AASHTOWare BrDR 7.5.0 Prestressed Concrete Structure Tutorial PS3 – Adjacent PS Box Example

BrDR Training

PS3 - Adjacent PS Box Example

🗛 PSAdjBoxTrainingBrid	ge	– 🗆 X
Bridge ID: PSAdjBoxTr	ainingBridge NBI structure ID (8): AdjBoxTraining1 Bridge completely defined	 Superstructures Culverts Substructures
Description Desc	ription (cont'd) Alternatives Global reference point Traffic Custom agency fields	
Name:	PSAdjBox Training Bridge Year built:	
Description:	Similar to PCI TrainingBridge2, input as a girder system. Single span, ps adjacent box beam bridge.	-
Location:	Length:	ft
Facility carried (7):	Route number: -1	
Feat. intersected (6):	Mi. post:	
Default units:	US Customary	
Bridge associa	tion BrR D BrM Sync with BrM	
	ОК Ар	oply Cancel

From the **Bridge Explorer** create a **new bridge** and enter the following description data:

Click **OK** to apply the data and close the window.

Bridge Components

Bridge Materials - Concrete

To add a new concrete material, in the **Components** tab of the **Bridge Workspace**, expand the **Materials** node by clicking the 🖻 button, select **Concrete**, and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Concrete** and select **New**).

The window shown below will open. Enter the values as shown below.

Bridge Ma	terials - Concrete			-	×
Name:	5.0 ksi Beam Concrete				
Description:					
Compressive	e strength at 28 days (f'c):	5	ksi		
Initial compressive strength (f'ci):		4	ksi		
Composition	n of concrete:	Normal ~			
Density (for	dead loads):	0.15	kcf		
Density (for i	modulus of elasticity):	0.15	kcf		
oisson's rat	io:	0.2			
Coefficient o	of thermal expansion (α):	0.000006	1/F		
Splitting ten	sile strength (fct):		ksi		
.RFD Maxim	um aggregate size:		in		
	Compute				
Std modulus	of elasticity (Ec):	4286.825749	ksi		
RFD modul	us of elasticity (Ec):	4592.232476	ksi		
Std initial mo	odulus of elasticity:	3834.253513	ksi		
LRFD initial r	modulus of elasticity:	4266.223084	ksi		
Std modulus	of rupture:	0.53033	ksi		
LRFD modul	us of rupture:	0.536656	ksi		
Shear factor:		1			

Click **OK** to apply the data and close the window.

Since a bituminous surface will be used on this bridge as a wearing surface, deck concrete material is not required.

Bridge Materials – Prestress strand

To add a new prestress strand material, select **Prestress Strand** in the **Components** tree, and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Prestress Strand** and select **New**).

Click on the Copy from library... button in this window and select 1/2" (7W-270) LR from the library and click OK.

4	Library Data: Materia	als - Prestress Strand												-	- 🗆	\times
	Name	Description	Library	Units	Fy	Fu	Modulus of elasticity	Load per unit length	Diameter	Area	Transfer length (Std)	Transfer length (LRFD)	Strand type	Epoxy coated		
	1/2" (7W-250) LR	Low relaxation 1/2"/Seven Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.490	0.5000	0.144	25.0000	30.0000	Low Relaxation	False		-
	1/2" (7W-250) SR	Stress relieved 1/2"/Seven Wire/fpu = 250	Standard	US Customary	212.500	250.000	28500.00	0.490	0.5000	0.144	25.0000	30.0000	Stress Relieved	False		
1	1/2" (7W-270) LR	Low relaxation 1/2"/Seven Wire/fpu = 270	Standard	US Customary	243.000	270.000	28500.00	0.520	0.5000	0.153	25.0000	30.0000	Low Relaxation	False		
	1/2" (7W-270) SR	Stress relieved 1/2"/Seven Wire/fpu = 270	Standard	US Customary	229.500	270.000	28500.00	0.520	0.5000	0.153	25.0000	30.0000	Stress Relieved	False		
	1/4" (3W-250) LR	Low relaxation 1/4"/Three Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.130	0.2500	0.036	12.5000	15.0000	Low Relaxation	False		
	1/4" (7W-250) LR	Low relaxation 1/4"/Seven Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.122	0.2500	0.036	12.5000	15.0000	Low Relaxation	False		
	1/4" (7W-250) SR	Stress relieved 1/4"/Seven Wire/fpu = 250	Standard	US Customary	212.500	250.000	28500.00	0.122	0.2500	0.036	12.5000	15.0000	Stress Relieved	False		
	3/8" (3W-250) LR	Low relaxation 3/8"/Three Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.260	0.3750	0.075	18.7500	22.5000	Low Relaxation	False		
	3/8" (7W-250) LR	Low relaxation 3/8"/Seven Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.272	0.3750	0.080	18.7500	22.5000	Low Relaxation	False		-
													ОК	Apply	С	ancel

	1/01/704/0700	D			
Name:	1/2" (/W-2/0) L	ĸ			
Description:	Low relaxation 1	/2"/Seven Wire/fpu	= 270		
Strand diameter:		0.5000	in		
Strand area:		0.153	in^2		
Strand type:		Low Relaxation	~		
Ultimate ten	sile strength (Fu):	270.000	ksi		
Yield strengt	h (fy):	243.000	ksi		
Modulus of e	elasticity (E):	28500.00	ksi		
	Com	pute			
Transfer leng	th (Std):	25.0000	in		
Transfer leng	th (LRFD):	30.0000	in		
Unit load pe	r length:	0.520	lb/ft		
		Epoxy coated			

The selected material properties are copied to the Bridge Materials – PS Strand window as shown below.

Click \mathbf{OK} to apply the data and close the window.

Name:	Grade 60						
Description:	60 ksi reinforci	ng steel					
Material prop	perties						
Specified yie	ld strength (fy):	60.000087		ksi			
Modulus of e	elasticity (Es):	29000.004206		ksi			
Jltimate stre	ngth (Fu):	90.0000131		ksi			
Type Plain Epo Galv	n xy vanized						
Galv	Copy ti	o library	Copy f	rom library	ОК	Apply	Cancel

Add the following reinforcement steel in the same manner.

Click **OK** to apply the data and close the window.

Beam Shape

To enter a prestress beam shape to be used in this bridge expand the tree labelled **Beam Shapes** and **Prestress Shapes** as shown below and click on the **Box Beams** node in the **Components** tree, select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Box Beams** and select **New** or double click on **Box Beams** in the **Components** tree).

The Prestress Box Beam window shown below will open.

Select the **Type of Void** as **Rectangular** and click on the **Copy from Library** button. The window shown below appears.

4	Library I	Data: Prestress Box Rec	tangular Sh	apes										_		×
	Name	Description	Library	Units	Depth	Top width	Bottom width	Top slab thickness	Bottom slab thickness	Top haunch width	Top haunch height	Bottom haunch width	Bottom haunch height	Shear key height	Shear key depth	
	BI-36	AASHTO-PCI BI-36	Standard	US Customary	27.0000	35.2500	36.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	-
	BI-48	AASHTO-PCI BI-48	Standard	US Customary	27.0000	47.2500	48.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BII-36	AASHTO-PCI BII-36	Standard	US Customary	33.0000	35.2500	36.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BII-48	AASHTO-PCI BII-48	Standard	US Customary	33.0000	47.2500	48.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BIII-36	AASHTO-PCI BIII-36	Standard	US Customary	39.0000	35.2500	36.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
1	BIII-48	AASHTO-PCI BIII-48	Standard	US Customary	39.0000	47.2500	48.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BIV-36	AASHTO-PCI BIV-36	Standard	US Customary	42.0000	35.2500	36.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
	BIV-48	AASHTO-PCI BIV-48	Standard	US Customary	42.0000	47.2500	48.0000	5.5000	5.5000	3.0000	3.0000	3.0000	3.0000	6.0000	0.7500	
																*
													OK	Apply	Cano	:el

Select **BIII-48** (**AASHTO Box Beam, Type BIII-48**) and click **OK**. The beam properties are copied to the **PS Box Beam** window as shown below.

Click **OK** to apply the data and close the window.

Bridge - Appurtenances

To enter the appurtenances to be used within the bridge expand the tree branch labeled **Appurtenances**. To define a parapet, select **Parapet** and click on **New** from the **Manage** button on the **WORKSPACE** ribbon (or double click on **Parapet** in the **Components** tree).

Bridge Workspace - PSAdjBoxTrainingBridg	ge ANALYSIS	REPORTS	? – 🗆 ×
BRIDGE WORKSPACE WORKSPACE TOOLS	VIEW DESIGN/RATE	REPORTING	^
Check Out Check In Validate Save	port Refresh	ew Copy Paste Duplica	ate Delete Schematic
Bridge		Manage	
Workspace # ×	Schematic	∓ × Repo	rt #×
Bridge Components Comp			
Connectors Factors	Analysis		џ ×
├─ 🤗 LRFD Substructure Design Settings ֎- 🗭 Materials			

Enter the data as shown below.

Click **OK** to apply the data and close the window.

The default impact factors, standard LRFD and LFR factors will be used. Bridge Alternatives will be added after entering the Structure Definition.

Superstructure Definition

Returning to the **Bridge** tab of the **Bridge Workspace**, double click on **SUPERSTRUCTURE DEFINITIONS** (or click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the **Manage** group of the **WORKSPACE** ribbon or right mouse click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the popup menu) to create a new structure definition. The window shown below will appear.

🕰 New Superstructure Definition		>
 Girder system superstructure 		
Girder line superstructure	Superstructure definition wizard	
Floor system superstructure		
Floor line superstructure		
 Truss system superstructure 		
Truss line superstructure		
Reinforced concrete slab system superstructure		
Oncrete multi-cell box superstructure		
Advanced concrete multi-cell box superstructure		
	OK Cancel	

Select Girder system superstructure, click OK and the Girder System Superstructure Definition window will open.

Enter the data as shown below.

Analysis Specs	Engine		
lame: 7 Girder Syst	em		Modeling Multi-girder system O MCB
escription:			With frame structure simplified definition Deck type: Concrete Deck
efault units: US Customar umber of spans: 1 0 umber of girders: 7 0	y Enter span lengths along the reference line: Span Length (ft) 1 95.00		For PS/PT only Average humidity: Member alt. types Steel P/S P/S P/S
		*	Timber
Horizontal curvature along refer	ence line	v	Timber
Horizontal curvature along refer	ence line Distance from PC to first support line:	ft	☐ NCC ☐ Timber ☐ P/T
Horizontal curvature along refer Horizontal curvature Superstructure alignment	ence line Distance from PC to first support line: Start tangent length:	ft ft	☐ NCC ☐ Timber ☐ P/T
Horizontal curvature along refer Horizontal curvature Superstructure alignment © Curved	rence line Distance from PC to first support line: Start tangent length: Radius:	ft ft ft	☐ NCC ☐ Timber ☐ P/T
Horizontal curvature along refer Horizontal curvature Superstructure alignment Curved Tangent, curved, tangent Tangent curved	rence line Distance from PC to first support line: Start tangent length: Radius: Direction:	ft ft Left	☐ NC ☐ Timber ☐ P/T
Horizontal curvature along refer Horizontal curvature Superstructure alignment © Curved Tangent, curved, tangent Tangent, curved Curved, tangent	vence line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length:	ft ft ft Left v ft	☐ NCC ☐ Timber ☐ P/T
Horizontal curvature along refer Horizontal curvature Superstructure alignment © Curved Tangent, curved, tangent Tangent, curved Curved, tangent	ence line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT:	ft ft Left V ft	☐ NCC ☐ Timber ☐ P/T
Horizontal curvature along refer Horizontal curvature Superstructure alignment © Curved Tangent, curved, tangent Tangent, curved Curved, tangent	rence line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT: Design speed:	ft ft Left V ft ft ft ft ft ft	☐ Timber ☐ P/T

Click **OK** to apply the data and close the window.

The partially expanded **Bridge Workspace** tree is shown below:

BRIDGE ALTERNATIVES

Navigate to the **BRIDGE ALTERNATIVES** node in the **Bridge Workspace** tree and create a new bridge alternative by double-clicking on **BRIDGE ALTERNATIVES** (or click on **BRIDGE ALTERNATIVES** and select **New** from the **Manage** group of the **WORKSPACE** ribbon). Enter the following data.

A Bridge Alternative		– 🗆 X
Alternative name: Bridge Alternative#1		
Description Substructures		
Description:		
Horizontal curvature	Global positioning	
Reference line length: 0 ft	Distance: 0	ft
O Start bearing End bearing	Offset: 0	ft
Starting station: ft	Elevation:	ft
Bearing: N 90^ 0' 0.00" E		
Bridge alignment Curved Tangent, curved, tangent Tangent, curved Curved, tangent	Start tangent length: Curve length: Radius: Direction: End tangent length:	ft ft ft v
Superstructure wizard Culvert wizard		
	ОК	Apply Cancel

Click **OK** to apply the data and close the window.

Expand the **Bridge Alternative 1** node in the **Bridge Workspace** tree. Double-click on the **SUPERSTRUCTURES** node (or select **SUPERSTRUCTURES** and click **New** from the **Manage** group of the **WORKSPACE** ribbon) and enter the following new superstructure.

A Superstructure						-		×
Superstructure nam	e: Superstru	ucture #1						
Description	Alternatives	Vehicle path Engin	e Substructures					
Description:								
Reference lin	e							
Distance:	0	ft						
Offset:	0	ft						
Angle:	0	Degrees						
Starting stat	ion:	ft						
				ОК	Apply		Cance	el

Click **OK** to apply the data and close the window.

Expand the **Superstructure #1** node in the **Bridge Workspace** tree. Double-click on the **SUPERSTRUCTURE ALTERNATIVES** node (or select **SUPERSTRUCTURE ALTERNATIVES** and click **New** from the **Manage** group of the **WORKSPACE** ribbon) and enter the following new superstructure alternative. Select the superstructure definition **7 Girder System** as the current superstructure definition for this Superstructure Alternative.

A 9	Superstru	ucture Alternati	ve.		-	-		×
Alte	rnative r	name:	Superstructure Alternative #1					
Des	cription:							
Sup	erstructi	ure definition:	7 Girder System 🗸	กั เ				
Sup	erstruct	ure type:	Girder					
Nur	nber of I	main members:	7					
	Span	Length (ft)						
>	1	95	A					
			ОК		Apply		Cance	el

Re-open the **Superstructure #1** window and navigate to the **Alternatives** tab. The **Superstructure Alternative #1** will be shown as the **Existing** and **Current** alternative for **Superstructure #1**.

Supe	erstructure			-	>
perst	tructure nar	me: Supe	erstructure #1		
Desc	cription	Alternativ	ves Vehicle path Engine	Substructures	
	Existing	Current	Superstructure alternative nar	Description	
>	\checkmark	\checkmark	Superstructure Alternative #1		1

The partially expanded Bridge Workspace tree is shown below.

Load Case Description

Double-click on the **Load Case Description** node in the **Bridge Workspace** tree to open the **Load Case Description** window and define the dead load cases as shown below. The completed **Load Case Description** window is shown below.

Load case name	Description	Stage	Туре	Time* (days)	
Wearing Surface		Non-composite (Stage 1)	- D,DW	-	
Parapets		Non-composite (Stage 1)	- D,DC	*	

Structure Framing Plan Detail – Layout

Double-click on **Framing Plan Detail** node in the **Bridge Workspace** tree to describe the framing plan in the **Structure Framing Plan Details** window. Enter the data as shown below.

itructure Framing Plan Details								-		
mber of spans: 1 Number of g	irders: 7									
ayout Diaphragms										
	Girder s	pacing orien	tation							
	Perp	endicular to	girder							
Support Skew (degrees)	O Alon	g support								
1 0.000										
2 0.000		Girder	spacing							
	Gird	er (f	t)							
	Day	Start of	End of girder							
	1	4.00	4.00							
	2	4.00	4.00							
	3	4.00	4.00							
	4	4.00	4.00							
	5	4.00	4.00							
	▶ 6	4.00	4.00							
v				∇						
					[OK	A	pply	Cano	el
						OK	A	pply	Cano	

Structure Framing Plan Detail – Diaphragms

The **Diaphragms** tab of this window is used to enter data for exterior diaphragms, in other words diaphragms located between girders. Since an adjacent box beam structure does not have exterior diaphragms, no data will be entered in the **Diaphragms** tab. Interior diaphragms for the box beams will be entered after defining the Member Alternative as a PS box beam.

Structure Typical Section - Deck

Next define the structure typical section by double-clicking on the **Structure Typical Section** node in the **Bridge Workspace** tree. Input the data describing the typical section as shown below.

The basic deck geometry is shown below.

Input the data describing the typical section as shown below.

overhang	Ustance from superstructure Superstructure Reference	ure De Line	finition	o → Hight	overhang				
Deck (cont'd) Parapet Med	ian Railing	Ge	eneric Sie	dewalk	Lane position	Striped lanes	Wearing surface		
Superstructure definition reference line is	within		✓ the brid	lge deck.					
	Start		End						
Distance from left edge of deck to superstructure definition reference line:	0.00	ft	0.00	ft					
Distance from right edge of deck to superstructure definition reference line:	28.00	ft	28.00	ft					
Left overhang:	2.00	ft	2.00	ft					
Computed right overhang:	2.00	ft	2.00	ft					

Structure Typical Section – Deck (cont'd)

The **Deck (cont'd)** tab is used to enter information about the **Deck concrete** and the **Total deck thickness**. Since this structure does not have a concrete deck, this tab will be left blank.

Structure Typical Section – Parapets

Add	two parapet	ts	as sł	10wn l	be	elow.												
A Str	ucture Typical Section															-		×
Back	Fre	ont																
De	ck Deck (cont'd)	Pa	arapet	Median		Railing	Ger	neric Sidewalk	Lane posit	tion St	riped	lanes	Wea	aring surface				
	Name		L	oad case		Measure	e to	Edge of deck dist. measured from	Distance at start (ft)	Distance end (ft)	e at	Front fa	ice ion					
	300 PLF parapet	*	Parape	ts	*	Back	*	Left Edge 🛛 🔻	0.00	(0.00	Right	*					ň.
	500 PCP paraper	•	Parape			Dack		Right Edge						New		1 [.		T
														OK	Apple		Can	:el
													l		1.44.1		- Call	- /

Structure Typical Section – Lane Positions

Select the **Lane position** tab and use the **Compute...** button to compute the lane positions. A window showing the results of the computation opens. Click **Apply** to apply the computed values.

۵	Compute La	ine Positions				×
	Travelway number	Distance from left edge of travelway to superstructure definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at end (B) (ft)	
e*	1	1.50	26.50	1.50	26.50	
						+
					Apply Ca	ncel

The Lane Position tab is populated as shown being

Structure Typical Section				-		×
(A) (A) (B) Superstruct Travelway 1	ure Definition Reference Line Travelway 2					
Deck Deck (cont'd) Parapet Median	Railing Generic Sidewa	alk Lane position Striped	lanes Wearing surface			
Travelway number Travelway number Travelway number Travelway definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at end (B) (ft)			
▶ <u>1</u> 1.50	26.50	1.50	26.50		~	
LRFD fatigue Lanes available to trucks: Override Truck fraction:	Compute		New Dup	licate	Delete	
			ОК	Apply	Cance	:1

Structure Typical Section – Wearing surface

Enter the data shown below.

A Structure Typical Section	-		×
Distance from left edge of deck to 1 Distance from right edge of deck to superstructure definition ref. line			
DeckSuperstructure Definition thicknessReference Line			
Left overhang			
Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Wearing surface material: Bituminous Surface			
Description:			
Wearing surface thickness: 3.0000 in Thickness field measured (DW = 1.25 if checked)			
Wearing surface density: 140.000 pcf			
Load case: Wearing Surface Copy from library			
ОК	Apply	Cance	el

Click **OK** to apply the data and close the window.

Schematic – Structure Typical Section

While **Framing Plan Detail** is selected in the **Bridge Workspace** tree, open the schematic for the framing plan by selecting the **Schematic** button on the **WORKSPACE** ribbon (or right click on **Framing Plan Detail** in the **Bridge Workspace** and select **Schematic** from the menu).

Since the member alternatives are not defined yet, the girders are displayed as dashed boxes. At this point **BrDR** does not know if the girders will be PS boxes, I-beams, steel rolled beams, etc.

Concrete Stress Limits

A Stress Limit defines the allowable concrete stresses for a given concrete material. Double click on the **Concrete Stress Limits** node in the **Bridge Workspace** tree to open the **Stress Limit Sets – Concrete** window. Enter data shown above the **Compute** button, select **Moderate** for the **Corrosion condition** and select the **5.0** ksi **Beam Concrete** material from the drop-down menu of the **Concrete material**. The **Final allowable tension** in the concrete is dependent upon the moderate or severe corrosive condition to which the member is exposed. BrDR uses the **stress limit coefficient** to calculate this value. For this example, check the **Final allowable tension stress limit coeff**. **(US) override checkbox** and enter the overridden value as shown below. If not overridden, BrDR uses the default stress limit coefficient.

Click the **Compute** button. Default values for the allowable stresses will be computed based on the **Concrete material** selected and the AASHTO Specifications.

The default value for the **Final allowable slab compression** is not computed since the deck concrete is typically different from the concrete used in the beam. This value will be left blank since this example does not have a concrete deck.

🗛 Stress Limit Sets -	Concrete						—		×
Name:	5.0 ksi Stre	ss Limit]					
Description:									
Corrosion condition:	Moderate		\sim						
🗹 Final allowable te	ension stress	limit coef. (U	S) override:	0.095					
Concrete material:	5.0 ksi Beam	n Concrete	\sim]					
	Compute								
		LFD			LRFD				
Initial allowable comp	pression:	2.4	ksi		2.6	ksi			
Initial allowable tensi	on:	0.1897367	ksi		0.1896	ksi			
Final allowable comp	ression:	3	ksi		3	ksi			
Final allowable tensio	on:	0.2124265	ksi		0.2124265	ksi			
Final allowable DL co	mpression:	2	ksi		2.25	ksi			
Final allowable slab c	ompression:		ksi			ksi			
Final allowable comp (LL+1/2(Pe+DL))	ression:	2	ksi		2	ksi			
					C	ОК Ар	oply	Cance	ł

Click **OK** to apply the data and close the window.

Prestress Properties

Double click on the **Prestress Properties** node in the **Bridge Workspace** tree to open the **Prestress Properties** window. Define the prestress properties as shown below. Since the **AASHTO Approximate** method is used to compute the losses, only the information on the **General P/S data** tab is required.

Prestress Properties				_		>
ame: 1/2" LR AASHTO	Loss					
General P/S data Lo	ss data - lump sum Loss data - PCI)				
P/S strand material:	1/2" (7W-270) LR	Jacking stress ratio:	0.750]		
Loss method:	AASHTO Approximate	P/S transfer stress ratio:				
		Transfer time:	24.0	Hours		
		Age at deck placement:	30.00	Days		
		Final age:	18250.00	Days		
Include elastic gains	5					
			OK	Apply	Cance	el

Click **OK** to apply this data and close the window.

Shear Reinforcement

Define the vertical shear reinforcement to be used by the girders. Expand the **Shear Reinforcement Definitions** node in the **Bridge Workspace** tree, select the **Vertical** node and click on **New** from the **Manage** group of the **WORKSPACE** ribbon (or double click on **Vertical**).

The I shape shown is for illustrative purposes only, it is not meant to display the actual beam shape. Enter data as shown below.

A Shear Reinforcement Definition - Vertical	_		×
Name: #4 Shear Reinf			
Material: Grade 60 Bar size: 4 Number of legs: 2.00 Inclination (alpha): 90.0 Degrees Shear Reinforcement Period		V	
OK Aş	oply	Cance	4

Click **OK** to apply this data and close the window.

A partially expanded **Bridge Workspace** is shown below.

Workspace – \Box ×
Bridge Components
Bridge Components

Describing a member

The **Member** window shows the data that was generated when the structure definition was created. No changes are required in this window. The first Member Alternative created will automatically be assigned as the **Existing** and **Current member alternative** for this Member.

A Member	-		\times
Member name: G2 Link with: None			
Description:			
Existing Current Member alternative name Description			
			^
Number of spans: Span length (ft) 1 95.00			
ОК Арр	oly	Canc	el

Defining a Member Alternative

Double-click on **MEMBER ALTERNATIVES** in the **Bridge Workspace** tree for member **G2** to create a new member alternative. The **New Member Alternative** window shown below will open. Select **Prestressed** (pretensioned) concrete for the **Material type** and **PS Precast Box** for the **Girder Type**.

A New Member Alternative	×
Material type:	Girder type:
Post tensioned concrete	PS Precast Box
Prestressed (pretensioned) concrete	PS Precast I
Reinforced concrete	PS Precast Tee
Steel	PS Precast U
Timber	
	OK Cancel

Click **OK** to close the window and create a new member alternative.

The **Member Alternative Description** window will open. Enter the data as shown below. The **Schedule based Girder property input method** is the only input method available for a prestressed concrete beam. Enter data as shown below.

Description Description: Girder prope © Schedule Cross-sec Self load Load case:	Specs erty input based ction base	Factors Factors	Engine	Import	Control options Material type: Girder type: Modeling type: Default units:	Prestressed (Pretensid PS Precast Box Multi Girder System US Customary	oned)		
Girder prope Schedule Cross-sec Self load Load case:	erty input e based ction base	t method			Material type: Girder type: Modeling type: Default units:	Prestressed (Pretensid PS Precast Box Multi Girder System US Customary	oned)		
Girder prope Schedule Cross-sec Self load Load case:	erty input based	t method			Girder type: Modeling type: Default units:	PS Precast Box Multi Girder System US Customary	>		
Girder prope Schedule Cross-sec Self load Load case:	erty input based ction base	t method			Modeling type: Default units:	Multi Girder System US Customary	~		
Girder prope Schedule Cross-sec Self load Load case:	erty input based ction base	t method			Default units:	US Customary	~		
Girder prope Schedule Cross-sec Self load Load case:	erty input based ction base	t method							
Additional se Additional se Crack contro Bottom of be	elf load: [elf load: [ol parame eam:	rter (Z)	kip/ft %	Exposure Bottom c	factor	Use creep			

Click **OK** to apply the data and close the window.

Beam Details – Span detail

Next describe the beam by double clicking on the **Beam Details** node in the **Bridge Workspace** tree. Enter the data in each tab of the **Beam Details** window as shown below.

pu		Julies millere	anges	Siab interface	1				
	Span number	Beam sha	ape	Girder material	Prestress properties	n	Beam p Left end (in)	Right end (in)	
Þ	1	BIII-48	Ŧ	5.0 ksi Beam Concrete	▼ 1/2" LR AASHTO Loss ▼		6.0000	6.0000	

Beam Details – Stress limit ranges

Note that the **Stress limit ranges** are defined over the entire length of the precast beam, including the projections of the beam past the centerline of bearing which were entered on the **Span Detail** tab. The stress limit names appearing in the drop down menu of the **Name** column correspond to the stress limits associated with the concrete material specified for that span on the **Span Detail** tab.

Span Name Start distance (ft) End distance (ft) 1 * 5.0 ksi Stress Limit * 0.00 96.00								
Span number Name Start distance (ft) Length (ft) End distance (ft) 1 * 5.0 ksi Stress Limit * 0.00 96.00	ра	n detail	Stress limit ranges	Slab inter	face			
▶ 1 ▼ 5.0 ksi Stress Limit ▼ 0.00 96.00 96.00		Span number	Name		Start distance (ft)	Length (ft)	End distance (ft)	
	Þ	1 *	5.0 ksi Stress Limit	-	0.00	96.00	96.00	

Since this example does not have a concrete deck, the **Slab interface** tab can be left blank.

Click **OK** to apply the beam details data and close the window.

Strand Layout – Span 1

Expand the **Strand Layout** in the **Bridge Workspace** tree and double-click on **Span 1** (or select **Span 1** and click the **Open** button from the **Manage** group of the **WORKSPACE** ribbon) to open the **Stand Layout – Span 1** window.

Use the **Zoom** buttons to shrink/expand the schematic of the beam shape on the right side of the screen so that the entire beam is visible. Select the **Description type** as **Strands in rows** and the **Strand configuration type** as **Straight/Debonded**. The **Mid span** radio button will now become active. Strands can now be defined at the middle of the span by selecting strands in the right-hand schematic. Select the following strands in the schematic so that the CG of the strands is 4.67 inches. Click the **Apply** button to save this information.

Now select the **Left** radio button to enter data for debonding of the strands. Click the **New** button to enter the location of the debonding point as a distance from the left end of the precast beam. Enter the new location as **60** inches from the left end of the precast beam to the debonding point in the window as shown below.

A New Location	×
Section location: 60.0000 in	
Measured and debonded from	
End of beam	
O Mid-span: Cut strand after release of initial prestressing force	
OK Cancel	

Click **OK** to close the window and apply the changes.

Select 6 strands in the bottom row in the schematic as being debonded at the section 60 inches from the left end of the beam as shown below.

Click **OK** to apply the data and close the window.

This structure definition does not have a concrete deck, so **Deck profile** and **Haunch profile** data will not be entered.

Interior Diaphragms

Eight inch thick, full depth diaphragms are located at quarter points. The weight of an individual diaphragm is calculated as follows.

$$\frac{8}{12} \left[\frac{(48-10)}{12} * \frac{(39-11)}{12} - 4\left(\frac{1}{2}\right) \left(\frac{3}{12}\right) \left(\frac{3}{12}\right) \left(0.15\right) = 0.73k \text{ / diaphragm}$$

Double-click on the **Interior Diaphragms** node in the **Bridge Workspace** tree to open the **Interior Diaphragms** window and enter data in this window as shown below.

Span numberStart distance (ft)Diaphragm spacing (ft)Number of spacesLength (ft)End distance (ft)Diaphragm thickness (in)Diaphragm load (kip)1*0.500.0010.000.508.00000.73001*0.5023.75495.0095.508.00000.7300	11	itei	erior Diap	hragms						_		
1 • 0.50 0.00 1 0.00 0.50 8.0000 0.7300 1 • 0.50 23.75 4 95.00 95.50 8.0000 0.7300		n	Span number	Start distance (ft)	Diaphragm spacing (ft)	Number of spaces	Length (ft)	End distance (ft)	Diaphragm thickness (in)	Diaphragm Ioad (kip)		
1 • 0.50 23.75 4 95.00 95.50 8.0000 0.7300		1	*	0.50	0.00	1	0.00	0.50	8.0000	0.7300		
	Þ	1	*	0.50	23.75	4	95.00	95.50	8.0000	0.7300		
									New	Duplicate	Delet	te

Click **OK** to apply the data and close the window.

Shear Reinforcement Ranges

Double-click on the **Shear Reinforcement Ranges** node in the **Bridge Workspace** tree to open the **PS Shear Reinforcement Ranges** window. The shear reinforcement ranges for each span are entered as described below.

PS Sh	ear Reinforcemen	t Ranges							-		×
	Start Distance	→ ►	acing								
Span:	1 ~										
	Name	Extends into deck	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)				
▶ #	4 Shear Rei 👻		0.50	1	0.0000	0.00	0.50				-
#	‡4 Shear Rei 👻		0.50	95	12.0000	95.00	95.50				
6		Calmun el						Durlint		Delate	*

Click **OK** to apply the data and close the window.

The description of an interior beam for this structure definition is complete. The member alternative can now be analyzed.

LRFR Rating

To perform an **LRFR** rating, select the **Analysis Settings** button on the **Analysis** group of the **DESIGN/RATE** ribbon to open the window shown below.

Bridge Workspa	ace - PSAdjBoxTrainingBri	dge	ANALYSIS	REPORTS	?	-	×
BRIDGE WORKSPACE	WORKSPACE TOOLS	VIEW	DESIGN/RATE	REPORTING			^
Analysis Settings Analysis Analysis	Tabular Specification E Results Check Detail O Resu	ringine Results butputs Graph ults	Save Results				

Click the **Open Template** button and select the **LRFR Design Load Rating** to be used in the rating and click **Open**.

Templates	Description	Analysis	Owner	Public / Private	
HL 93 Design Review	HL 93 Design Review	LRFD		Public	
HS 20 LFR Rating	HS 20 LFR Rating	LFR		Public	
LRFR Design Load Rating	LRFR Design Load Rating	LRFR		Public	
LRFR Legal Load Rating	LRFR Legal Load Rating	LRFR		Public	

The Analysis Settings window will be updated as shown below.

O Design review		Rating method:	LRFR	~	
nalysis type: Line ne / Impact loading type: As Re Vehicles Output Engine	Girder	Apply preference	e setting: None	>	
Traffic direction: Both direction	ns v	Ret	resh Temporary vehicle e summary	s Advanced]
(B→Henicles → Standard → EV2 → EV3 → H 15-44 → H 20-44 → H 20-43 → H 3 (US) → HS 20-43 → HS 20-44 → HS	ad (SI) (US)	Add to >> Remove from <<	tting vehicles → LFRR ⇒ Design load rating ⇒ -Inventory → -IL-93 (US) ⇒ -Operating → -ILRD Fatigue Truc ⇒ Legal load rating → -Specialized hauling → Permit load rating	k (US)	

Tabular Results

Next click the Analyze button on the Analysis group of the DESIGN/RATE ribbon to perform the rating.

When the rating is finished, results can be reviewed by clicking the **Tabular Results** button on the **Results** group of the **DESIGN/RATE** ribbon.

The window shown below will open.

ø	Analysis Res	sults - Precast Box	Alternative								— C) ×	
	Print Print												
Re	port type:		Lane/Impac	t loading ty	pe Di	splay Format							
R	ating Results S	Summary 🗸	As requ	ested 🔿 🛛	Detailed S	ingle rating lev	el per row	~					
	Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane		
	HL-93 (US)	Truck + Lane	LRFR	Inventory	17.69	0.491	47.50	1 - (50.0)	SERVICE-III PS Tensile Stress	As Requested	As Requested		-
	HL-93 (US)	Truck + Lane	LRFR	Operating	27.04	0.751	47.50	1 - (50.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested		
	HL-93 (US)	Tandem + Lane	LRFR	Inventory	20.76	0.577	47.50	1 - (50.0)	SERVICE-III PS Tensile Stress	As Requested	As Requested		
	HL-93 (US)	Tandem + Lane	LRFR	Operating	31.75	0.882	47.50	1 - (50.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested		
													V.
AA	ASHTO LRFR E	ngine Version 7.5.	0.3001										
An	alysis prefere	nce setting: None											
												Close	

LRFD Design review

To perform an **LRFD design review** of this girder for HL93 loading, select the **Analysis Settings** button on the **Analysis** group of the **DESIGN/RATE** ribbon to open the window shown below.

Bridge Worksp	lge	ANALYSIS	REPORTS	?	-	×	
BRIDGE WORKSPACE	WORKSPACE TOOLS	VIEW	DESIGN/RATE	REPORTING			^
Analysis Settings Analysis Analysis	Tabular Specification Er Results Check Detail Ot Results Results	ogine Results Its	Save Results				

Click the **Open Template** button and select the **HL 93 Design Review** to be used in the rating and click **OK**.

Templates	Description	Analysis	Owner	Public / Private	
HL 93 Design Review	HL 93 Design Review	LRFD		Public	
HS 20 LFR Rating	HS 20 LFR Rating	LFR		Public	
LRFR Design Load Rating	LRFR Design Load Rating	LRFR		Public	
LRFR Legal Load Rating	LRFR Legal Load Rating	LRFR		Public	

The Analysis Settings window will be updated as shown below.

Analysis Settings			-		>
Design review Rating	Design method:	LRFD	v		
Analysis type:					
ane / Impact loading type: As Requested	Apply preference setting	: None	~		
Vehicles Output Engine Description					
Traffic direction: Both directions	Refresh	Temporary vehicles	Advanced		
Vehicle selection	Vehicle summa	ry			_
For Venices For Standard Alternate Military Loading - EV2 - EV3 - HL-93 (S) - HL-93 (S) - HS 20 (S) - HS 20 (S) - HS 20-44 - LROP batigue Truck (SI) - LROP batigue Truck (US) - Agency - MBE-PERMIT - User defined - Temporary 	Add to	IICIES 10ads 93 (US) Ioads Ioads D Fatigue Truck (US)			
Reset Clear Open template Save ter	mplate	OK	Apply	Canc	el

Engine Outputs

Next click the Analyze button on the Analysis group of the DESIGN/RATE ribbon to perform the design review.

AASHTO LRFD analysis will generate a **Spec Check Results** file. When the design review is finished, results can be reviewed by clicking the **Engine outputs** button on the **Results** group of the ribbon.

The following window opens.

To view the spec check results, double click the Stage 3 Spec Check Results file in this window.

Stage 3 Spe	c Check Results						-	
Bridge ID : Bridge : PS Superstruct Member : (PSAdjBoxTraini AdjBox Training ure Def: 7 Girde 72	ngBridge Bridge r System]	NBI Structure II Bridge Alt : Member Alt : Pro) : AdjBoxTra	aining1 emative		
Analysis Pr	eference Setting :				Cust Dox His	cinauve		
AASHTO	LRFD Specificati	on, Edition 9, Interim 0						
Snecifi	cation Ch	eck Summary						
speem		cek Summary						
	Ar	ticle	Sta	tus				
Initial	Stress at Transfer	(5.9.2.3.1a, 5.9.2.3.1b)	Pa	ss				
Splitting	Resistance in An	chorage Zones (5.9.4.4.1	l) Pa	ss				
Final St	ress due to Perm (5.9.2.3.2a	anent and Transient Load , 5.9.2.3.2b)	ls Fa	ш				
	Flexure (5.6	.3.2, 5.6.3.3)	Fa	il i				
Sh	ear (5.7.3.3, 5.7.	2.5, 5.7.2.6, 5.7.3.5)	Fa	ůl –				
	Deflection	(5.6.3.5.2)	Pa	ss				
Initial Location	Compress Allowable Stress	ion Stress At T Actual Stress Top of Beam	ransf Actual	er of Pres Stress Bot of Beam	Design Ratio	Code		
(ft)	(ksi)	(ksi)		(ksi)				
(ft) 0.000	(ksi) -2,600	(ksi) 0.058		(ksi) -0.404	6,435	Pass		
(ft) 0.000 2.000	(ksi) -2.600 -2.600	(ksi) 0.058 0.175		(ksi) -0.404 -1 909	6.435 1 362	Pass Pass		
(ft) 0.000 2.000 3.010	(ksi) -2.600 -2.600 -2.600	(ksi) 0.058 0.175 0.120		(ksi) -0.404 -1.909 -1.855	6.435 1.362 1.402	Pass Pass Pass		
(ft) 0.000 2.000 3.010 4 500	(ksi) -2.600 -2.600 -2.600 -2.600	(ksi) 0.058 0.175 0.120 0.095		(ksi) -0.404 -1.909 -1.855 -1.831	6.435 1.362 1.402 1.420	Pass Pass Pass Pass		
(ft) 0.000 2.000 3.010 4.500 7.000	(ksi) -2.600 -2.600 -2.600 -2.600 -2.600	(ksi) 0.058 0.175 0.120 0.095 0.053		(ksi) -0.404 -1.909 -1.855 -1.831 -2.224	6.435 1.362 1.402 1.420 1.169	Pass Pass Pass Pass		

. _ _

<