1	0.0000	0.00	0.75				-
#	4 Stirrups 🔹 👻	\checkmark	0.75	99	9.0000	74.25	75.00				
											Ŧ
Sti	irrup wizard	Stirrup de	esign tool	View calcs			New	Duplicate		Delete	
							OK	Appl	у	Cano	el

Span 2

PS Shear	r Reinforcemen	it Ranges							-		×
	Start Distance	1.	acing								
Vertical	Horizontal										
Span:	2 🗸	Copy sp	an to								
	Name	Extends into deck	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)				
▶ #4 \$	Stirrups -	\checkmark	0.50	1	0.0000	0.00	0.50				<u>.</u>
#4 !	Stirrups *	1	0.50	78	9.0000	58.50	59.00				
Stirru	up wizard	Stirrup de	esign tool	View calcs			New	Duplicate	2	Delete	
							OK	Арр	ly	Canc	el

Span 3

D PS	Shear Reinforcemen	t Ranges							_		×
+	△ Start Distance	Sp:	acing								
Spa		Copy sp	oan to								
	Name	Extends into deck	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)				
Þ	#4 Stirrups 🔹 👻	V	0.50	1	0.0000	0.00	0.50			-	6
	#4 Stirrups *	1	0.50	79	9.0000	59.25	59.75				
	Stirrup wizard	Stirrup de	esign tool	View calcs]		New	Duplicate		Delete	
							OK	Apply		Cance	2

Click \mathbf{OK} to apply the data and close the window

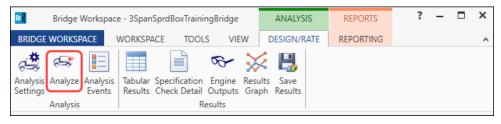
The Live Load Distribution factors will be computed automatically by BrDR while rating. The member alternative can now be analyzed.

LRFR Rating

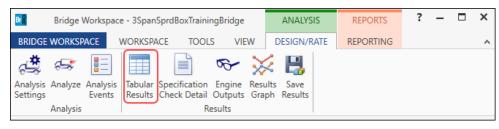
To perform an **LRFR** rating, select the **Analysis Settings** button on the **Analysis** group of the **DESIGN/RATE** ribbon to open the window shown below.

Bridge Work	space - 3SpanSprdBoxTrainingBridge	ANALYSIS	REPORTS	?	-	×
BRIDGE WORKSPACE	WORKSPACE TOOLS VIEW	DESIGN/RATE	REPORTING			^
at 1		2 📙				
Analysis Analyze Anal Settings Eve						
Analysis	Results					

Click the **Open Template** button and select the **LRFR Design Load Rating** to be used in the rating and click **Open**.


Templates	Description	Analysis	Owner	Public / Private	
HL 93 Design Review	HL 93 Design Review	LRFD		Public	
HS 20 LFR Rating	HS 20 LFR Rating	LFR		Public	
LRFR Design Load Rating	LRFR Design Load Rating	LRFR		Public	
LRFR Legal Load Rating	LRFR Legal Load Rating	LRFR		Public	

Analysis Settings	>
Design review Rating	Rating method:
alysis type: Line Girder	V
ne / Impact loading type: As Requested	✓ Apply preference setting: None
Vehicles Output Engine Description	
Traffic direction: Both directions	Refresh Temporary vehicles Advanced
Vehicle selection	Vehicle summary
 ➡-Vehicles ➡-Standard ➡ EV2 ➡ EV3 ➡ 15-44 ➡ H_20-44 ➡ H_2-33 (SI) ➡ H_5 15-44 ➡ HS 20 (SI) ➡ HS 20 (SI) ➡ HS 20-44 _Lane-Type Legal Load _LRFD Fatigue Truck (US) ➡ NRL _SU4 _SU5 _SU6 _SU7 _Type 352 ➡ Agency _MBE-PERMIT _Userporary 	Add to


The Analysis Settings window will be updated as shown below.

Tabular Results

Next click the Analyze button on the Analysis group of the DESIGN/RATE ribbon to perform the rating.

When the rating is competed, results can be reviewed by clicking the **Tabular Results** button on the **Results** group of the ribbon.

The window shown below will open.

Live Load Live Load Rating Method Rating Load Rating Level Coation (Ton) Location Rating Factor Location (ft) Limit State Impact Lane HL-93 (US) Truck + Lane LRFR Inventory 33.51 0.931 37.13 1 - (190.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) Truck + Lane LRFR Inventory 33.51 0.931 37.13 1 - (190.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) Truck + Lane LRFR Inventory 35.39 0.983 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) Signifruck Pair + Lane) LRFR Inventory 37.78 1.049 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested As Requested HL-93 (US) 90%(Truck Pair + Lane) LRFR Inventory 37.78 1.049 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested As Requested HL-93 (US) Tandem + Lane LRFR Operating 60.97 1.649 <	Analysis Res	sults - 48" PS Box									-	>
Live Load Live Load Rating Method Level Coad Rating (Ton) Rating Factor Location (tt) Location Limit State Impact Lane HL-93 (US) Truck + Lane LRFR Inventory 33.51 0.931 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested As Requested HL-93 (US) Truck + Lane LRFR Inventory 33.51 0.931 37.10 1 - (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) 90%(Truck Pair + Lane) LRFR Inventory 35.39 0.983 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) 90%(Truck Pair + Lane) LRFR Operating 45.87 1.274 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested HL-93 (US) Tandem + Lane LRFR Operating 45.87 1.274 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested HL-93 (US) Tandem + Lane LRFR Inventory 37.78 1.049 37.13 1 - (49.5) SERVICE-III PS Tensile	Print											
Live Load Type Rating Method Rating Level Load Rating (Ton) Rating Factor Location (Ht) Limit State Impact Lane HL-93 (US) Truck + Lane LRFR Inventory 33.51 0.931 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested As Requested HL-93 (US) Truck + Lane LRFR Operating 50.52 1.403 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) 90%(Truck Pair + Lane) LRFR Operating 45.87 1.274 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested HL-93 (US) Tandem + Lane LRFR Inventory 37.78 1.049 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested	eport type:	— La	ane/Impact loadir	ng type	Display F	ormat						
Live Load Type Rating Method Type Rating Level Load Rating (Ton) Rating Factor (Rt) Location Span-(%) Limit State Impact Lane HL-93 (US) Truck + Lane LRFR Inventory 33.51 0.931 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested As Requested HL-93 (US) Truck + Lane LRFR Operating 50.52 1.403 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) 90%(Truck Pair + Lane) LRFR Inventory 35.39 0.983 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested HL-93 (US) 90%(Truck Pair + Lane) LRFR Operating 45.87 1.274 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested HL-93 (US) Tandem + Lane LRFR Inventory 37.78 1.049 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested HL-93 (US) Tandem + Lane LRFR Inventory 37.78 1.049 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested <td< td=""><td>ating Results S</td><td></td><td></td><td></td><td>Single ra</td><td>ting level per r</td><td>ow</td><td>~</td><td></td><td></td><td></td><td></td></td<>	ating Results S				Single ra	ting level per r	ow	~				
Live LoadTypeRating MethodLevel(Ton)Rating Pactor(ft)Span-(%)Limit StateImpactImpactLaneHL-93 (US)Truck + LaneLRFRInventory33.510.93137.131 - (49.5)SERVICE-III PS Tensile StressAs RequestedAs RequestedHL-93 (US)Truck + LaneLRFROperating50.521.40375.001 - (100.0)STRENGTH-I Concrete FlexureAs RequestedAs RequestedHL-93 (US)90%(Truck Pair + Lane)LRFRInventory35.390.98375.001 - (100.0)STRENGTH-I Concrete FlexureAs RequestedAs RequestedHL-93 (US)90%(Truck Pair + Lane)LRFROperating45.871.27475.001 - (100.0)STRENGTH-I Concrete FlexureAs RequestedAs RequestedHL-93 (US)Tandem + LaneLRFRInventory37.781.04937.131 - (49.5)SERVICE-III PS Tensile StressAs RequestedAs Requested				0 - 10000								
Live LoadTypeNating MethodLevel(Ton)Nating Pactor(ft)Span-(%)Limit StateImpactImpactLaneHL-93 (US)Truck + LaneLRFRInventory33.510.93137.131 - (49.5)SERVICE-III PS Tensile StressAs RequestedAs RequestedHL-93 (US)Truck + LaneLRFROperating50.521.40375.001 - (100.0)STRENGTH-I Concrete FlexureAs RequestedAs RequestedHL-93 (US)90%(Truck Pair + Lane)LRFRInventory35.390.98375.001 - (100.0)STRENGTH-I Concrete FlexureAs RequestedAs RequestedHL-93 (US)90%(Truck Pair + Lane)LRFROperating45.871.27475.001 - (100.0)STRENGTH-I Concrete FlexureAs RequestedAs RequestedHL-93 (US)Tandem + LaneLRFRInventory37.781.04937.131 - (49.5)SERVICE-III PS Tensile StressAs RequestedAs Requested												
HL-93 (US) Truck + Lane LRFR Operating 50.52 1.403 75.00 1. (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) 90%(Truck Pair + Lane) LRFR Inventory 35.39 0.983 75.00 1. (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) 90%(Truck Pair + Lane) LRFR Operating 45.87 1.274 75.00 1. (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) Tandem + Lane LRFR Inventory 37.78 1.049 37.13 1. (49.5) SERVICE-III PS Tensile Stress As Requested	Live Load		Rating Method	-		Rating Factor			Limit State	Impact	Lane	
HL-93 (US) 90%(Truck Pair + Lane) LRFR Inventory 35.39 0.983 75.00 1 (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) 90%(Truck Pair + Lane) LRFR Operating 45.87 1.274 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) Tandem + Lane LRFR Inventory 37.78 1.049 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested As Requested	HL-93 (US)	Truck + Lane	LRFR	Inventory	33.51	0.931	37.13	1 - (49.5)	SERVICE-III PS Tensile Stress	As Requested	As Requested	
HL-93 (US) 90%(Truck Pair + Lane) LRFR Operating 45.87 1.274 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested As Requested HL-93 (US) Tandem + Lane LRFR Inventory 37.78 1.049 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested As Requested	HL-93 (US)	Truck + Lane	LRFR	Operating	50.52	1.403	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
HL-93 (US) Tandem + Lane LRFR Inventory 37.78 1.049 37.13 1 - (49.5) SERVICE-III PS Tensile Stress As Requested As Requested	HL-93 (US)	90%(Truck Pair + Lane)	LRFR	Inventory	35.39	0.983	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
	HL-93 (US)	90%(Truck Pair + Lane)	LRFR	Operating	45.87	1.274	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
HL-93 (US) Tandem + Lane LRFR Operating 60.97 1.694 75.00 1 - (100.0) STRENGTH-I Concrete Flexure As Requested As Requested	HL-93 (US)	Tandem + Lane	LRFR	Inventory	37.78	1.049	37.13	1 - (49.5)	SERVICE-III PS Tensile Stress	As Requested	As Requested	
	HL-93 (US)	Tandem + Lane	LRFR	Operating	60.97	1.694	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
SUTO LEEP Engine Variant 7.5.0.2001												
		2										
SHTO LRFR Engine Version 7.5.0.3001 alysis preference setting: None		2										

LRFD Design review

To perform an **LRFD design review** of this girder for HL93 loading, select the **Analysis Settings** button on the **Analysis** group of the **DESIGN/RATE** ribbon to open the window shown below.

Br 🖁 🛛 🗄	Bridge Workspac	ce - 3SpanSprdBo	xTrainingBridge	ANALYSIS	REPORTS	?	-	×
BRIDGE W	ORKSPACE	WORKSPACE	TOOLS VIEW	DESIGN/RATE	REPORTING			~
*	st 🗄		∽	🔀 📙				
Analysis A Settings	nalyze Analysis Events		ication Engine F Detail Outputs (
	nalysis		Results					

Click the **Open Template** button and select the **LRFR Design Load Rating** to be used in the rating and click **Open**.

Templates	Description	Analysis	Owner	Public / Private	
HL 93 Design Review	HL 93 Design Review	LRFD		Public	
HS 20 LFR Rating	HS 20 LFR Rating	LFR		Public	
LRFR Design Load Rating	LRFR Design Load Rating	LRFR		Public	
LRFR Legal Load Rating	LRFR Legal Load Rating	LRFR		Public	

Analysis Settings				-	
Design review C Rating		Design method:	LRFD	~	
alysis type: Line Girder	~				
ne / Impact loading type: As Requested	~	Apply preference se	tting: None	~	
Vehicles Output Engine Descrip	tion				
Traffic direction: Both directions	~	Refresh	Temporary vehicles	Advanced	
Vehicle selection		Vehicle sur	nmary		
Vehicles		De De La Companya de	ı vehicles sign Ioads H-L-93 (US) rmit Ioads tigue Ioads -LRFD Fatigue Truck (US)		

The Analysis Settings window will be updated as shown below.

Engine Outputs

Next click the Analyze button on the Analysis group of the DESIGN/RATE ribbon to perform the design review.

Bridge Workspace	- 3SpanSprdBoxTrainingBridge	ANALYSIS	REPORTS	?	-	×
BRIDGE WORKSPACE	VORKSPACE TOOLS VIEW	V DESIGN/RATE	REPORTING			^
	Tabular Specification Engine Results Check Detail Outputs Results					

AASHTO LRFD analysis will generate a **Spec Check Results** file. When the design review is finished, results can be reviewed by clicking the **Engine outputs** button on the **Results** group of the ribbon.

Bridge Workspace	e - 3SpanSprdBoxTrainin	ngBridge	ANALYSIS	REPORTS	?	-	×
BRIDGE WORKSPACE	WORKSPACE TOOLS	S VIEW	DESIGN/RATE	REPORTING			^
Analysis Settings Analysis Analysis Analysis	Results Check Detail						

🕰 3SpanSprdBoxTrainingBridge	_	×
i → 3SpanSprdBoxTrainingBridge i → 5 Girder System i → G2 i → 48" PS Box i → AASHTO_LRFD i → Stage 3 Spec Check Results (Monday Jan. 30, 2023 15:46:55) Log File i → AASHTO_LRFR i → Stage 3 Spec Check Results Log File		

To view the spec check results, double click the Stage 3 Spec Check Results file in this window.

Bridge ID : 3SpanSprdBoxTrainingBridge Bridge : 3Span Sprd Box Trn Bridge Superstructure Def : 5 Girder System Member : G2 Analysis Preference Setting : NBI Structure ID : 3SpanSprdBoxTra Bridge Alt :

Member Alt : 48" PS Box

AASHTO LRFD Specification, Edition 9, Interim 0

Specification Check Summary

Article	Status
Initial Stress at Transfer (5.9.2.3.1a, 5.9.2.3.1b)	Pass
Splitting Resistance in Anchorage Zones (5.9.4.4.1)	Pass
Final Stress due to Permanent and Transient Loads (5.9.2.3.2a, 5.9.2.3.2b)	Fail
Flexure (5.6.3.2, 5.6.3.3)	Fail
Shear (5.7.3.3, 5.7.2.5, 5.7.2.6, 5.7.3.5)	Fail
Deflection (5.6.3.5.2)	Pass

Initial Compression Stress At Transfer of Prestress

Location (ft)	Allowable Stress (ksi)	Actual Stress Top of Beam (ksi)	Actual Stress Bot of Beam (ksi)	Design Ratio	Code
0.000	-3.315	0.048	-0.652	5.086	Pass
1.750	-3.315	0.103	-2.118	1.565	Pass
3.206	-3.315	0.065	-2.081	1.593	Pass
7.500	-3.315	-0.048	-1.970	1.683	Pass
15.000	-3.315	-0.175	-1.845	1.797	Pass
21.750	-3.315	-0.221	-1.800	1.841	Pass
22.500	-3.315	-0.237	-1.784	1.858	Pass