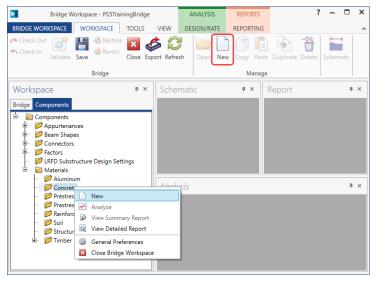
AASHTOWare BrDR 7.5.0 Prestressed Concrete Structure Tutorial PS5 – Void Prestressed Box Beam Example

BrDR Training

PS5 – Void Prestressed Box Beam Example


idge ID: PS5TrainingBridge NBI structure ID (8): PS5TrainingBrid Bridge completely defined Culverts Description Description (cont'd) Alternatives Global reference point Traffic Custom agency fields Name: Void PS Box Example Year built:	ures
Name: Void PS Box Example Description:	
Description:	
Location: Length: ft Facility carried (7): Route number: -1 Feat. intersected (6): Mi. post:	
Facility carried (7): Feat. intersected (6): Mi. post:	
Feat. intersected (6):	
Default units: US Customary 💌	
Bridge association BrR BrD BrM Sync with BrM	

From the Bridge Explorer create a new bridge and enter the following description data.

Click **OK** to apply the data and close the window.

Bridge Materials - Concrete

To add a new concrete material, in the **Components** tab of the **Bridge Workspace**, expand the **Materials** node by clicking the I button, select **Concrete**, and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Concrete** and select **New**).

The window shown below will open. Enter the values above the **Compute** button and click on the **Compute** button

i ksi i ksi (fc = 4.5 ksi) th at 28 days (fc): trength (fci): crete: ads): s of elasticity):	6.5 4.5 Normal ~ 0.15	ksi ksi			
th at 28 days (f'c): trength (f'ci): crete: ads):	4.5 Normal V	ksi			
trength (f'ci): crete: ads):	4.5 Normal V	ksi			
crete: ads):	Normal ~				
ads):		kcf			
	0.15	kcf			
s of elasticity):					
	0.15	kcf			
	0.2				
al expansion (α):	0.000006	1/F			
ngth (fct):		ksi			
regate size:		in			
Compute					
ticity (Ec):	4887.73337	ksi			
asticity (Ec):	5007.548587	ksi			
of elasticity:	4066.839989	ksi			
of elasticity:	4435.309122	ksi			
ure:	0.604669	ksi			
pture:	0.611882	ksi			
	1				
; u	of elasticity: re: ture:	of elasticity: 4435.309122 re: 0.604669 ture: 0.611882 1	of elasticity: 4435.309122 ksi re: 0.604669 ksi ture: 0.611882 ksi 1	of elasticity: 4435.309122 ksi re: 0.604669 ksi ture: 0.611882 ksi 1	of elasticity: 4435.309122 ksi re: 0.604669 ksi ture: 0.611882 ksi 1

to compute the remaining values as shown below.

Click **OK** to apply the data and close the window.

Add concrete material for the deck in the same manner.	The windows will look like the one shown below.
--	---

Bridge Material	is - Concrete					×
Name: De	ck Concrete					
Description:						
Compressive stre	ngth at 28 days (f'c):	4.5	ksi			
Initial compressiv	e strength (f'ci):		ksi			
Composition of c	oncrete:	Normal	/			
Density (for dead	loads):	0.15	kcf			
Density (for modulus of elasticity):		0.145	kcf			
Poisson's ratio:		0.2				
Coefficient of the	rmal expansion (α):	0.000006	1/F			
Splitting tensile s	trength (fct):		ksi			
LRFD Maximum a	iggregate size:		in			
	Compute					
Std modulus of e	lasticity (Ec):	3865.20204	ksi			
LRFD modulus of	elasticity (Ec):	4144.549969	ksi			
Std initial modulu	is of elasticity:		ksi			
LRFD initial modu	lus of elasticity:		ksi			
Std modulus of r	upture:	0.503115	ksi			
LRFD modulus of	rupture:	0.509117	ksi			
Shear factor:		1				
	Copy	to library Cop	y from library OK	Apply	Canc	el

Click **OK** to apply the data and close the window.

Bridge Materials – Reinforcement steel

To add a new reinforcement steel material, select **Reinforcement Steel** in the **Components** tree, and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Reinforcement Steel** and select **New**).

Bridge Workspace	e - PS5TrainingBridge		ANALYSIS	REPORTS		? - 🗆	×
BRIDGE WORKSPACE WOR	KSPACE TOOLS	VIEW	DESIGN/RATE	REPORTING			^
Check Out Check In Validate	& Restore X	💋 😥		Copy Past	e Duplicate Dele	tete Schematic	
E	Bridge			Manag	e		
Workspace	т ×	Schei	matic	й ×	Report	д	ιx
Bridge Components							
Appurtenances Appurtenances Beam Shapes Concectors Appurtenances Apurtenances Apurtenances Apurtenances Apurtenances	1	Analy	rsis			ł	×
···· 💋 Soil ···· 💋 Structural Steel	New Analyze						
E Ø Timber	Analyze View Summary	Report					
	View Detailed R	1 C C					
	 General Prefere Close Bridge W 						

Click on the Copy from library	button in this window and select Grade	e 60 from the library and click OK.

Name	Description	Library	Units	Fy	Fu	Es	
Grade 300	300 MPa reinforcing steel	Standard	SI / Metric	300.00	500.00	199948.00	
Grade 350	350 MPa reinforcing steel (rail-steel)	Standard	SI / Metric	350.00	550.00	199948.00	
Grade 40	40 ksi reinforcing steel	Standard	US Customary	40.000	70.000	29000.00	
Grade 400	400 MPa reinforcing steel	Standard	SI / Metric	400.00	600.00	199948.00	
Grade 50	50 ksi reinforcing steel (rail-steel)	Standard	US Customary	50.000	80.000	29000.00	
Grade 500	500 MPa reinforcing steel	Standard	SI / Metric	500.00	700.00	199948.00	
Grade 60	60 ksi reinforcing steel	Standard	US Customary	60.000	90.000	29000.00	
Grade 75	75 ksi reinforcing steel	Standard	US Customary	75.000	100.000	29000.00	
Structural or unknown grade prior 1954	Structural or unknown grade prior to 1954	Standard	US Customary	33.000	60.000	29000.00	
Structural or unknown grade prior 1954	Structural or unknown grade prior to 1954	Standard	US Customary	33.000	60.000	29000.00	

The selected material properties are copied to the **Bridge Materials – Reinforcing Steel** window as shown below.

A Bridge Materials - Reinforc	ing Steel		_	· 🗆	×
Name: Grade 60 Description: 60 ksi reinforci	ng steel				
Material properties					
Specified yield strength (fy):	60.000087	ksi			
Modulus of elasticity (Es):	29000.004206	ksi			
Ultimate strength (Fu):	90.0000131	ksi			
Type Plain Epoxy Galvanized					
Copy t	o library Copy	from library OK	Apply	Canc	el

Click **OK** to apply the data and close the window.

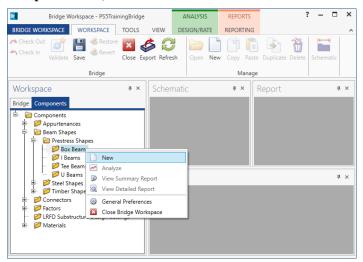
Bridge Materials – Prestress strand

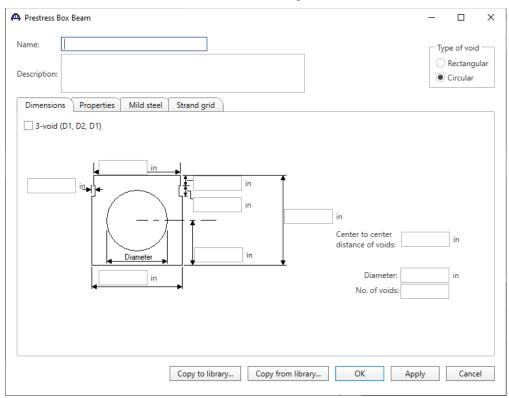
To add a new prestress strand material, select **Prestress Strand** in the **Components** tree, and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Prestress Strand** and select **New**).

Bridge Workspace - PS5T	rainingBridge	ANAL	/SIS REPC	RTS	?		×
BRIDGE WORKSPACE WORKSPACE	TOOLS V	IEW DESIGN	RATE REPOR	TING			^
A Check Out Check In Validate Save		t Refresh Op	en New Copy	Paste Do	uplicate Delete	Schematic	
Bridge			N	lanage			
Workspace	4 × 5	Schematic	щ	× Rej	port		л ×
Bridge Components							
 □ Components □ Appurtenances □ Deam Shapes □ Connectors □ Factors □ ERFD Substructure Design S □ Materials □ Materials □ Concrete □ Concrete □ Pestress Bar 	Settings						
Prestress Strand		A					щ×
····· 2 Soil ···· 2 Structural Stee ···· 2 Timber ··· 2 Ge ···· 2 Ge	ew Jalyze ew Summary Repo ew Detailed Repor eneral Preferences ose Bridge Worksp	t					

Click on the Copy from library... button in this window and select 1/2" (7W-270) LR from the library and click OK.

	Name	Description	Library	Units	Fy	Fu	Modulus of elasticity	Load per unit length	Diameter	Area	Transfer length (Std)	Transfer length (LRFD)	Strand type	Epoxy coated	
	1/2" (7W-250) LR	Low relaxation 1/2"/Seven Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.490	0.5000	0.144	25.0000	30.0000	Low Relaxation	False	4
	1/2" (7W-250) SR	Stress relieved 1/2"/Seven Wire/fpu = 250	Standard	US Customary	212.500	250.000	28500.00	0.490	0.5000	0.144	25.0000	30.0000	Stress Relieved	False	
Þ	1/2" (7W-270) LR	Low relaxation 1/2"/Seven Wire/fpu = 270	Standard	US Customary	243.000	270.000	28500.00	0.520	0.5000	0.153	25.0000	30.0000	Low Relaxation	False	
	1/2" (7W-270) SR	Stress relieved 1/2"/Seven Wire/fpu = 270	Standard	US Customary	229.500	270.000	28500.00	0.520	0.5000	0.153	25.0000	30.0000	Stress Relieved	False	
	1/4" (3W-250) LR	Low relaxation 1/4"/Three Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.130	0.2500	0.036	12.5000	15.0000	Low Relaxation	False	
	1/4" (7W-250) LR	Low relaxation 1/4"/Seven Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.122	0.2500	0.036	12.5000	15.0000	Low Relaxation	False	
	1/4" (7W-250) SR	Stress relieved 1/4"/Seven Wire/fpu = 250	Standard	US Customary	212.500	250.000	28500.00	0.122	0.2500	0.036	12.5000	15.0000	Stress Relieved	False	
	3/8" (3W-250) LR	Low relaxation 3/8"/Three Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.260	0.3750	0.075	18.7500	22.5000	Low Relaxation	False	
	3/8" (7W-250) LR	Low relaxation 3/8"/Seven Wire/fpu = 250	Standard	US Customary	225.000	250.000	28500.00	0.272	0.3750	0.080	18.7500	22.5000	Low Relaxation	False	

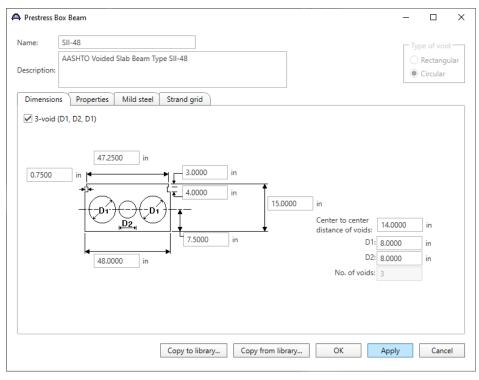

🕰 Bridge Mat	erials - PS Strand			_		×
Name:	1/2" (7W-270) LF	٢				
Description:	Low relaxation 1	/2"/Seven Wire/fpu =	270			
Strand diame	ter:	0.5000	in			
Strand area:		0.153	in^2			
Strand type:		Low Relaxation	>			
Ultimate tens	ile strength (Fu):	270.000	ksi			
Yield strengt	n (fy):	243.000	ksi			
Modulus of e	lasticity (E):	28500.00	ksi			
	Com	pute				
Transfer leng	th (Std):	25.0000	in			
Transfer leng	th (LRFD):	30.0000	in			
Unit load per	length:	0.520	lb/ft			
		Epoxy coated				
Сору	to library	Copy from library	OK	Apply	Cance	:I


The selected material properties are copied to the Bridge Materials – PS Strand window as shown below.

Click **OK** to apply the data and close the window.

Beam Shapes

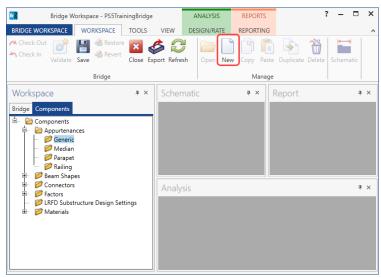
To enter a prestress beam shape to be used in this bridge expand the tree labelled **Beam Shapes** and **Prestress Shapes** as shown below and click on the **Box Beams** node in the **Components** tree, select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Box Beams** and select **New** or double click on **Box Beams** in the **Components** tree).

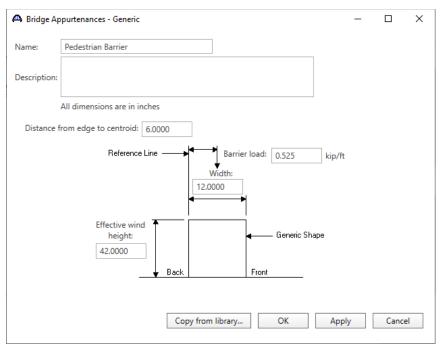

The Prestress Box Beam window shown below will open.

Set the Type of Void as Cir	Ilar and click on the Copy from Li	ibrary button. The wind	low shown below appears.
-----------------------------	------------------------------------	-------------------------	--------------------------

Name	Description	Library	Units	Depth	Top width	Bottom width	Shear key height	Shear key depth	Void diameter	Center\Center distance	Dist. to CG of void	No. of voids	
SI-36	AASHTO Solid Slab Beam Type SI-36	Standard	US Customary	12.0000	35.2500	36.0000	4.0000	0.7500	0.0000	0.0000	0.0000	0	Γ
SI-48	AASHTO Solid Slab Beam Type SI-48	Standard	US Customary	12.0000	47.2500	48.0000	4.0000	0.7500	0.0000	0.0000	0.0000	0	1
SII-36	AASHTO Voided Slab Beam Type SII-36	Standard	US Customary	15.0000	35.2500	36.0000	4.0000	0.7500	8.0000	15.0000	7.5000	2	
SII-48	AASHTO Voided Slab Beam Type SII-48	Standard	US Customary	15.0000	47.2500	48.0000	4.0000	0.7500		14.0000	7.5000	3	
SIII-36	AASHTO Voided Slab Beam Type SIII-36	Standard	US Customary	18.0000	35.2500	36.0000	4.0000	0.7500	10.0000	15.0000	9.0000	2	
SIII-48	AASHTO Voided Slab Beam Type SIII-48	Standard	US Customary	18.0000	47.2500	48.0000	4.0000	0.7500		14.5000	9.0000	3	
SIV-36	AASHTO Voided Slab Beam Type SIV-36	Standard	US Customary	21.0000	35.2500	36.0000	4.0000	0.7500	12.0000	16.0000	10.5000	2	
SIV-48	AASHTO Voided Slab Beam Type SIV-48	Standard	US Customary	21.0000	47.2500	48.0000	4.0000	0.7500		14.0000	10.5000	3	

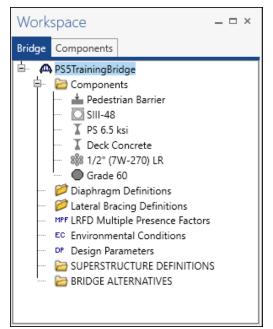
Select SII48 (AASHTO Voided Slab Beam Type SII-48) and click OK.


The beam properties are copied to the **PS Box Beam** window as shown below. Make sure that all the dimensions match with the window shown below.


Click **OK** to apply the data and close the window.

Bridge - Appurtenances

This bridge has a concrete pedestrian railing. Define a **Generic** appurtenance to model the concrete railing. To enter the appurtenances to be used within the bridge expand the tree branch labeled **Appurtenances**. Select **Generic** and click on **New** from the **Manage** button on the **WORKSPACE** ribbon (or double click on **Generic** in the **Components** tree).



Enter the data as shown below.

Click **OK** to apply the data and close the window.

The partially expanded **Bridge Workspace** tree is shown below:

The default impact factors, standard LRFD and LFD factors will be used. **Bridge Alternatives** will be added after entering the Structure Definition.

Superstructure Definition

Returning to the **Bridge** tab of the **Bridge Workspace**, double click on **SUPERSTRUCTURE DEFINITIONS** (or click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the **Manage** group of the **WORKSPACE** ribbon or right mouse click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the popup menu) to create a new structure definition. The window shown below will appear.

A New Superstructure Definition		×
Girder system superstructure		1
Girder line superstructure	Superstructure definition wizard	
 Floor system superstructure 		
Floor line superstructure		
 Truss system superstructure 		
 Truss line superstructure 		
Reinforced concrete slab system superstructure		
Concrete multi-cell box superstructure		
Advanced concrete multi-cell box superstructure		
		_
	OK Cancel	

Select **Girder system superstructure**, click **OK** and the **Girder System Superstructure Definition** window will open. Enter the data as shown below.

	cs Engine		
lame: 1 span, 9	girder system		Modeling Multi-girder system MCB With frame structure simplified definition
efault units: US Custo umber of spans: 1 umber of girders: 9	along the reference line: Span Length (tt) ▶ 1 52.00	A 7	Deck type: Concrete Deck ♥ For PS/PT only Average humidity: 70.000 % Member alt. types Steel ♥ P/S P/S R/C ☐ Timber ♥ P/T
Horizontal curvature along r			
Horizontal curvature	Distance from PC to first support line		
Superstructure alignment Ourved	Start tangent length:	ft	
Tangent, curved, tange	Radius:	ft	
ungen, carred, tanya	Direction:	Left \lor	
O Tangent, curved		ft	
	End tangent length:		
O Tangent, curved	End tangent length: Distance from last support line to PT	: ft	
O Tangent, curved		ft mph	

Click **OK** to apply the data and close the window.

BRIDGE ALTERNATIVES

Navigate to the **BRIDGE ALTERNATIVES** node in the **Bridge Workspace** tree and create a new bridge alternative by double-clicking on **BRIDGE ALTERNATIVES** (or click on **BRIDGE ALTERNATIVES** and select **New** from the **Manage** group of the **WORKSPACE** ribbon). Enter the following data.

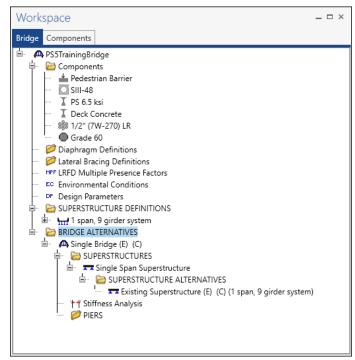
Bridge Alternative		– 🗆 ×
Alternative name: Single Bridge		
Description Substructures		
Description:		
Horizontal curvature	- Global positioning	
Reference line length: 0 ft	Distance: 0	ft
Start bearing	Offset: 0	ft
Starting station: ft	Elevation:	ft
Bearing: N 90^ 0' 0.00" E		
Bridge alignment Curved Tangent, curved, tangent Tangent, curved Curved, tangent	Start tangent length: Curve length: Radius: Direction: End tangent length:	ft ft ft ft ft ft ft ft ft
Superstructure wizard		
	ОК	Apply Cancel

Click **OK** to apply the data and close the window.

Expand the **Single Bridge** node in the **Bridge Workspace** tree. Double-click on the **SUPERSTRUCTURES** node (or select **SUPERSTRUCTURES** and click **New** from the **Manage** group of the **WORKSPACE** ribbon) and enter the following new superstructure.

A Superstructure	e							_		×
Superstructure na	ame:	Single Sp	an Superstructur	e						
Description	Alte	ernatives	Vehicle path	Engine	Substructures					
Description:										
Reference	line –									
Distance:		0	ft							
Offset:		0	ft							
Angle:		0	Degrees							
Starting st	ation:		ft							
						ОК	Арр	ly	Canc	el

Click **OK** to apply the data and close the window.


Expand the **Single Span Superstructure** node in the **Bridge Workspace** tree. Double-click on the **SUPERSTRUCTURE ALTERNATIVES** node (or select **SUPERSTRUCTURE ALTERNATIVES** and click **New** from the **Manage** group of the **WORKSPACE** ribbon) and enter the following new superstructure alternative. Select the superstructure definition **1 span**, **9 girder system** as the current superstructure definition for this Superstructure Alternative.

e	_	
Existing Superstructure]	
1 span, 9 girder system 🗸 🗸		
Girder		
9		
A		
ОК	Apply	Cancel
	1 span, 9 girder system ~ Girder 9	Existing Superstructure

Re-open the **Single Span Superstructure** window and navigate to the **Alternatives** tab. The **Existing Superstructure** will be shown as the **Existing** and **Current** alternative for **Single Span Superstructure**.

А	Super	rstructure						_		×
Sup	erstru	ucture nan	ne: Singl	e Span Superstructure						
	Descr	ription	Alternativ	ves Vehicle path Engine	Substructures					
		Existing	Current	Superstructure alternative name	Description					
	>	\leq	\sim	Existing Superstructure						^
										w.
							ОК	Apply	Canc	el

The partially expanded Bridge Workspace tree is shown below.

Load Case Description

Double-click on the **Load Case Description** node in the **Bridge Workspace** tree to open the **Load Case Description** window and define the dead load cases as shown below. The completed **Load Case Description** window is shown below.

	Load case name	Description	Stage	Туре		Time* (days)	
Þ	DL1 DC	Sidewalks	Non-composite (Stage 1) *	D,DC	Ŧ		
	DL2 DC	Barriers	Composite (long term) (Stage 2) *	D,DC	-		

Click **OK** to apply the data and close the window.

Structure Framing Plan Detail – Layout

Double-click on the **Framing Plan Detail** node in the **Bridge Workspace** tree to describe the framing plan in the **Structure Framing Plan Details** window. Enter the data as shown below.

🗛 St	tructure Fra	aming Pl	lan Details											-		×
Nun	nber of spa	ans: 1		Number of gin	ders:	9										
Li	ayout [Diaphrag	ms													
					G	irder spa	ing orien	tation								
	Suppo		kew grees)) Perpend) Along s	dicular to g upport	girder								
	▶ 1	(de	0.000													
	2		0.000			Girder	Girder : (f									
						bay	Start of girder	End of girder								
						1	4.00		-							
						2	4.00									
						3	4.00	4.00								
						4	4.00									
						5	4.00	4.00 4.00								
						7	4.00	4.00								
					Þ	8	4.00	4.00								
				_												
				×					v							
											O	(Apply		Cance	el

Structure Framing Plan Detail – Diaphragms

The **Diaphragms** tab of this window is used to enter data for exterior diaphragms, in other words diaphragms located between girders. This structure does not have any external diaphragms since it is an adjacent box beam system. Click **OK** to apply the data and close the window.

Structure Typical Section - Deck

Next define the structure typical section by double-clicking on the **Structure Typical Section** node in the **Bridge Workspace** tree. Input the data describing the typical section as shown below.

A Structure Typical Section	-		×
Distance from left edge of deck to j Distance from right edge of deck to superstructure definition ref. line			
Deck Le Superstructure Definition			
Left overhang			
Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Superstructure definition reference line is within v the bridge deck.			
Start End			
Distance from left edge of deck to superstructure definition reference line: 18.00 ft 18.00 ft			
Distance from right edge of deck to superstructure definition reference line: 18.00 ft 18.00 ft			
Left overhang: 2.00 ft 2.00 ft			
Computed right overhang: 2.00 ft 2.00 ft			
OK A	pply	Cance	el 👘

Structure Typical Section – Deck (cont'd)

The **Deck (cont'd)** tab is used to enter information about the **Deck concrete** and the **Total deck thickness**. The material to be used for the deck concrete is selected from the list of bridge materials. Enter data as shown below.

A Structure Typical Section	-		\times
Distance from left edge of deck to Distance from right edge of deck to superstructure definition ref. linesuperstructure definition ref. line			
Deck Line Period			
Left overhang			
Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Deck concrete:			
Total deck thickness: 6.0000 in			
Load case: Engine Assigned			
Deck crack control parameter: 130.000 kip/in			
Sustained modular ratio factor: 2.000			
Deck exposure factor:			
ОК	Apply	Cance	
UN	мных	cance	1

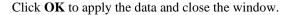
Structure Typical Section – Generic

Add the concrete railings as shown below.

Stru	cture Typical Section								_	
ack	Front	- Generic Shape								
Deck	c Deck (cont'd) P	Parapet Median	Railing Ger	neric Sidewalk	Lane positi	on Striped	l lanes We	aring surface		
	Name	Load case	Measure to	Edge of deck dist. measured from	Distance at start (ft)	Distance at end (ft)	Front face orientation			
÷.	Pedestrian Barrier 🔹	DL2 DC	- Back -	Left Edge 🛛 👻	0.00	0.00	Right -			-
	Pedestrian Barrier 🔹	DL2 DC	* Back *	Right Edge 🛛 👻	0.00	0.00	Left -			
								New	Duplicate	Delete
								OK	Apply	Cancel

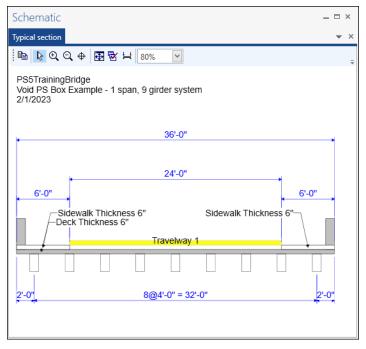
Structure Typical Section – Sidewalk

l tl	ne sic	lewalk	detail	ls as sl	nown b	elow.									
Struc	ture Typ	ical Section											-		
×		dewalk Thick	ness	Sidewal	k Width										
)eck	Deck	k (cont'd)	Parapet	Median	Railing	Generic	Sidewalk	Lane	position	Striped lanes	Wearing surf	асе			
	Width (in)	Thickness (in)	Concrete	e material	Load case	Measure to	Edge of o dist. meas from	ured	Distance a start (ft)	t Distance at end (ft)	Pedestrian Ioad (ksf)				
	72.0	6.0000	Deck Cor	ncrete 👻	DL1 DC 🔹	Left -	Left Edge	*	0.0	0.00				4	6
Þ	72.0	6.0000	Deck Cor	ncrete 🔻	DL1 DC 🕆	Right "	Right Edge	•	0.0	0.00					
											New	Duplicate		elete	
											OK	App	ly	Can	el


Structure Typical Section – Lane Positions

Select the **Lane position** tab and use the **Compute...** button to compute the lane positions. A window showing the results of the computation opens. Click **Apply** to apply the computed values.

	Travelway number	Distance from left edge of travelway to superstructure definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at end (B) (ft)	
+	1	-12.00	12.00	-12.00	12.00	4
						-


	cture Typical	Section				-	
	◀ ◀ Travelv		are Definition Reference Line ravelway 2				
Deck	Deck (co	ont'd) Parapet Median	Railing Generic Sidewa	alk Lane position Striped	l lanes Wearing surface		
	Travelway number	Distance from left edge of travelway to superstructure definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at end (B) (ft)		
Þ	1	-12.00	12.00	-12.00	12.00		
	RFD fatigue						
	Lanes ava	silable to trucks:	Compute		New Du	plicate	Delete

The **Lane Position** tab is populated as shown below.

Schematic – Structure Typical Section

While the **Structure Typical Section** is selected in the **Bridge Workspace** tree, open the schematic for the structure typical section by selecting the **Schematic** button on the **WORKSPACE** ribbon (or right click on **Structure Typical Section** in the **Bridge Workspace** and select **Schematic** from the menu).

Since the member alternatives are not defined yet, the beams are displayed as dashed boxes.

Concrete Stress Limits

A Stress Limit defines the allowable concrete stresses for a given concrete material. Double click on the **Concrete Stress Limits** node in the **Bridge Workspace** tree to open the **Stress Limit Sets – Concrete** window. Enter data shown above the **Compute** button, select **Moderate** for the **Corrosion condition** and select the **PS 6.5 ksi** concrete material from the drop-down menu of the **Concrete material**. Click the **Compute** button. Default values for the allowable stresses will be computed based on the **Concrete material** selected and the AASHTO Specifications.

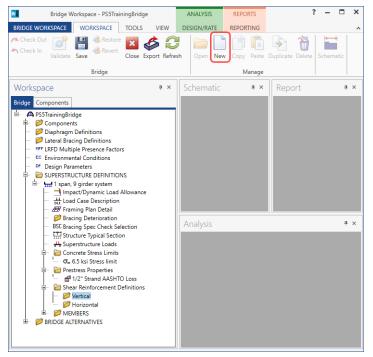
The default value for the **Final allowable slab compression** is not computed since the deck concrete is typically different from the concrete used in the beam. Enter this value manually as shown in the window below.

The **Final allowable tension** in the concrete is dependent upon the moderate or severe corrosive condition to which the member is exposed. BrDR uses the **stress limit coefficient** to calculate this value. For this example, leave the **Final allowable tension stress limit coeff. (US) override checkbox** unchecked. If not overridden, BrDR uses the default stress limit coefficient.

🗛 Stress Limit Sets - (Concrete						_		×
Name:	6.5 ksi Stres	ss limit							
Description:									
Corrosion condition:	Moderate		\sim						
Final allowable te	nsion stress	limit coef. (US	6) override:						
Concrete material:	PS 6.5 ksi		~						
	Compute								
_		LFD		LRFD					
Initial allowable comp	ression:	2.7	ksi	2.925	ksi				
Initial allowable tensio	on:	0.2	ksi	0.2	ksi				
Final allowable compr	ession:	3.9	ksi	3.9	ksi				
Final allowable tension	n:	0.4844069	ksi	0.4844069	ksi				
Final allowable DL con	npression:	2.6	ksi	2.925	ksi				
Final allowable slab co	ompression:	2.7	ksi	2.7	ksi				
Final allowable compr (LL+1/2(Pe+DL))	ession:	2.6	ksi	2.6	ksi				
				C	Ж	Apply		Cance	el

Click **OK** to apply the data and close the window.

Prestress Properties


Double click on the **Prestress Properties** node in the **Bridge Workspace** tree to open the **Prestress Properties** window. Define the prestress properties as shown below. Since the **AASHTO Approximate** method is used to compute the losses, only the information on the **General P/S data** tab is required.

Prestress Properties				_		×
lame: 1/2" Strand AASH	TO Loss					
General P/S data Los	ss data - lump sum Loss data - PCI)				
P/S strand material:	1/2" (7W-270) LR	Jacking stress ratio:	0.750]		
Loss method:	AASHTO Approximate	P/S transfer stress ratio:]		
		Transfer time:	24.0	Hours		
		Age at deck placement:	30.00	Days		
		Final age:	18250.00	Days		
Percentage DL: 0.0	5					
			ОК	Apply	Cance	2

Click OK to apply the data and close the window.

Shear Reinforcement

Define the vertical shear reinforcement to be used by the girders. Expand the **Shear Reinforcement Definitions** node in the **Bridge Workspace** tree, select the **Vertical** node and click on **New** from the **Manage** group of the **WORKSPACE** ribbon (or double click on **Vertical**).



Enter the data as shown below.

Name: #4 stirrups	A Shear Reinforcement Definition - Vert	ical		_	×
Bar size: 4 Number of legs: 2.00 Inclination (alpha): 90.0 Degrees Shear	Name: #4 stirrups]			
OK Apply Cancel	Shear	Bar size: Number of legs: Inclination (alpha):	4 🗸		

Click OK to apply the data and close the window.

A partially expanded **Bridge Workspace** is shown below.

Describing a member

The **Member** window shows the data that was generated when the structure definition was created. No changes are required in this window. The first member alternative created will automatically be assigned as the **Existing** and **Current member alternative** for this member.

A Member		_		×
Member name:	G2 Link with: None			
Description:				
	Existing Current Member alternative name Description			
				•
				-
Number of spar	ns: 1 Span length no. (ft)			
	1 52.00			
	ОК Арр	ly	Cance	el

Defining a Member Alternative

Double-click on **MEMBER ALTERNATIVES** in the **Bridge Workspace** tree for member **G2** to create a new member alternative. The **New Member Alternative** window shown below will open. Select **Prestressed** (pretensioned) concrete for the **Material type** and **PS Precast Box** for the **Girder Type**.

A New Member Alternative	×
Material type:	Girder type:
Post tensioned concrete	PS Precast Box
Prestressed (pretensioned) concrete	PS Precast I
Reinforced concrete	PS Precast Tee
Steel	PS Precast U
Timber	
	OK Cancel

Click **OK** to close the window and create a new member alternative.

The **Member Alternative Description** window will open. Enter the data as shown below. The **Schedule based Girder property input method** is the only input method available for a prestressed concrete beam. Enter the data as shown below.

ember alterna	tive: SII	-48 Box Bear	m						
Description	Specs	Factors	Engine	Import	Control options				
Description:					Material type:	Prestressed (Pretensioned)			
					Girder type:	PS Precast Box			
					Modeling type:	Multi Girder System			
					Default units:	US Customary			
Cross-s	ection ba	ased			Default rating meth	od:			
Load case:		Engine As	signed	~	LFR	~			
Additional	self load		kip/ft						
Additional	self load	:	%						
Crack cont	rol parar	neter (Z)		Exposure	e factor	Use creep			
Bottom of	beam:		kip/in	Bottom o	of beam:				
						ОК	Apply	Canc	el

Click **OK** to save to memory and close the window.

Beam Details – Span detail

Next describe the beam by double clicking on the **Beam Details** node in the **Bridge Workspace** tree. Enter the data in each tab of the **Beam Details** window as shown below.

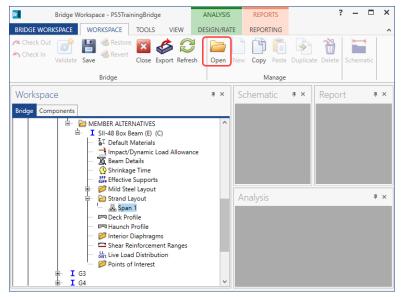
_	an detail 🗋	Stress limit	langes	Slab interface		1				
	Span	Beam st	hane	Girder		Prestress	n	Beam p	projection	
	number			material		properties		(in)	Right end (in)	
Þ	1	SIII-48	*	PS 6.5 ksi	*	1/2" Strand AASHT *		7.0000	7.0000	

Beam Details – Stress limit ranges

Note that the **Stress limit ranges** are defined over the entire length of the precast beam, including the projections of the beam past the centerline of bearing which were entered on the **Span Detail** tab. Enter the data as shown below.

oan detail	Stress limit ranges	Slab i	nterface							
Span number	Name		Start distance (ft)	Length (ft)	End distance (ft)					
> 1 ~	6.5 ksi Stress limit	\sim	0	53.166667	53.166667					
							Λ	ew	Duplicate	Delete

Beam Details – Slab interface


Enter the data as shown below.

Span detail Stress limit ranges Stress limit ranges		Roughened in ksi
Default interface width to beam widths: Interface width: Cohesion factor: Friction factor: K1:		in ksi
Interface width: Cohesion factor: Friction factor: K1:		ki
Cohesion factor: Friction factor: K1:	0.100	ki
Friction factor: K1:	0.100	
K1:		
K3.		
NZ;		ksi
		OK Apply Cancel

Click **OK** to apply the data and close the window.

Strand Layout – Span 1

Expand the **Strand Layout** in the **Bridge Workspace** tree and double-click on **Span 1** (or select **Span 1** and click the **Open** button from the **Manage** group of the **WORKSPACE** ribbon) to open the **Stand Layout – Span 1** window.

Select the **Description type** as **Strands in rows** and the **Strand configuration type** as **Straight/Debonded**. Select the **Mid span** radio button. Strands can now be defined at the middle of the span by selecting strands in the right hand schematic. Select the following strands in the schematic. There is no debonding to describe for this beam.

A Strand Layout - Span 1	_	×
Description type 🔤 🔂 😋 🗘 🕈 🖽 160% 🔽		;
P and CGS only Strands in rows Strands in rows Strands positions generated by the REVISED method. Please refer to Help for a description of this method.		
Strand configuration type Symmetry		
Straight/Debonded		
OHarped	ſ	
Harped and straight debonded		
Mid span		
	••	
Number of strands = 23		
Number of debonded strands (Total/Here/Other) = 0/0/0		
CG of strands (measured from bottom of section) = 2.00 in		
Legend:		
No strand at this position at the current section location. Debonding No strand at this position at the current location but a strand is harped to this position.		
• • • • • • • • • • • • • • • • • • •		
Left Section location (in) Measured and debonded from The strand is debonded from the end of the beam to the current section location.		
The strand is debonded from the mid-span to the current section location. The strand is debonded at other section location. Hover over the strand for more information		
The harped position of a harped strand.		
The mid-span position of a harped strand. The mid-span position of another strand. The mid-span position of one strand and the harped position of another strand.		
New Modify Delete Mild steel.		
Right Section location (in) Measured and debonded from		
New Modify Delete		
OK Apply Cancel		

Click **OK** to close the window and apply the changes.

Deck Profile

Next open the **Deck Profile** window by double-clicking the **Deck Profile** node in the **Bridge Workspace** tree and enter the data describing the structural properties of the deck. The window is shown below.

A 0	ecl	k Profile													-		×
Тур	e: [PS Precast Box															
[)ec	k concrete Reinfo	rcem	nent													
		Material		Support number	Start distance (ft)	Length (ft)	End distance (ft)	Structural thickness (in)	Start effective flange width (Std) (in)	End effective flange width (Std) (in)	Start effective flange width (LRFD) (in)	End effective flange width (LRFD) (in)	n				
	Þ	Deck Concrete	- 1	1 -	0.00	52.00	52.00	6.0000	48.0000	48.0000	48.0000	48.0000					<u>_</u>
																	4
		Compute from typical section												New	Duplicate	Delete	
														ОК	Apply	Can	cel

Click **OK** to close the window and apply the changes.

No reinforcement or haunch profile is described for this example. .

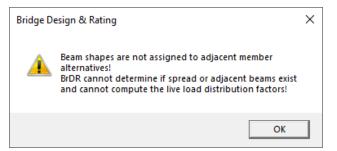
Interior Diaphragms

Double-click on the **Interior Diaphragms** node in the **Bridge Workspace** tree to open the **Interior Diaphragms** window and enter data in this window as shown below.

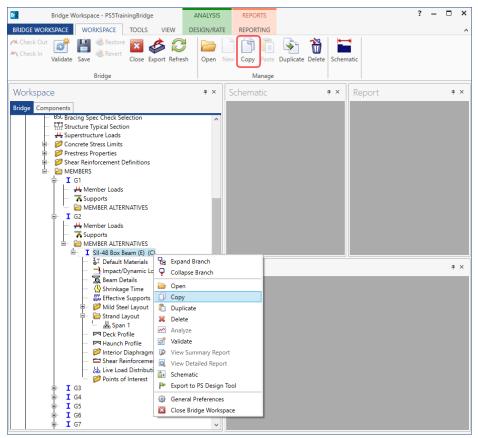
Int													
	Span number	Start distance (ft)	Diaphragm spacing (ft)	Number of spaces		Length (ft)	End distance (ft)	Diaphragm thickness (in)	Diaphragm Ioad (kip)				
	1 ×	0	17.333333		2	34.666666	34.666666	12	0.3				
										New	Duplicate	Delete	2

Click **OK** to apply the data and close the window.

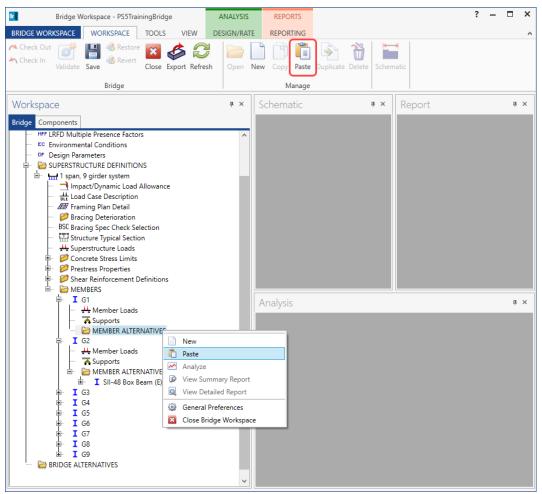
Shear Reinforcement Ranges

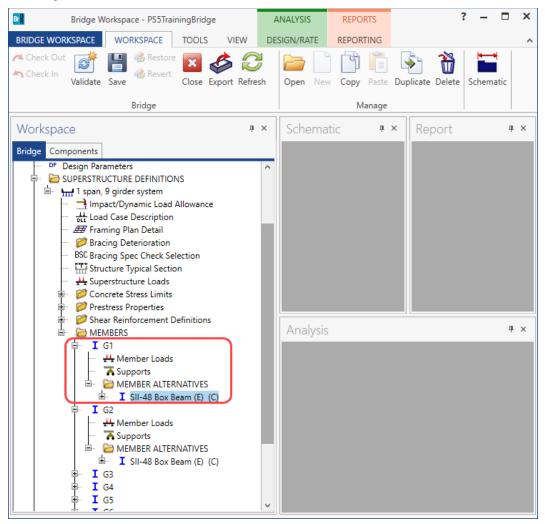

Double-click on the **Shear Reinforcement Ranges** node in the **Bridge Workspace** tree to open the **PS Shear Reinforcement Ranges** window. The vertical shear reinforcement is defined as extending into the deck in the **Vertical** tab. This indicates composite action between the beam and the deck. Data does not have to be entered on the **Horizontal** tab to indicate composite action since that has been defined by extending the vertical bars into the deck. Enter the data as shown below.

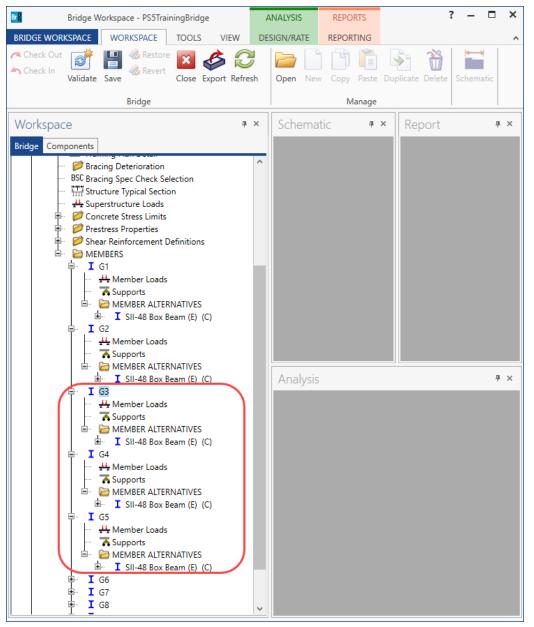
PS Shear Reinforcem	ent Ranges						_	· 🗆)
Start Distance		acing							
Vertical Horizont Span: 1	al)								
Name	Extends into deck	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)			
#4 stirrups	- V	0.58	1	0.0000	0.00	0.58			-
#4 stirrups	- V	0.58	3	4.0000	1.00	1.58			
#4 stirrups	- 1	1.58	50	12.0000	50.00	51.58			
+ #4 stirrups	- V	51.58	3	4.0000	1.00	52.58			
					Γ				*
Stirrup wizard	Stirrup d	esign tool	View calcs			New OK	Duplicate	Delete	
									icei


Click **OK** to apply the data and close the window.

Live Load Distribution


Open the Live Load Distribution window from the Bridge Workspace tree. On the Standard tab click on the Compute from Typical Section... button to populate the Standard live load distribution factors based on the structure typical section. BrDR will compute the distribution factors based on the girder type, girder spacing, deck geometry and lane positions as per the AASHTO Standard Specifications for Highway Bridges. On clicking the Compute from Typical Section... BrDR prompts the user with the following warning message.


For a **PS Precast Box** beam, live load distribution factors cannot be computed if spread or adjacent beams do not exist. Member **G2** is the only member that has a member alternative defined. This member alternative can be copied to Member **G1** to minimize the amount of data entry for this structure. Select **SII-48 Box Beam** under Member **G2** in the **Bridge Workspace** tree and click the **Copy** button from the **Manage** group of the **WORKSPACE** ribbon (or right click on the member alternative and select **Copy** from the menu options).

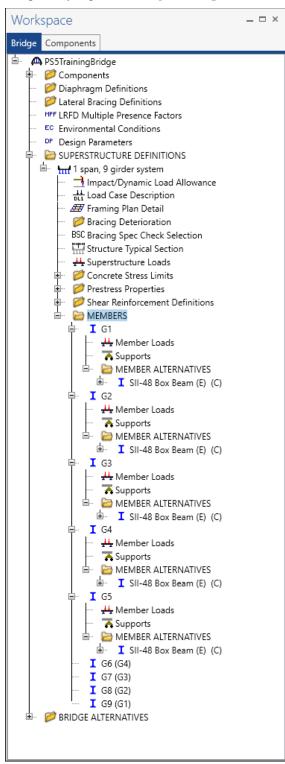

Select **MEMBER ALTERNATIVES** under Member **G1** and click the **Paste** button from the **Manage** group of the **WORKSPACE** ribbon (or right click on the member alternative and select **Copy** from the menu options).

Now Member G1 has a member alternative named SII-48 Box Beam. Since G1 is an exterior girder and G2 is an interior girder, there are a few windows under G1 that must be revisited to modify the data to represent an exterior girder. The Live Load Distribution window should be opened, and appropriate distribution factors should be entered for this exterior girder. The Deck Profile and Haunch Profile windows should also be modified to represent the exterior girder.

Use the **Copy** function to copy the member alternative for Member **G2** to Members **G3**, **G4**, and **G5**. Adjust the live load distribution factors as necessary for Members **G3**, **G4**, and **G5**. Depending on the arrangement of the lane positions and the girders, the simple beam distribution factors for the interior girders may differ. It is a good idea to recalculate the distribution factors for copied member alternatives. Half of the girders in the structure are now defined.

The **Link** function in BrDR can be used to link the remaining girders in the structure to the members defined. If two members are linked, they share the same definition and any revisions to one member affects the other member. If there are any differences between two members, then they should not be linked with one another. If the applied loads acting on the two members are different (due to different tributary widths, different arrangements of parapets, medians, sidewalks, and railings, and different lane positions), then they should not be linked with one another. All calculations are based on the properties and loads of the original girder.

Open the Member **G6** window from the **Bridge Workspace** tree and select **G4** in the **Link with** box as shown below. A warning message will appear to remind that both members must share the exact same definition if they are to be linked. Click the **Continue** button to link the two members.


🗛 Warnir	ng	×
1	Linking of a member to another member should only be done if all member properties, loads, spacing, and distribution factors are identical.	
	All of the calculations for this member will be based on the original member properties and loads.	
	Select Continue to link the member, or select Cancel if you don't want to link the member.	
🗌 Do not	show this message again Cancel Continue	

Member G6 now shares the same definition as Member G4. Use this procedure to link Member G7 with G3, Member G8 with G2, and Member G9 with G1.

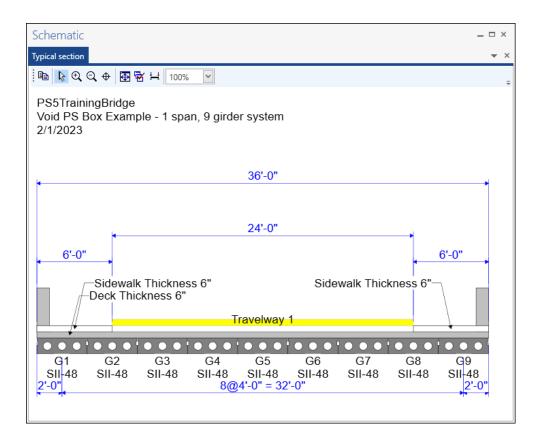
A Member		-		Х
Member name:	G6 Link with: G4			
Description:				
	Existing Current Member alternative name Description Image: Comparison of the second s			
Number of span	s: Span Span length (ft) 1 52.00			×
	OK Apply	,	Cancel	

Click **OK** to apply the data and close the window.

The partially expanded **Bridge Workspace** tree is shown below.

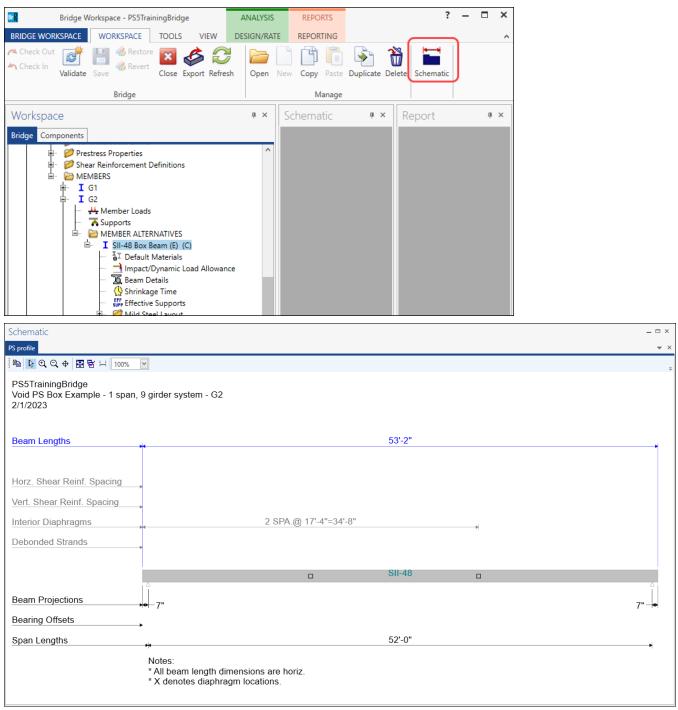
Returning to the **Live Load Distribution** window for member alternative **SII-48 Box Beam** (E) (C) of member **G2**, Click the **Compute from typical section...** to compute the standard live load distribution factors. The window is populated with the factors as shown below.

	Distribution fa												
	🔾 Use simp	olified metho	od 🔵	Use advanc	ed method	Us	e advance	ed method	d with 19	94 guide sp	ecs		
~]	Allow distrib	oution factor	rs to be use	d to compu	te effects of p	ermit load	ds with rou	utine traff	ïc				
	Lanes			tion factor neels)									
	loaded	Shear	Shear at supports	Moment	Deflection								
>	1 Lane	0.686233	0.5	0.686233	0.2222222								
	Multi-lane	0.686233	0.5	0.686233	0.4444444								


Click **OK** to apply the data and close the window.

The description of an interior beam for this structure definition is complete.

Schematic – Structure Typical Section


Select the **Structure Typical Section** in the **Bridge Workspace** tree and click the **Schematic** button on the **WORKSPACE** ribbon as shown below.

Schematic – PS Profile

The girder elevation can be displayed by selecting the **Schematic** button on the **WORKSPACE** ribbon while the **SII-48 Box Beam** member alternative of member **G2** is selected in the **Bridge Workspace** tree.

LFR Rating

To perform an LFR rating on the G2 member alternative, select the Analysis Settings button on the Analysis group of the DESIGN/RATE ribbon to open the window shown below.

Br	Bridge Worl	kspace - PS5TrainingBr	ANALYSIS	REPORTS	?	-	×	
BRIDGE W	VORKSPACE	WORKSPACE TOO	LS VIEW	DESIGN/RATE	REPORTING			^
*	æ		∽ >	2 🖪				
Analysis A Settings	Analyze Analysis Events	Tabular Specification Results Check Detai						
A	Analysis							

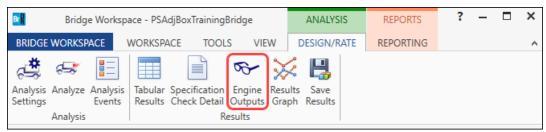
Select the vehicle to be used in the rating as shown below and click **OK**.

Analysis Settings			-		Х
O Design review Rating	Rating method:	LFR	~		
Analysis type: Line Girder Lane / Impact loading type: As Requested	Apply preference setting	: None	~		
Vehicles Output Engine Description					
Traffic direction: Both directions	Refresh Vehicle summa	Temporary vehicles	Advanced		
 → Vehicles → Standard → Alternate Military Loading → EV2 → EV3 → H 15-44 → H 20-44 → HS 15-44 → HS 20 (SI) → SU4 → SU5 → SU6 → SU7 → Type 3 → Type 3-3 <l< td=""><td>i⊟ Rating veh i⇒ Invento I→HS → Operat → Legal c → Permit</td><td>icles ory 20-44</td><td></td><td></td><td></td></l<>	i⊟ Rating veh i⇒ Invento I→HS → Operat → Legal c → Permit	icles ory 20-44			
Reset Clear Open template Save ter	nplate	ОК	Apply	Canc	el

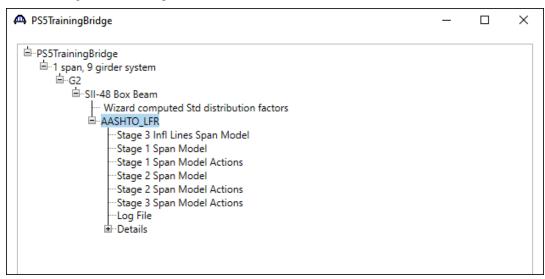
Tabular Results

Next click the Analyze button on the Analysis group of the DESIGN/RATE ribbon to perform the rating.

When the rating is finished, results can be reviewed by clicking the **Tabular Results** button on the **Results** group of the **DESIGN/RATE** ribbon.

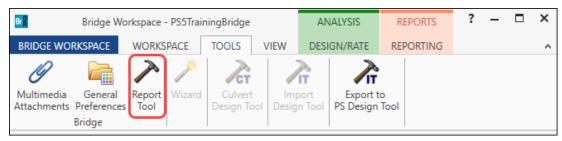

Bridge Workspace - PS5T	rainingBridge	ANALYSIS	REPORTS	?	-	×
BRIDGE WORKSPACE WORKSPACE	TOOLS VIEW	DESIGN/RATE	REPORTING			^
Analysis Analyze Analysis Settings Analyze Analysis Analysis Analysis	ecification Engine Results					

The window shown below will open.


🕰 Analysis R	lesults - SII-4	18 Box Beam								- 🗆	×
Print Print											
Report type:		Lan	e/Impact lo	ading type —	Display F	ormat					
Rating Result	s Summary	 • 	As requeste	ed 🔿 Detaile	d Single r	ating level	per row	~			
	Live Load		Rating	Load Rating		Location	Location				
Live Load	Туре	Rating Method	Level	(Ton)	Rating Factor	(ft)	Span-(%)	Limit State	Impact	Lane	
HS 20-44	Axle Load	LFR	Inventory	24.13	0.670	26.00	1 - (50.0)	PS Tensile Stress - Concrete	As Requested	As Requeste	≜ _
HS 20-44	Lane	LFR	Inventory	35.15	0.976	26.00	1 - (50.0)	PS Tensile Stress - Concrete	As Requested	As Requeste	ł
											-
AASHTO LFR E	-										
Analysis prefer	rence setting	g: None									
										C	lose

Engine Outputs

The analysis output files can be viewed by clicking the Engine outputs button on the Results group of the ribbon.



The following window will open.

LFR Report

A summarized report of the output can be generated by selecting the **Report Tool** button on the **Bridge** group of the **TOOLS** ribbon.

Select the **LFR analysis output** as the **Report type**. Specific topics in the report can be selected by checking the checkbox against the categories displayed. Selecting the **Generate** button will open the generated report in Internet Explorer (or the default browser set by the user). The report can be printed from the browser.

🕰 PS5TrainingBridge - Report Tool	- 🗆 X
 PS5TrainingBridge - Report Tool Report type : FR analysis output Advanced Begin each topic on a new page when printed Report New Open Merge Save Save As Generate Overall summary Individual vehicle rating summary Reactions Moments Shears Cross section properties Detailed rating results Diaphragm forces 	Template Bws report (all superstructure definitions) Girder system struct def Girderline system struct def Floor system GFS system struct def Floor system FS struct def Floor System FS struct def Floorline GF struct def Floorline GF struct def Truss system TFS struct def Truss system TFS struct def Slab system struct def Multicellbox system struct def Culvert definition
Select all Delete	Close