AASHTOWare BrDR 7.5.0

Prestress Tutorial 6 PS6 – Skewed, Simple Span Prestressed I Beam Example

# BrDR Training

# PS6 – Skewed, Simple Span Prestressed I Beam Example

From the Bridge Explorer create a new bridge and enter the following description data.

| PS6TrainingBri   | dge                  |              |                           |         |                                    | - 0                                                                          | × |
|------------------|----------------------|--------------|---------------------------|---------|------------------------------------|------------------------------------------------------------------------------|---|
| Bridge ID: PS6   | TrainingBridge       | NBI structur | e ID (8): PS6TrainingBrid |         | Template Bridge completely defined | <ul> <li>Superstructures</li> <li>Culverts</li> <li>Substructures</li> </ul> |   |
| Description      | Description (cont'd) | Alternatives | Global reference point    | Traffic | Custom agency fields               |                                                                              |   |
| Name:            | Skewed PS I B        | eam Bridge   |                           |         | Year built:                        |                                                                              |   |
| Description:     |                      |              |                           |         |                                    |                                                                              |   |
| Location:        |                      |              |                           |         | Length:                            | ft                                                                           |   |
| Facility carried | 1 (7):               |              |                           |         | Route number:                      |                                                                              |   |
| Feat. intersect  | ed (6):              |              |                           |         | Mi. post:                          |                                                                              |   |
| Default units:   | US Customary         | ~            |                           |         |                                    |                                                                              |   |
|                  |                      |              |                           |         |                                    |                                                                              |   |
| Bridge           | association          | BrR 🗹 BrD 🗌  | BrM Sync with BrM         |         |                                    |                                                                              |   |
|                  |                      |              |                           |         | ОК                                 | Apply Cancel                                                                 |   |

Click **OK** to apply the data and close the window.

#### Bridge Materials - Concrete

To enter the materials to be used by members of the bridge, open the **Components** tab, and click on the  $\textcircled{\pm}$  button to expand the tree for **Materials**. The tree with the expanded **Materials** branch is shown below.



To add a new concrete material, in the **Components** tab of the **Bridge Workspace**, click on **Materials**, **Concrete**, and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Concrete** and select **New**).



The window shown below will open. Enter the values shown above the **Compute** button and click the **Compute** button to compute the remaining values below them.

| 🕰 Bridge Mat   | terials - Concrete         |                 |                     | _  |       | ×        |
|----------------|----------------------------|-----------------|---------------------|----|-------|----------|
| Name:          | PS 6.5 Ksi                 |                 |                     |    |       |          |
| Description:   | f'ci =5.525 ksi            |                 |                     |    |       |          |
| Compressive    | strength at 28 days (f'c): | 6.5             | ksi                 |    |       |          |
| Initial compre | essive strength (f'ci):    | 5.525           | ksi                 |    |       |          |
| Composition    | of concrete:               | Normal ~        |                     |    |       |          |
| Density (for d | lead loads):               | 0.15            | kcf                 |    |       |          |
| Density (for n | nodulus of elasticity):    | 0.15            | kcf                 |    |       |          |
| Poisson's rati | 0:                         | 0.2             |                     |    |       |          |
| Coefficient of | f thermal expansion (α):   | 0.000006        | 1/F                 |    |       |          |
| Splitting tens | ile strength (fct):        |                 | ksi                 |    |       |          |
| LRFD Maximu    | um aggregate size:         |                 | in                  |    |       |          |
|                | Compute                    |                 |                     |    |       |          |
| Std modulus    | of elasticity (Ec):        | 4887.73337      | ksi                 |    |       |          |
| LRFD modulu    | us of elasticity (Ec):     | 5007.548587     | ksi                 |    |       |          |
| Std initial mo | dulus of elasticity:       | 4506.26751      | ksi                 |    |       |          |
| LRFD initial m | nodulus of elasticity:     | 4746.06211      | ksi                 |    |       |          |
| Std modulus    | of rupture:                | 0.604669        | ksi                 |    |       |          |
| LRFD modulu    | us of rupture:             | 0.611882        | ksi                 |    |       |          |
| Shear factor:  |                            | 1               |                     |    |       |          |
|                | Сору                       | to library Copy | from library OK App | ly | Cance | <u>!</u> |

Click **OK** to apply the data and close the window.

| Add concrete material for the <b>deck</b> , using the same technique. | Enter the data for deck concrete as shown below. |
|-----------------------------------------------------------------------|--------------------------------------------------|
|-----------------------------------------------------------------------|--------------------------------------------------|

| eck Concrete<br>ength at 28 days (f'c):<br>ive strength (f'ci): | 4.5                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ength at 28 days (fc):<br>ive strength (f'ci):                  | 4.5                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ength at 28 days (f'c):<br>ive strength (f'ci):                 | 4.5                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ive strength (f'ci):                                            |                                                                                                                                                                                                                | ksi                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 |                                                                                                                                                                                                                | ksi                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| concrete:                                                       | Normal ~                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| d loads):                                                       | 0.15                                                                                                                                                                                                           | kcf                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| dulus of elasticity):                                           | 0.145                                                                                                                                                                                                          | kcf                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 | 0.2                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ermal expansion (α):                                            | 0.000006                                                                                                                                                                                                       | 1/F                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| strength (fct):                                                 |                                                                                                                                                                                                                | ksi                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| aggregate size:                                                 |                                                                                                                                                                                                                | in                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Compute                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| elasticity (Ec):                                                | 3865.20204                                                                                                                                                                                                     | ksi                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| of elasticity (Ec):                                             | 4144.549969                                                                                                                                                                                                    | ksi                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| lus of elasticity:                                              |                                                                                                                                                                                                                | ksi                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| lulus of elasticity:                                            |                                                                                                                                                                                                                | ksi                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| rupture:                                                        | 0.503115                                                                                                                                                                                                       | ksi                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| of rupture:                                                     | 0.509117                                                                                                                                                                                                       | ksi                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 | 1                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 | rulus of elasticity):<br>ermal expansion (α):<br>strength (fct):<br>aggregate size:<br>Compute<br>elasticity (Ec):<br>f elasticity (Ec):<br>us of elasticity:<br>ulus of elasticity:<br>rupture:<br>f rupture: | unus of elasticity):     0.145       0.2     0.2       ermal expansion (α):     0.000006       strength (fct):     aggregate size:       Compute     2       elasticity (Ec):     3865.20204       f elasticity (Ec):     4144.549969       us of elasticity:     1       ulus of elasticity:     0.503115       f rupture:     0.509117       1     1 | uius of elasticity):       0.145       kcr         0.2       0.2         ermal expansion (α):       0.000006       1/F         strength (fct):       aggregate size:       in         Compute       in       compute         elasticity (Ec):       3865.20204       ksi         us of elasticity:       ksi       ksi         ulus of elasticity:       ksi       ksi         ulus of elasticity:       ksi       ksi         ulus of elasticity:       ksi       ksi         1       1       1 | uius of elasticity):       0.145       kct         0.2       0.2         ermal expansion (a):       0.000006       1/F         strength (fct):       ksi         aggregate size:       in         Compute       strength (fct):         elasticity (Ec):       3865.20204         ksi       still         gus of elasticity:       ksi         ulus of elasticity:       ksi         ulus of elasticity:       ksi         rupture:       0.503115         f rupture:       0.509117         tuit       1 | unus of elasticity;     0.145     kct       0.2     0.2       ermal expansion (α):     0.000006     1/F       strength (fct):     aggregate size:     in       Compute     in     compute       elasticity (Ec):     3865.20204     ksi       gus of elasticity:     4144.549969     ksi       uus of elasticity:     ksi       ulus of elasticity:     ksi       f rupture:     0.503115       f rupture:     0.509117       1     1 |

### Bridge Materials – Reinforcement steel

To add a new reinforcement steel material, select **Reinforcement Steel** in the **Components** tree, and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Reinforcement Steel** and select **New**).



| Click on the <b>Copy from</b> | library butto           | n in this window | and select Grade 6 | <b>0</b> from the library | and click <b>OK</b> . |
|-------------------------------|-------------------------|------------------|--------------------|---------------------------|-----------------------|
| chek on the copy nom          | i indi ul j ···· d'ullo |                  | and beleet Grade o | o nom me norm y           |                       |

| l | Name                                   | Description                               | Library  | Units        | Fy     | Fu      | Es        |  |
|---|----------------------------------------|-------------------------------------------|----------|--------------|--------|---------|-----------|--|
|   | Grade 300                              | 300 MPa reinforcing steel                 | Standard | SI / Metric  | 300.00 | 500.00  | 199948.00 |  |
|   | Grade 350                              | 350 MPa reinforcing steel (rail-steel)    | Standard | SI / Metric  | 350.00 | 550.00  | 199948.00 |  |
|   | Grade 40                               | 40 ksi reinforcing steel                  | Standard | US Customary | 40.000 | 70.000  | 29000.00  |  |
|   | Grade 400                              | 400 MPa reinforcing steel                 | Standard | SI / Metric  | 400.00 | 600.00  | 199948.00 |  |
|   | Grade 50                               | 50 ksi reinforcing steel (rail-steel)     | Standard | US Customary | 50.000 | 80.000  | 29000.00  |  |
|   | Grade 500                              | 500 MPa reinforcing steel                 | Standard | SI / Metric  | 500.00 | 700.00  | 199948.00 |  |
| , | Grade 60                               | 60 ksi reinforcing steel                  | Standard | US Customary | 60.000 | 90.000  | 29000.00  |  |
|   | Grade 75                               | 75 ksi reinforcing steel                  | Standard | US Customary | 75.000 | 100.000 | 29000.00  |  |
|   | Structural or unknown grade prior 1954 | Structural or unknown grade prior to 1954 | Standard | US Customary | 33.000 | 60.000  | 29000.00  |  |

The selected material properties are copied to the Bridge Materials – Reinforcing Steel window as shown below.

| 🕰 Bridge Mat   | erials - Reinforc | ing Steel    |           |         |    | _     |      | ×  |
|----------------|-------------------|--------------|-----------|---------|----|-------|------|----|
| Name:          | Grade 60          |              |           |         |    |       |      |    |
| Description:   | 60 ksi reinforci  | ng steel     |           |         |    |       |      |    |
| Material prop  | perties           |              |           |         |    |       |      |    |
| Specified yiel | d strength (fy):  | 60.000087    | ksi       |         |    |       |      |    |
| Modulus of e   | lasticity (Es):   | 29000.004206 | ksi       |         |    |       |      |    |
| Ultimate stre  | ngth (Fu):        | 90.0000131   | ksi       |         |    |       |      |    |
| Туре           |                   |              |           |         |    |       |      |    |
| O Plair        | ı                 |              |           |         |    |       |      |    |
| () Epos        | ky .              |              |           |         |    |       |      |    |
| Galv           | anized            |              |           |         |    |       |      |    |
|                |                   |              |           |         |    |       |      |    |
|                | Copy to           | o library    | Copy from | library | ОК | Apply | Canc | el |
|                |                   |              |           |         |    |       |      |    |

Click **OK** to apply the data and close the window.

#### Bridge Materials – Prestress strand

To add a new prestress strand material, select **Prestress Strand** in the **Components** tree, and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Prestress Strand** and select **New**).



Click on the Copy from library... button in this window and select 1/2" (7W-270) LR from the library and click OK.

|   | Name             | als - Prestress Strand Description        | Library  | Units        | Fy      | Fu      | Modulus of<br>elasticity | Load per<br>unit length | Diameter | Area  | Transfer<br>length<br>(Std) | Transfer<br>length<br>(LRFD) | Strand<br>type  | Epoxy<br>coated | _  | ×     |
|---|------------------|-------------------------------------------|----------|--------------|---------|---------|--------------------------|-------------------------|----------|-------|-----------------------------|------------------------------|-----------------|-----------------|----|-------|
|   | 1/2" (7W-250) LR | Low relaxation 1/2"/Seven Wire/fpu = 250  | Standard | US Customary | 225.000 | 250.000 | 28500.00                 | 0.490                   | 0.5000   | 0.144 | 25.0000                     | 30.0000                      | Low Relaxation  | False           |    | -     |
|   | 1/2" (7W-250) SR | Stress relieved 1/2"/Seven Wire/fpu = 250 | Standard | US Customary | 212.500 | 250.000 | 28500.00                 | 0.490                   | 0.5000   | 0.144 | 25.0000                     | 30.0000                      | Stress Relieved | False           |    |       |
| • | 1/2" (7W-270) LR | Low relaxation 1/2"/Seven Wire/fpu = 270  | Standard | US Customary | 243.000 | 270.000 | 28500.00                 | 0.520                   | 0.5000   | 0.153 | 25.0000                     | 30.0000                      | Low Relaxation  | False           |    |       |
|   | 1/2" (7W-270) SR | Stress relieved 1/2"/Seven Wire/fpu = 270 | Standard | US Customary | 229.500 | 270.000 | 28500.00                 | 0.520                   | 0.5000   | 0.153 | 25.0000                     | 30.0000                      | Stress Relieved | False           |    |       |
|   | 1/4" (3W-250) LR | Low relaxation 1/4"/Three Wire/fpu = 250  | Standard | US Customary | 225.000 | 250.000 | 28500.00                 | 0.130                   | 0.2500   | 0.036 | 12.5000                     | 15.0000                      | Low Relaxation  | False           |    |       |
|   | 1/4" (7W-250) LR | Low relaxation 1/4"/Seven Wire/fpu = 250  | Standard | US Customary | 225.000 | 250.000 | 28500.00                 | 0.122                   | 0.2500   | 0.036 | 12.5000                     | 15.0000                      | Low Relaxation  | False           |    |       |
|   | 1/4" (7W-250) SR | Stress relieved 1/4"/Seven Wire/fpu = 250 | Standard | US Customary | 212.500 | 250.000 | 28500.00                 | 0.122                   | 0.2500   | 0.036 | 12.5000                     | 15.0000                      | Stress Relieved | False           |    |       |
|   | 3/8" (3W-250) LR | Low relaxation 3/8"/Three Wire/fpu = 250  | Standard | US Customary | 225.000 | 250.000 | 28500.00                 | 0.260                   | 0.3750   | 0.075 | 18.7500                     | 22.5000                      | Low Relaxation  | False           |    |       |
|   | 3/8" (7W-250) LR | Low relaxation 3/8"/Seven Wire/fpu = 250  | Standard | US Customary | 225.000 | 250.000 | 28500.00                 | 0.272                   | 0.3750   | 0.080 | 18.7500                     | 22.5000                      | Low Relaxation  | False           |    | *     |
|   |                  |                                           |          |              |         |         |                          |                         |          |       |                             |                              | ОК              | Apply           | Ca | incel |

| 🗛 Bridge Mat  | terials - PS Strand |                      |       | _     |      | ×  |
|---------------|---------------------|----------------------|-------|-------|------|----|
| Name:         | 1/2" (7W-270) L     | R                    |       |       |      |    |
| Description:  | Low relaxation 1    | /2"/Seven Wire/fpu = | 270   |       |      |    |
| Strand diame  | eter:               | 0.5000               | in    |       |      |    |
| Strand area:  |                     | 0.153                | in^2  |       |      |    |
| Strand type:  |                     | Low Relaxation       | ~     |       |      |    |
| Ultimate tens | sile strength (Fu): | 270.000              | ksi   |       |      |    |
| Yield strengt | h (fy):             | 243.000              | ksi   |       |      |    |
| Modulus of e  | lasticity (E):      | 28500.00             | ksi   |       |      |    |
|               | Com                 | pute                 | -     |       |      |    |
| Transfer leng | th (Std):           | 25.0000              | in    |       |      |    |
| Transfer leng | th (LRFD):          | 30.0000              | in    |       |      |    |
| Unit load per | length:             | 0.520                | lb/ft |       |      |    |
|               |                     | Epoxy coated         | a     |       |      |    |
|               |                     |                      |       |       |      |    |
|               |                     |                      |       |       |      |    |
| Сору          | to library          | Copy from library    | ОК    | Apply | Canc | el |

The selected material properties are copied to the Bridge Materials – PS Strand window as shown below.

Click **OK** to apply the data and close the window.

#### Beam Shapes

To enter a prestress beam shape to be used in this bridge expand the tree labeled **Beam Shapes** and **Prestress Shapes** as shown below and click on the **I Beams** node in the **Components** tree and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **I Beams** and select **New** or double click on **I Beams** in the **Components** tree).

| Bridge Wo                                    | orkspace - PS6TrainingBridge                                                                    |             | ANALYSIS    | REPORTS   |                  | ? – 🗆 | × |
|----------------------------------------------|-------------------------------------------------------------------------------------------------|-------------|-------------|-----------|------------------|-------|---|
| BRIDGE WORKSPACE                             | WORKSPACE TOOLS                                                                                 | VIEW        | DESIGN/RATE | REPORTING |                  |       | ^ |
| Check Out<br>Check In<br>Validate            | Save                                                                                            | ort Refresh | Open Ne     | Copy Pas  | te Duplicate Del | tete  |   |
|                                              | Bridge                                                                                          |             |             | Manag     | e                |       |   |
| Workspace                                    | л ×                                                                                             | Schem       | natic       | ųх        | Report           | th    | × |
| Bridge Components                            |                                                                                                 |             |             |           |                  |       |   |
|                                              | s<br>Shapes<br>eeems<br>Stepand Branch<br>Collapse Branch<br>New<br>Analyze                     |             | is          |           |                  | *     | × |
| Errors<br>CRFD Substr<br>Errors<br>Materials | View Summary Report     View Detailed Report     General Preferences     Close Bridge Workspace |             |             |           |                  |       |   |
|                                              |                                                                                                 |             |             |           |                  |       |   |



The Prestress I Beam window shown below will open.

Select the **Top flange type** as **Wide** and click the **Copy from library...** button. Select **AASHTO TYPE VI** and click **OK**.

| ø | + Library Data Prestress 1 Beam Shapes — |                           |          |              |         |                         |                     |                            |                        |                     |                         |                        |                       | -                |                          |                  |                             |                                |                          |                         |          |
|---|------------------------------------------|---------------------------|----------|--------------|---------|-------------------------|---------------------|----------------------------|------------------------|---------------------|-------------------------|------------------------|-----------------------|------------------|--------------------------|------------------|-----------------------------|--------------------------------|--------------------------|-------------------------|----------|
|   | Name                                     | Description               | Library  | Units        | Depth   | Top flange<br>thickness | Top flange<br>width | Bottom flange<br>thickness | Bottom flange<br>width | Top hauch<br>height | Bottom haunch<br>height | Top haunch 2<br>height | Top haunch 2<br>width | Deck<br>included | Top flange<br>ext. width | Radius<br>fillet | Top flange<br>radius fillet | Bottom flange<br>radius fillet | Top web<br>radius fillet | Bottom w<br>radius fill | eb<br>et |
| ľ | AASHTO TYPE V                            | AASHTO TYPE V             | Standard | US Customary | 63.0000 | 5.0000                  | 42.0000             | 8.0000                     | 28.0000                | 3.0000              | 10.0000                 | 4.0000                 | 4.0000                | False            |                          | False            |                             |                                |                          |                         |          |
| ľ | AASHTO TYPE VI                           | AASHTO TYPE VI            | Standard | US Customary | 72.0000 | 5.0000                  | 42.0000             | 8.0000                     | 28.0000                | 3.0000              | 10.0000                 | 4.0000                 | 4.0000                | False            |                          | False            |                             |                                |                          |                         |          |
|   | BT-54                                    | AASHTO-PCI Bulb-Tee BT-54 | Standard | US Customary | 54.0000 | 3.5000                  | 42.0000             | 6.0000                     | 26.0000                | 2.0000              | 4.5000                  | 2.0000                 | 2.0000                | False            |                          | False            |                             |                                |                          |                         | - U      |
|   | BT-63                                    | AASHTO-PCI Bulb-Tee BT-63 | Standard | US Customary | 63.0000 | 3.5000                  | 42.0000             | 6.0000                     | 26.0000                | 2.0000              | 4.5000                  | 2.0000                 | 2.0000                | False            |                          | False            |                             |                                |                          |                         | _        |
| I | BT-72                                    | AASHTO-PCI Bulb-Tee BT-72 | Standard | US Customary | 72.0000 | 3.5000                  | 42.0000             | 6.0000                     | 26.0000                | 2.0000              | 4.5000                  | 2.0000                 | 2.0000                | False            |                          | False            |                             |                                |                          |                         |          |
|   |                                          |                           |          | 2            |         |                         |                     |                            |                        |                     |                         |                        |                       |                  |                          | i                |                             | OK                             | A                        | pply                    | Cancel   |

The beam properties are copied to the Prestress I Beam window as shown below.



Click **OK** to apply the data and close the window.

#### Bridge – Appurtenances

#### Steel Railing

To enter the appurtenances to be used within the bridge expand the tree branch labeled **Appurtenances**. This bridge has a steel railing mounted on top of a concrete curb. To define a steel railing, select **Railing** and click on **New** from the **Manage** button on the **WORKSPACE** ribbon (or right click on **Railing** and click on **New**).



#### Enter the railing details as shown below.



Click **OK** to apply the data and close the window.

## Concrete curb

To define the concrete curb, select **Generic** and click on **New** from the **Manage** button on the **WORKSPACE** ribbon (or right click on **Generic** and click on **New**).

| Bridge Wor                                                                                                                     | rkspace - PS6Traini | ngBridge                    | ANALYSIS    | REPORTS      | ?                | – 🗆 ×     |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|-------------|--------------|------------------|-----------|
| BRIDGE WORKSPACE                                                                                                               | WORKSPACE           | TOOLS VIEW                  | DESIGN/RATE | REPORTING    |                  | ^         |
| Check Out                                                                                                                      | Restore             | 🔀 🎸 💭<br>Close Export Refre | sh Open New | Copy Paste   | Duplicate Delete | Schematic |
|                                                                                                                                | Bridge              |                             |             | Manage       |                  |           |
| Workspace                                                                                                                      |                     | 🛛 🗙 🛛 Schem                 | atic        | <b>₽</b> × R | eport            | щ×        |
| Bridge Components                                                                                                              | New Analyze         |                             |             |              |                  |           |
| <u><u></u> <u></u> </u>                | View Summary I      | Report                      | S           |              |                  | Ψ×        |
| Beam Sha<br>Beam Sha<br>Connecto<br>Factors<br>LRFD Sub<br>Beam Sha<br>Factors<br>LRFD Sub<br>Beam Sha<br>Factors<br>Materials | General Preferen    | orkspace                    |             |              |                  |           |

Enter the concrete curb details as shown below.



Click **OK** to apply the data and close the window.

The partially expanded **Bridge Workspace** is shown below.



The default impact factors, standard LRFD and LFR factors will be used. Bridge Alternatives will be added after entering the Structure Definition.

### Superstructure definition

Returning to the **Bridge** tab of the **Bridge Workspace**, double click on **SUPERSTRUCTURE DEFINITIONS** (or click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the **Manage** group of the Workspace ribbon or right mouse click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the popup menu) to create a new structure definition. The window shown below will appear.

| ×   |
|-----|
| ard |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
| cel |
|     |

Select **Girder system superstructure**, click **OK** and the **Girder System Superstructure Definition** window will open. Enter the data as shown below.

|                                                                                                                                                                   | Engine                                                                                                                                                                                    |                                                        |                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| ame: 1 Span, 5 Gir                                                                                                                                                | rder System                                                                                                                                                                               |                                                        | Modeling     Multi-girder system      MCB                                                     |
| escription:                                                                                                                                                       | ny V Enter span lengths along the reference                                                                                                                                               |                                                        | UWth trane structure simplified definition<br>Deck type:<br>Concrete Deck V<br>For PS/PT only |
| umber of spans: 1                                                                                                                                                 | line:<br>Span Length (ft)<br>▶ 1 121.75                                                                                                                                                   |                                                        | Average humidity:<br>70.000 %<br>Member alt. types<br>Steel<br>Ø P/S<br>R/C<br>Timber<br>P/T  |
|                                                                                                                                                                   |                                                                                                                                                                                           |                                                        |                                                                                               |
| Horizontal curvature along refe                                                                                                                                   | rence line                                                                                                                                                                                |                                                        |                                                                                               |
| Horizontal curvature along refe                                                                                                                                   | rence line<br>Distance from PC to first support line:                                                                                                                                     | ft                                                     |                                                                                               |
| Horizontal curvature along refe<br>Horizontal curvature<br>Superstructure alignment                                                                               | rence line<br>Distance from PC to first support line:<br>Start tangent length:                                                                                                            | ft ft                                                  |                                                                                               |
| Horizontal curvature along refe<br>Horizontal curvature<br>Superstructure alignment<br>© Curved                                                                   | rence line<br>Distance from PC to first support line:<br>Start tangent length:<br>Radius:                                                                                                 | ft ft ft ft                                            |                                                                                               |
| Horizontal curvature along refe<br>Horizontal curvature<br>Superstructure alignment<br>Curved<br>Tangent, curved, tangent<br>Tangent curved                       | rence line<br>Distance from PC to first support line:<br>Start tangent length:<br>Radius:<br>Direction:                                                                                   | ft f               |                                                                                               |
| Horizontal curvature along refe<br>Horizontal curvature<br>Superstructure alignment<br>Curved<br>Tangent, curved, tangent<br>Curved, curved<br>Curved, tangent    | rence line<br>Distance from PC to first support line:<br>Start tangent length:<br>Radius:<br>Direction:<br>End tangent length:                                                            | ft f               |                                                                                               |
| Horizontal curvature along refe<br>Horizontal curvature<br>Superstructure alignment<br>© Curved<br>Tangent, curved, tangent<br>Curved, tangent<br>Curved, tangent | rence line<br>Distance from PC to first support line:<br>Start tangent length:<br>Radius:<br>Direction:<br>End tangent length:<br>Distance from last support line to PT:                  | ft<br>ft<br>Left v<br>ft                               |                                                                                               |
| Horizontal curvature along refe<br>Horizontal curvature<br>Superstructure alignment<br>Curved<br>Tangent, curved, tangent<br>Curved, tangent                      | rence line<br>Distance from PC to first support line:<br>Start tangent length:<br>Radius:<br>Direction:<br>End tangent length:<br>Distance from last support line to PT:<br>Design speed: | ft<br>ft<br>Left v<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft |                                                                                               |

Click **OK** to apply the data and close the window.

## BRIDGE ALTERNATIVES

Navigate to the **BRIDGE ALTERNATIVES** node in the **Bridge Workspace** tree and create a new bridge alternative by double-clicking on **BRIDGE ALTERNATIVES** (or click on **BRIDGE ALTERNATIVES** and select **New** from the **Manage** group of the **WORKSPACE** ribbon). Enter the following data.

| Global positioning -  |                                                                                                                                                        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Distance: 0           | ft                                                                                                                                                     |
| Offset: 0             | ft                                                                                                                                                     |
| Elevation:            | ft                                                                                                                                                     |
|                       |                                                                                                                                                        |
| Start tangent length: | ft                                                                                                                                                     |
| Curve length:         | ft                                                                                                                                                     |
| Radius:               | ft                                                                                                                                                     |
| Direction:            | ~                                                                                                                                                      |
| End tangent length:   | ft                                                                                                                                                     |
|                       |                                                                                                                                                        |
|                       | Global positioning<br>Distance: 0<br>Offset: 0<br>Elevation:<br>Start tangent length:<br>Curve length:<br>Radius:<br>Direction:<br>End tangent length: |

Click **OK** to apply the data and close the window.

Expand the **Bridge Alternative 1** node in the **Bridge Workspace** tree. Double-click on the **SUPERSTRUCTURES** node (or select **SUPERSTRUCTURES** and click **New** from the **Manage** group of the **WORKSPACE** ribbon) and enter the following new superstructure.

| A Superstructure  | :      |           |              |        |               |   |    |    | _   |      | ×  |
|-------------------|--------|-----------|--------------|--------|---------------|---|----|----|-----|------|----|
| Superstructure na | me:    | Superstru | icture #1    |        |               |   |    |    |     |      |    |
| Description       | Alte   | rnatives  | Vehicle path | Engine | Substructures |   |    |    |     |      |    |
| Description:      |        |           |              |        |               |   |    |    |     |      |    |
|                   |        |           |              |        |               |   |    |    |     |      |    |
| Reference l       | ine –  |           |              |        |               | - |    |    |     |      |    |
| Distance:         |        | 0         | ft           |        |               |   |    |    |     |      |    |
| Offset:           |        | 0         | ft           |        |               |   |    |    |     |      |    |
| Angle:            |        | 0         | Degrees      |        |               |   |    |    |     |      |    |
| Starting sta      | ation: |           | ft           |        |               |   |    |    |     |      |    |
|                   |        |           |              |        |               |   |    |    |     |      |    |
|                   |        |           |              |        |               |   |    |    |     |      |    |
|                   |        |           |              |        |               |   |    |    |     |      |    |
|                   |        |           |              |        |               |   | OK | Ap | ply | Canc | el |
|                   |        |           |              |        |               |   |    |    |     |      |    |

Click **OK** to apply the data and close the window.

Expand the **Superstructure #1** node in the **Bridge Workspace** tree. Double-click on the **SUPERSTRUCTURE ALTERNATIVES** node (or select **SUPERSTRUCTURE ALTERNATIVES** and click **New** from the **Manage** group of the **WORKSPACE** ribbon) and enter the following new superstructure alternative. Select the superstructure definition **1 Span**, **5 Girder System** as the current superstructure definition for this Superstructure Alternative.

| 🗛 s   | uperstru  | ucture Alternati | ve                            |   | _     |   | ) ;   | × |
|-------|-----------|------------------|-------------------------------|---|-------|---|-------|---|
| Alter | rnative r | name:            | Superstructure Alternative #1 |   |       |   |       |   |
| Desc  | ription:  |                  |                               |   |       |   |       |   |
| Supe  | erstructu | ure definition:  | 1 Span, 5 Girder System 🗸 🗸   | ā |       |   |       |   |
| Supe  | erstructu | ure type:        | Girder                        |   |       |   |       |   |
| Num   | iber of i | main members     | 5                             |   |       |   |       |   |
|       | Span      | Length<br>(ft)   |                               |   |       |   |       |   |
| >     | 1         | 121.75           |                               |   |       |   |       |   |
|       |           |                  |                               |   |       |   |       |   |
|       |           |                  | ОК                            |   | Apply | C | ancel |   |

Re-open the **Superstructure #1** window and navigate to the **Alternatives** tab. The **Superstructure Alternative #1** will be shown as the **Existing** and **Current** alternative for **Superstructure #1**.

|                |             |                      |             |               |  |    |      |   | _   |
|----------------|-------------|----------------------|-------------|---------------|--|----|------|---|-----|
| uperstructure  | :           |                      |             |               |  |    |      | _ |     |
| arstructure na | me: Super   | structure #1         |             |               |  |    |      |   |     |
| erstructure na | ine. Super  |                      |             |               |  |    |      |   |     |
| Description    | Alternative | s Vehicle path       | Engine      | Substructures |  |    |      |   |     |
| Existing       | Current     | Superstructure alter | native name | Description   |  |    |      |   |     |
| > 🔽            |             | Superstructure Alter | mative #1   |               |  |    |      |   |     |
| _              |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  |    |      |   |     |
|                |             |                      |             |               |  | ОК | Αρρί | v | Can |

The partially expanded **Bridge Workspace** tree is shown below.



### Load Case Description

Double-click on the **Load Case Description** node in the **Bridge Workspace** tree to open the **Load Case Description** window and define the dead load cases as shown below. The completed **Load Case Description** window is shown below.

| Load case name | Description            | Stage                             |      | Туре | Time*<br>(days) |  |
|----------------|------------------------|-----------------------------------|------|------|-----------------|--|
| DC DL2         | Parapets               | Composite (long term) (Stage 2) 🔹 | D,DC | -    |                 |  |
| DW DL2         | Future wearing surface | Composite (long term) (Stage 2) 🔹 | D,DW | Ψ.   |                 |  |
|                |                        |                                   |      |      |                 |  |
|                |                        |                                   |      |      |                 |  |
|                |                        |                                   |      |      |                 |  |
|                |                        |                                   |      |      |                 |  |

Click **OK** to apply the data and close the window.

#### Structure Framing Plan Detail – Layout

Double-click on Framing Plan Detail in the Bridge Workspace tree to describe the framing plan in the Structure

Framing Plan Details window. Enter the data as shown below.

| Structure Framing Plan Details |                            | - 🗆            |
|--------------------------------|----------------------------|----------------|
| Number of spans: 1 Number      | of girders: 5              |                |
| Layout Diaphragms              |                            |                |
|                                | Girder spacing orientation |                |
| Show                           | O Perpendicular to girder  |                |
| Support (degrees)              | Along support              |                |
| 1 15                           |                            |                |
| > 2 15                         | Girder spacing<br>(ft)     |                |
|                                | bay Start of End of        |                |
|                                | girder girder              |                |
|                                | > 1 9.0833 9.0833          |                |
|                                | 2 9.0833 9.0833            |                |
|                                | 3 9.0833 9.0833            |                |
|                                | 4 9.0833 9.0833            |                |
|                                |                            |                |
|                                |                            |                |
|                                |                            |                |
|                                |                            |                |
|                                | <b>v</b>                   |                |
|                                |                            |                |
|                                | 0                          | K Apply Cancel |
|                                |                            |                |

## Structure Framing Plan Detail – Diaphragms

Switch to the **Diaphragms** tab to enter the diaphragm spacing. Click the **Diaphragm wizard...** button to add diaphragms for the entire structure. **Select the desired framing plan system** and click the **Next** button. Enter the following data on the window shown below.

| A Diaphragm Wizard X                    | A Diaphragm Wizard X                                                                                                                                                                 |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select the desired framing plan system: | Diaphragm spacing<br>Diaphragm spacing<br>Enter equal spacing per span<br>Enter groups of equal spacing<br>Interior diaphragm along skew                                             |
|                                         | Left girder     Support diaphragm load:kip     Interior diaphragm load:kip     Equal sparing                                                                                         |
|                                         | Span         Length<br>(ft)         Distance D<br>(ft)         Length<br>S<br>(ft)         Distance D<br>S<br>(ft)           I         121.75         60.88         60.875         A |
|                                         | ~                                                                                                                                                                                    |
|                                         |                                                                                                                                                                                      |
| < Back Next > Cancel                    | Sack Finish Cancel                                                                                                                                                                   |

Click the **Finish** button to add the diaphragms. The **Diaphragm Wizard** will create diaphragms for all the girder bays in the structure. The diaphragms created for **Girder bay 1** are shown below.

| Layout       Diaphragms         Girder bay:                                                                                                                                                                                                                                                                                                                                                                                                                  | _            | _      |        |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|--------|---|
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                     |              |        |        |   |
| Left girder         Right girder         (ft)         Anno 1         Left girder         Right girder         Right girder           1         ✓         0         0         0         1         0         0         0            1         ✓         60.875         63.30863         0         1         0         60.875         63.30863            1         ✓         121.75         121.75         0         1         0         121.75         121.75 | Diaphragm    |        |        |   |
| >         1         ∨         0         0         0         1         0         0         0            1         ∨         60.875         63.308863         0         1         0         60.875         63.308863            1         ∨         121.75         121.75         0         1         0         121.75         121.75                                                                                                                          |              |        |        |   |
| 1         60.875         63.308863         0         1         0         60.875         63.308863            1          121.75         121.75         0         1         0         121.75         121.75                                                                                                                                                                                                                                                    | Not Assigned | $\sim$ |        | ĥ |
| 1 V 121.75 121.75 0 1 0 121.75                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Assigned | $\sim$ |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Assigned | ~      |        |   |
| New                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Duplicate    |        | Delete |   |

Click **OK** to apply the data and close the window.

#### Schematic – Framing Plan Detail

A schematic view of the framing plan can be viewed by selecting the **Framing Plan View** node in **the Bridge Workspace** tree and clicking on the **Schematic** button from the **WORKSPACE** ribbon (or by right clicking on the **Framing Plan View** node and selecting **Schematic** from the menu) as shown below.



Notice that the span length is displayed along the first girder in the plan. Until the **Structure Typical Section** window is visited, the **Superstructure Definition Reference** line that was entered as span length in the **Girder System Superstructure Definition** window is located under the first girder.



### Structure Typical Section - Deck

Next define the structure typical section by double-clicking on **Structure Typical Section** in the **Bridge Workspace** tree. Input the data describing the typical section as shown below.

| A Structure Typical Section                                                                                   |       | -     |      | ×   |
|---------------------------------------------------------------------------------------------------------------|-------|-------|------|-----|
| Distance from left edge of deck to<br>superstructure definition ref. line superstructure definition ref. line |       |       |      |     |
| Deck Line Line Line                                                                                           |       |       |      |     |
| Left overhang                                                                                                 |       |       |      |     |
| Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing sur            | rface |       |      |     |
| Superstructure definition reference line is within 🕑 the bridge deck.                                         |       |       |      |     |
| Start End                                                                                                     |       |       |      |     |
| superstructure definition reference line:                                                                     |       |       |      |     |
| Distance from right edge of deck to<br>superstructure definition reference line: 25.67 ft 25.67 ft            |       |       |      |     |
| Left overhang: 4.50 ft 4.50 ft                                                                                |       |       |      |     |
| Computed right overhang: 4.51 ft 4.51 ft                                                                      |       |       |      |     |
|                                                                                                               |       |       |      |     |
|                                                                                                               |       |       |      |     |
|                                                                                                               |       |       |      |     |
|                                                                                                               |       |       |      |     |
|                                                                                                               |       |       |      |     |
|                                                                                                               |       |       |      |     |
|                                                                                                               |       |       |      |     |
| OK                                                                                                            | ĸ     | Apply | Cano | :el |

In this example, the **Structure Definition Reference** line is located at the construction CL in the typical section.



\*The construction CL is used as the Structure Definition Reference line in this example

## Structure Typical Section – Deck (cont'd)

The **Deck (cont'd)** tab is used to enter information about the **Deck concrete** and the **Total deck thickness**. The material to be used for the deck concrete is selected from the list of bridge materials. Enter data as shown below.

| A Structure Typical Section                                                                            | -     |       | × |
|--------------------------------------------------------------------------------------------------------|-------|-------|---|
| Distance from left edge of deck to<br>superstructure definition ref. line                              |       |       |   |
| Deck – Superstructure Definition –<br>thickness – Reference Line                                       |       |       |   |
|                                                                                                        |       |       |   |
| Left overhang                                                                                          |       |       |   |
| Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface |       |       |   |
| Deck concrete:                                                                                         |       |       |   |
| Total deck thickness: 8.5000 in                                                                        |       |       |   |
| Load case: Engine Assigned                                                                             |       |       |   |
| Deck crack control parameter: 130.000 kip/in                                                           |       |       |   |
| Sustained modular ratio factor: 2.000                                                                  |       |       |   |
| Deck exposure factor:                                                                                  |       |       |   |
|                                                                                                        |       |       |   |
|                                                                                                        |       |       |   |
|                                                                                                        |       |       |   |
|                                                                                                        |       |       |   |
|                                                                                                        |       |       |   |
|                                                                                                        |       |       |   |
|                                                                                                        |       |       |   |
|                                                                                                        |       |       |   |
|                                                                                                        | Apply | Cance | 1 |
| Ŭ,                                                                                                     | עיקקר | cance |   |

#### Structure Typical Section – Railing

## Add two steel railings as shown below.

| Stru      | cture Typical Section   |         |         |         |                                        |                              |                            |                           |               | -       |        |   |
|-----------|-------------------------|---------|---------|---------|----------------------------------------|------------------------------|----------------------------|---------------------------|---------------|---------|--------|---|
|           | Front                   |         |         |         |                                        |                              |                            |                           |               |         |        |   |
| )<br>Deck | : Deck (cont'd) Parapet | Median  | Railing | Gen     | eric Sidewalk                          | Lane position                | on Striped                 | lanes We                  | aring surface |         |        |   |
|           | Name                    | Load ca | se Mea  | sure to | Edge of deck<br>dist. measured<br>from | Distance at<br>start<br>(ft) | Distance at<br>end<br>(ft) | Front face<br>orientation |               |         |        |   |
| Þ         | Two Tube Bridge Rail 🔹  | DC DL2  | * Fron  | t -     | Left Edge 🔹                            | 1.67                         | 1.67                       | Right -                   |               |         |        | 4 |
|           | Two Tube Bridge Rail    | DC DL2  | * Fron  | t -     | Right Edge 🔹                           | 1.67                         | 1.67                       | Left -                    |               |         |        |   |
|           |                         |         |         |         |                                        |                              |                            |                           |               |         |        |   |
|           |                         |         |         |         |                                        |                              |                            |                           | New Du        | plicate | Delete |   |
|           |                         |         |         |         |                                        |                              |                            |                           | OK            | Apply   | Can    |   |

## Structure Typical Section – Generic

Add two generic curbs as shown below.

|    | <             | - Generic | Shape    |         |       |                                        |                              |                            |                      |                 |           |        |
|----|---------------|-----------|----------|---------|-------|----------------------------------------|------------------------------|----------------------------|----------------------|-----------------|-----------|--------|
| ck | Deck (cont'd) | Parapet   | Median   | Railing | Gen   | eric Sidewalk                          | Lane positi                  | on Striped                 | d lanes              | Wearing surface |           |        |
|    | Name          | L         | oad case | Measu   | re to | Edge of deck<br>dist. measured<br>from | Distance at<br>start<br>(ft) | Distance at<br>end<br>(ft) | Front fa<br>orientat | ce              |           |        |
| Þ  | Curb -        | DC DL     | 2 -      | Back    | *     | Left Edge 🛛 👻                          | 0.00                         | 0.00                       | Right                | <b>•</b>        |           |        |
|    | Curb -        | DC DL     | 2 *      | Back    | *     | Right Edge 🛛 👻                         | 0.00                         | 0.00                       | Left                 | *               |           |        |
|    |               |           |          |         |       |                                        |                              |                            |                      |                 |           |        |
| _  |               |           |          |         |       |                                        |                              |                            |                      | New             | Duplicate | Delete |

### Structure Typical Section – Lane Positions

Select the **Lane position** tab and use the **Compute...** button to compute the lane positions. A window showing the results of the computation opens. Click **Apply** to apply the computed values.

| A | Compute La          | ne Positions                                                                                                   |                                                                                                                 |                                                                                                              |                                                                                                               | ×         |
|---|---------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|
|   | Travelway<br>number | Distance from left edge of<br>travelway to superstructure<br>definition reference line<br>at start (A)<br>(ft) | Distance from right edge of<br>travelway to superstructure<br>definition reference line<br>at start (B)<br>(ft) | Distance from left edge of<br>travelway to superstructure<br>definition reference line<br>at end (A)<br>(ft) | Distance from right edge of<br>travelway to superstructure<br>definition reference line<br>at end (B)<br>(ft) |           |
| ) | 1                   | -18.00                                                                                                         | 24.00                                                                                                           | -18.00                                                                                                       | 24.00                                                                                                         | -         |
|   |                     |                                                                                                                |                                                                                                                 |                                                                                                              | Apply Ca                                                                                                      | -<br>ncel |

| Struc | Travely<br>Travely  | Section                                                                                                        | are Definition Reference Line<br>tavelway 2                                                                     | slk Lane position Striped                                                                                    | lanes Wearing surface                                                                                         | _     |        |
|-------|---------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------|--------|
|       | Travelway<br>number | Distance from left edge of<br>travelway to superstructure<br>definition reference line<br>at start (A)<br>(ft) | Distance from right edge of<br>travelway to superstructure<br>definition reference line<br>at start (B)<br>(ft) | Distance from left edge of<br>travelway to superstructure<br>definition reference line<br>at end (A)<br>(ft) | Distance from right edge of<br>travelway to superstructure<br>definition reference line<br>at end (B)<br>(ft) |       |        |
| +     | 1                   | -18.00                                                                                                         | 24.00                                                                                                           | -18.00                                                                                                       | 24.00                                                                                                         |       | Â      |
|       | RFD fatigue         |                                                                                                                |                                                                                                                 |                                                                                                              |                                                                                                               |       | Ŧ      |
| [     | Lanes ava           | Truck fraction:                                                                                                | Compute                                                                                                         |                                                                                                              | New Dupl                                                                                                      | icate | Delete |
|       |                     |                                                                                                                |                                                                                                                 |                                                                                                              | ОК                                                                                                            | Apply | Cance  |

The Lane Position tab is populated as shown below.

Click **OK** to apply the data and close the window.

#### Schematic – Structure Typical Section

A schematic view of the structure typical section can be viewed by selecting the **Structure Typical Section** node in **the Bridge Workspace** tree and clicking on the **Schematic** button from the **WORKSPACE** ribbon (or by right clicking on the **Structure Typical Section** node and selecting **Schematic** from the menu) as shown below.



| Schematic                                                                          | _ 🗆 ×      |
|------------------------------------------------------------------------------------|------------|
| Typical section                                                                    | <b>▼</b> × |
|                                                                                    | ÷          |
| PS6TrainingBridge<br>Skewed PS I Beam Bridge - 1 Span, 5 Girder System<br>2/3/2023 |            |
| 45'-4 1/16"                                                                        |            |
| 1'-1 3/16" 43'-1 3/4" 1'-                                                          | 3/16"      |
| 42'-0"                                                                             |            |
| Deck Thickness 8 1/2"                                                              |            |
| Travelway 1                                                                        |            |
|                                                                                    |            |
| <u>4'-6"</u> <u>4@9'-1" = 36'-4"</u> <u>4'-6 1/1</u>                               | 6"         |
|                                                                                    |            |

The beams are displayed as dashed boxes since the beams are not defined yet.

Navigate back to the **Schematic** for the **Framing Plan Detail**. It now shows the span length along the superstructure definition reference line.



#### Concrete Stress Limits

A Stress Limit defines the allowable concrete stresses for a given concrete material. Double click on the **Concrete Stress Limits** node in the **Bridge Workspace** tree to open the **Stress Limit Sets – Concrete** window. Enter data shown above the **Compute** button, select **Moderate** for the **Corrosion condition** and select the **PS 6.5 ksi** concrete material from the drop-down menu of the **Concrete material**. Click the **Compute** button. Default values for the allowable stresses will be computed based on the **Concrete material** selected and the AASHTO Specifications. A default value for the **Final allowable slab compression** is not computed since the deck concrete is typically different from the concrete used in the beam. Manually enter these values as shown below. The **Final allowable tension** values are calculated using the default stress limit coefficient if the **Final allowable tension stress limit coef. (US) override** checkbox is not checked on this window. This coefficient is dependent on the moderate or severe corrosion condition to which the members are exposed.

| A Stress Limit Sets - Co                  | oncrete       |                 |              |     |        |     | -     | _ |       | ×        |
|-------------------------------------------|---------------|-----------------|--------------|-----|--------|-----|-------|---|-------|----------|
| Name:                                     | 6.5 Ksi Stres | is Limit        |              |     |        |     |       |   |       |          |
| Description:                              |               |                 |              |     |        |     |       |   |       |          |
| Corrosion condition:                      | loderate      |                 | ~            |     |        |     |       |   |       |          |
| Final allowable ten                       | sion stress   | limit coef. (US | 6) override: |     |        |     |       |   |       |          |
| Concrete material:                        | S 6.5 Ksi     |                 | $\sim$       |     |        |     |       |   |       |          |
| ſ                                         | Compute       | ר               |              |     |        |     |       |   |       |          |
|                                           |               | LFD             |              | L   | RFD    |     |       |   |       |          |
| Initial allowable compre                  | ession:       | 3.315           | ksi          | 3.5 | 9125   | ksi |       |   |       |          |
| Initial allowable tensior                 | 1:            | 0.2             | ksi          | 0.2 |        | ksi |       |   |       |          |
| Final allowable compre                    | ssion:        | 3.9             | ksi          | 3.9 |        | ksi |       |   |       |          |
| Final allowable tension:                  |               | 0.4844069       | ksi          | 0.4 | 844069 | ksi |       |   |       |          |
| Final allowable DL com                    | pression:     | 2.6             | ksi          | 2.9 | 25     | ksi |       |   |       |          |
| Final allowable slab cor                  | npression:    | 2.7             | ksi          | 2.7 |        | ksi |       |   |       |          |
| Final allowable compre<br>(LL+1/2(Pe+DL)) | ssion:        | 2.6             | ksi          | 2.6 |        | ksi |       |   |       |          |
|                                           |               |                 |              |     | 0      | ĸ   | Apply |   | Cance | <u>+</u> |

Click **OK** to apply the data and close the window.

### **Prestress Properties**

Double click on the **Prestress Properties** node in the **Bridge Workspace** tree to open the **Prestress Properties** window. Define the prestress properties as shown below. Since the **AASHTO Approximate** method is used to compute the losses, only the information on the **General P/S data** tab is required.

| A Prestress Properties                 |                                      |                            |          | _     |       | ×  |
|----------------------------------------|--------------------------------------|----------------------------|----------|-------|-------|----|
| Name: 1/2" Starand A                   | ASHTO Loss                           |                            |          |       |       |    |
| General P/S data                       | Loss data - lump sum Loss data - PCI | )                          |          |       |       |    |
| P/S strand material:                   | 1/2" (7W-270) LR                     | Jacking stress ratio:      | 0.750    | ]     |       |    |
| Loss method:                           | AASHTO Approximate                   | P/S transfer stress ratio: |          |       |       |    |
|                                        |                                      | Transfer time:             | 24.0     | Hours |       |    |
|                                        |                                      | Age at deck placement:     | 30.00    | Days  |       |    |
|                                        |                                      | Final age:                 | 18250.00 | Days  |       |    |
| Loss data - AASHT<br>Percentage DL: 0. | 0%<br>0%                             |                            |          |       |       |    |
|                                        |                                      |                            | OK       | Apply | Cance | el |

Click **OK** to apply the data and close the window.

#### Shear Reinforcement

Define shear reinforcement to be used by the girders. Expand the **Shear Reinforcement Definitions** on the Bridge Workspace tree, select the **Vertical** node and click on **New** from the **Manage** group of the **WORKSPACE** ribbon (or double click on **Vertical**).



Define the stirrup as shown below. Click **OK** to save and close the window.

| 🕰 Shear | Reinforcement Definition - Vertical | -     |       | ×  |
|---------|-------------------------------------|-------|-------|----|
| Name:   | #4 Stirrups                         |       |       |    |
|         |                                     |       |       |    |
|         | Material: Grade 60                  |       | ~     |    |
|         | Bar size: 4                         |       |       |    |
|         | Number of legs: 2.00                |       |       |    |
|         | Inclination (alpha): 90.0 Degrees   |       |       |    |
|         | Reinforcement                       |       |       |    |
|         | OK                                  | Apply | Cance | :I |

A partially expanded **Bridge Workspace** is shown below.



### Describing a member:

The **Member** window shows the data that was generated when the structure definition was created. No changes are required in this window. The first Member Alternative created will automatically be assigned as the **Existing** and **Current member alternative** for this Member.

| A Member                                             | -     |      | ×  |
|------------------------------------------------------|-------|------|----|
| Member name: G2 Link with: None                      |       |      |    |
| Description:                                         |       |      |    |
| Existing Current Member alternative name Description |       |      |    |
|                                                      |       |      | -  |
|                                                      |       |      |    |
|                                                      |       |      | _  |
| Number of spans: 1 Span length<br>no. length<br>(ft) |       |      |    |
| OK A                                                 | Apply | Canc | el |

#### Defining a Member Alternative

Double-click on **MEMBER ALTERNATIVES** in the **Bridge Workspace** tree for member **G2** to create a new member alternative. The **New Member Alternative** window shown below will open. Select **Prestressed** (pretensioned) concrete for the **Material type** and **PS Precast I** for the **Girder Type**.

| A New Member Alternative            | ×              |
|-------------------------------------|----------------|
| Material type:                      | Girder type:   |
| Post tensioned concrete             | PS Precast Box |
| Prestressed (pretensioned) concrete | PS Precast I   |
| Reinforced concrete                 | PS Precast Tee |
| Steel                               | PS Precast U   |
| Timber                              |                |
|                                     |                |
|                                     | OK Cancel      |

Click **OK** to close the window and create a new member alternative.

The **Member Alternative Description** window will open as shown below. Enter the data as shown below and click **OK** to save to memory and close the window. The **Schedule-based Girder property input method** is the only input method available for a prestressed concrete beam.

| lember alter                        | native: Typ                          | e VI Beam |                       |                     |                     |                      |        |  |  |
|-------------------------------------|--------------------------------------|-----------|-----------------------|---------------------|---------------------|----------------------|--------|--|--|
| Description                         | Specs                                | Factors   | Engine                | Import              | Control options     |                      |        |  |  |
| Description:                        |                                      |           |                       |                     | Material type:      | Prestressed (Pretens | ioned) |  |  |
|                                     |                                      |           |                       |                     | Girder type:        | PS Precast I         |        |  |  |
|                                     |                                      |           |                       |                     | Modeling type:      | Multi Girder System  |        |  |  |
|                                     |                                      |           |                       |                     | Default units:      | US Customary         | ~      |  |  |
| Cross-                              | -section ba                          | sed       |                       |                     | Default rating meth | od:                  |        |  |  |
| Load case<br>Additiona<br>Additiona | e:<br>al self load:<br>al self load: | Engine As | signed<br>kip/ft<br>% | ~                   | LFR                 | ~                    |        |  |  |
| Crack co                            | ntrol param                          | eter (Z)  | kip/in                | Exposur<br>Top of b | e factor            | Use cree             | 0      |  |  |
| Top of be                           | ann.                                 |           |                       |                     |                     |                      |        |  |  |
| Top of be<br>Bottom o               | of beam:                             |           | kip/in                | Bottom              | of beam:            |                      |        |  |  |

Click **OK** to close the window and create a new member alternative.

## Beam Details

Next describe the beam by double clicking on the **Beam Details** node in the **Bridge Workspace** tree. Enter the data in each tab of the **Beam Details** window as shown below.

|   |                |                | Side interface | thes chief bio |                            |   | 1                          |                   |  |
|---|----------------|----------------|----------------|----------------|----------------------------|---|----------------------------|-------------------|--|
|   | Span<br>number | Beam shape     | Girc<br>mate   | der<br>erial   | Prestress<br>properties    | n | Beam p<br>Left end<br>(in) | Right end<br>(in) |  |
| Þ | 1              | AASHTO TYPE VI | PS 6.5 Ksi     | *              | 1/2" Starand AASHTO Loss 👻 |   | 7.0000                     | 7.0000            |  |
|   |                |                |                |                |                            |   |                            |                   |  |
|   |                |                |                |                |                            |   |                            |                   |  |
|   |                |                |                |                |                            |   |                            |                   |  |
|   |                |                |                |                |                            |   |                            |                   |  |
|   |                |                |                |                |                            |   |                            |                   |  |

Note that the **Stress limit ranges** are defined over the entire length of the precast beam, including the projections of the beam past the centerline of bearing which were entered on the **Span detail** tab of this window.

|   |                |                      |        | Start            |                | End              |  |     |        |       |  |
|---|----------------|----------------------|--------|------------------|----------------|------------------|--|-----|--------|-------|--|
| r | Span<br>number | Name                 |        | distance<br>(ft) | Length<br>(ft) | distance<br>(ft) |  |     |        |       |  |
| 1 | 1 ~            | 6.5 Ksi Stress Limit | $\sim$ | 0                | 122.9167       | 122.9167         |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  |     |        |       |  |
|   |                |                      |        |                  |                |                  |  | New | - East | Delat |  |

| 🕰 Beam Details  |                       |                |               |   |   |    |    | -   |       | × |
|-----------------|-----------------------|----------------|---------------|---|---|----|----|-----|-------|---|
| Span detail     | Stress limit ranges   | Slab interface | Web end block | ) |   |    |    |     |       |   |
| Interface type  | :                     | Monolithic     | $\sim$        |   |   |    |    |     |       |   |
| Default interf  | ace width to beam wid | ths: 🖌         |               |   |   |    |    |     |       |   |
| Interface widt  | th:                   |                | in            |   |   |    |    |     |       |   |
| Cohesion fact   | tor:                  | 0.400          | ksi           |   |   |    |    |     |       |   |
| Friction factor | r:                    | 1.400          |               |   |   |    |    |     |       |   |
| K1:             |                       | 0.250          | ]             |   |   |    |    |     |       |   |
| K2:             |                       | 1.500          | ksi           |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   |   |    |    |     |       |   |
|                 |                       |                |               |   | [ | OK | Ap | ply | Cance | 2 |
|                 |                       |                |               |   |   |    |    |     |       |   |

The defaults on the **Slab interface** tab are acceptable.

Click **OK** to apply the beam details data and close the window.

#### Strand Layout

Expand the **Strand Layout** in the **Bridge Workspace** tree and double-click on **Span 1**. Select the **Description type** as **P and CGS only**. The schematic of the beam shape is no longer displayed on the right side of this window. Since the center of gravity of the strands needs to be entered, it is not required to specify the location of each strand. Enter the following data to describe the prestress strand configuration.

| 🕰 Strand Layout - Span                                  | n1 —    |       |  |  |  |  |  |  |  |
|---------------------------------------------------------|---------|-------|--|--|--|--|--|--|--|
| Description type     P and CGS only     Strands in rows |         |       |  |  |  |  |  |  |  |
| Left harp pt. dist. (X1):                               | 49.00   | ft    |  |  |  |  |  |  |  |
| Left harp pt. radius:                                   |         | ] in  |  |  |  |  |  |  |  |
| Right harp pt. dist. (X2):                              | 49.00   | ft    |  |  |  |  |  |  |  |
| Right harp pt. radius:                                  |         | in    |  |  |  |  |  |  |  |
| Force:                                                  | 1859.00 | kip   |  |  |  |  |  |  |  |
| Left CGS:                                               | 20.8700 | in    |  |  |  |  |  |  |  |
| Mid CGS:                                                | 6.4700  | in    |  |  |  |  |  |  |  |
| Right CGS:         20.8700         in                   |         |       |  |  |  |  |  |  |  |
| ОК Ар                                                   | ply C   | ancel |  |  |  |  |  |  |  |

Click **OK** to save this data to memory and close the window.

### Deck Profile

Next open the **Deck Profile** window by double-clicking the **Deck Profile** node in the **Bridge Workspace** tree and enter the data describing the structural properties of the deck. The window is shown below.

| e: | PS Precast |           |                   |                           |                |                         |                                 |                                                  |                                                |                                                   |                                                 |   |  |  |
|----|------------|-----------|-------------------|---------------------------|----------------|-------------------------|---------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------------------|---|--|--|
| d  | k concrete | Reinforce | ment              |                           |                |                         |                                 |                                                  |                                                |                                                   |                                                 |   |  |  |
|    | Mate       | erial     | Support<br>number | Start<br>distance<br>(ft) | Length<br>(ft) | End<br>distance<br>(ft) | Structural<br>thickness<br>(in) | Start effective<br>flange width<br>(Std)<br>(in) | End effective<br>flange width<br>(Std)<br>(in) | Start effective<br>flange width<br>(LRFD)<br>(in) | End effective<br>flange width<br>(LRFD)<br>(in) | n |  |  |
|    | Deck Concr | rete 🔹    | 1 -               | 0.00                      | 121.75         | 121.75                  | 8.5000                          | 102.0000                                         | 102.0000                                       | 109.0000                                          | 109.0000                                        |   |  |  |
|    |            |           |                   |                           |                |                         |                                 |                                                  |                                                |                                                   |                                                 |   |  |  |
|    |            |           |                   |                           |                |                         |                                 |                                                  |                                                |                                                   |                                                 |   |  |  |

No reinforcement is described.

#### Haunch Profile

The haunch profile is defined by double-clicking on the **Haunch Profile** node in the **Bridge Workspace** tree. Enter data as shown below and Click **OK** to apply the data and close the window.

| A PS Haunch Pr    | ofile                     |                |                         |            |            |            |            |     |           | - |        | ×  |
|-------------------|---------------------------|----------------|-------------------------|------------|------------|------------|------------|-----|-----------|---|--------|----|
|                   | IY3                       | n]<br>         |                         |            |            |            |            |     |           |   |        |    |
| Support<br>number | Start<br>distance<br>(ft) | Length<br>(ft) | End<br>distance<br>(ft) | Z1<br>(in) | Z2<br>(in) | Y1<br>(in) | Y3<br>(in) |     |           |   |        |    |
| ▶ 1               | 0.00                      | 121.75         | 121.75                  | 0.0000     | 0.0000     | 2.0000     | 0.0000     |     |           |   |        | -  |
|                   |                           |                |                         |            |            |            |            | New | Dunlicate |   | Delete | Ŧ  |
|                   |                           |                |                         |            |            |            |            | New | Duplicate |   | Delete |    |
|                   |                           |                |                         |            |            |            |            | OK  | Appl      | у | Cano   | el |

### Shear Reinforcement Ranges

Double-click on the **Shear Reinforcement Ranges** node in the **Bridge Workspace** tree to open the **PS Shear Reinforcement Ranges** window. The Shear Reinforcement Ranges are entered as described below. The vertical shear reinforcement is defined as extending into the deck on the **Vertical** tab of this window. This indicates composite action between the beam and the deck. Data does not have to be entered on the Horizontal tab to indicate composite action since that has been defined by extending the vertical bars into the deck.

| PS S   | ihear Reinforcement | Ranges  | i                       |                           |                  |                 |                | - 0                     | 2    |
|--------|---------------------|---------|-------------------------|---------------------------|------------------|-----------------|----------------|-------------------------|------|
| - Vert | Start Distance      |         | Spacing                 |                           |                  |                 |                |                         |      |
| Spar   | n: 1 ~              |         |                         |                           |                  |                 |                |                         |      |
|        | Name                |         | Extends<br>into<br>deck | Start<br>distance<br>(ft) | Number of spaces | Spacing<br>(in) | Length<br>(ft) | End<br>distance<br>(ft) |      |
| >      | #4 Stirrups         | ~       |                         | 0.17                      | 1                | 0               | 0              | 0.17                    | -    |
|        | #4 Stirrups         | ~       | $\checkmark$            | 0.17                      | 4                | 3               | 1              | 1.17                    |      |
|        | #4 Stirrups         | ~       |                         | 1.17                      | 1                | 4               | 0.333333       | 1.503333                |      |
|        | #4 Stirrups         | ~       |                         | 1.503333                  | 120              | 12              | 120            | 121.503333              |      |
|        | #4 Stirrups         | ~       | $\sim$                  | 121.503333                | 1                | 4               | 0.333333       | 121.836666              |      |
|        | #4 Stirrups         | $\sim$  |                         | 121.836666                | 4                | 3               | 1              | 122.836666              |      |
|        |                     |         |                         |                           |                  |                 |                |                         | •    |
| 9      | Stirrup wizard      | Stirrup | design tool             | View calcs                | ;                | Ne              | ew Dupl        | icate Delete            | •    |
|        |                     |         |                         |                           |                  |                 | ОК             | Apply Car               | ncel |

Click **OK** to apply the data and close the window.

### Live Load Distribution

Double click on the Live Load Distribution node in the Bridge Workspace tree for member G2 to open the Live Load Distribution window.

On the **Standard** tab of this window, click the **Compute from typical section**... button to compute the standard live load distribution factors. BrDR will compute the distribution factors based on the girder type, girder spacing, deck geometry and lane position as per the AASHTO Standard Specification for Highway Bridges.

| VEL  |                            | tion         |                   |             |                 |                                           | _     |    |                                                                                                                 |
|------|----------------------------|--------------|-------------------|-------------|-----------------|-------------------------------------------|-------|----|-----------------------------------------------------------------------------------------------------------------|
|      | .oau Distribu              | lion         |                   |             |                 |                                           |       |    |                                                                                                                 |
| and  | lard LRFI                  | D            |                   |             |                 |                                           |       |    |                                                                                                                 |
| - Di | stribution fa              | ctor input r | nethod            |             |                 |                                           |       |    |                                                                                                                 |
| (    | Use simp                   | lified meth  | nd O              | Use advanc  | ed method       | Use advanced method with 1994 guide specs |       |    |                                                                                                                 |
|      | 000 000                    |              |                   |             |                 |                                           |       |    |                                                                                                                 |
| / /  | Allow distrib              | ution facto  | rs to be use      | d to compu  | te effects of p | ermit loads with routine traffic          |       |    |                                                                                                                 |
|      |                            |              | Distribu          | tion factor |                 |                                           |       |    |                                                                                                                 |
|      | Lanes                      |              | (wł               | neels)      |                 |                                           |       |    |                                                                                                                 |
|      | loaded                     | Shear        | Shear at supports | Moment      | Deflection      |                                           |       |    |                                                                                                                 |
| >    | 1 Lane                     | 1.297614     | 1.339447          | 1.297614    | 0.4             |                                           |       |    |                                                                                                                 |
|      | Multi-lane                 | 1.651509     | 1.899079          | 1.651509    | 1.08            |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
|      |                            |              |                   |             |                 |                                           |       |    |                                                                                                                 |
| Cor  | mpute from                 | . Vie        | w calcs           |             |                 |                                           |       |    |                                                                                                                 |
| Cor  | mpute from<br>ical section | . Vie        | w calcs           |             |                 |                                           |       |    | Ţ                                                                                                               |
| Cor  | mpute from<br>ical section | . Vie        | w calcs           |             |                 |                                           |       |    | The second se |
| Cor  | mpute from<br>ical section | . Vie        | w calcs           |             |                 | OK                                        | Apply | Ca | ncel                                                                                                            |

Click **OK** to apply the data and close the window.

The description of this structure definition is complete.

## LFR Analysis

The member alternative can now be analyzed. To perform an **LFR** rating, select the **Analysis Settings** button on the **Analysis** group of the **DESIGN/RATE** ribbon. The window shown below opens.

| Bridge Wor                                   | kspace - PS6TrainingBridge                                            | ANALYSIS                | REPORTS   | ? | - | × |
|----------------------------------------------|-----------------------------------------------------------------------|-------------------------|-----------|---|---|---|
| BRIDGE WORKSPACE                             | WORKSPACE TOOLS VIEW                                                  | DESIGN/RATE             | REPORTING |   |   | ^ |
| a                                            | 📄 🕞 🇞                                                                 | 2 📙                     |           |   |   |   |
| Analysis Analyze Analysis<br>Settings Events | Tabular Specification Engine Rest<br>Results Check Detail Outputs Gra | ults Save<br>ph Results |           |   |   |   |
| Analysis                                     | Results                                                               |                         |           |   |   |   |

Click the **Open Template** button and select the **LRFR Design Load Rating** to be used in the rating and click **Open**.

| <b>A</b> | Open Template           |                         |          |       |                  | ×       |
|----------|-------------------------|-------------------------|----------|-------|------------------|---------|
|          | Templates               | Description             | Analysis | Owner | Public / Private |         |
|          | HL 93 Design Review     | HL 93 Design Review     | LRFD     |       | Public           | <b></b> |
|          | HS 20 LFR Rating        | HS 20 LFR Rating        | LFR      |       | Public           |         |
|          | LRFR Design Load Rating | LRFR Design Load Rating | LRFR     |       | Public           |         |
|          | LRFR Legal Load Rating  | LRFR Legal Load Rating  | LRFR     |       | Public           |         |
|          |                         |                         |          |       |                  | v.      |
|          | Delete                  |                         |          |       | Open             | Cancel  |

#### The Analysis Settings window will be populated as shown below.

| Design review       Rating         Rating method:       LFR         Analysis type:       Line Girder         ane / Impact loading type:       As Requested         Vehicles       Output         Traffic direction:       Both directions         Vehicle selection       Vehicle summary         Image: Provide the selection       Vehicle selection         Image: Provide the selection       Provide the selection         Image: Provide the sele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis Settings                                                                                         |                                   |                                                                                          |                                                                   | -        | × |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------|---|
| Analysis type: Line Girder<br>ane / Impact loading type: As Requested<br>Vehicles Output Engine Description<br>Traffic direction: Both directions<br>Vehicles selection<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles<br>Vehicles | O Design review                                                                                           | Rating met                        | hod:                                                                                     | LFR                                                               | ~        |   |
| Tarfic direction       Both directions       Nethods       Refresh       Temporary vehicles       Advanced         Vehicle selection       Vehicle summary       Vehicle summary       Vehicle summary       Vehicle summary         Petrate Military Loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis type: Line Girder   Lane / Impact loading type: As Requested  Vehicles Output Engine Description | Apply prefe                       | erence setting:                                                                          | None                                                              | >        |   |
| <ul> <li>➡ Vehicles</li> <li>➡ Standard</li> <li>→ EV2</li> <li>→ FV3</li> <li>→ H 15-44</li> <li>→ H 515-44</li> <li>→ H 520-44</li> <li>→ H 520-44</li> <li>→ H 515-44</li> <li>→ H 520-44</li> <li>→ H 100-100</li> <li>→ H 200-44</li> <li>→ H 100-100</li> <li>→ H 200-44</li> <li>→ H 100-100</li> <li>→ H 100-100</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Traffic direction: Both directions                                                                        | V                                 | Refresh<br>ehicle summar                                                                 | Temporary vehicles                                                | Advanced |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Berlief     Vehicles     Vehicles     Standard                                                            | Add to<br>>><br>Remove from<br><< | ⊟ Rating vehic<br>⇒ Inventor<br>↓ -HS2<br>⇒ Operatin<br>-HS2<br>- Legal op<br>- Permit o | les<br>y<br>0-44<br>ig<br>0-44<br>verating<br>wentory<br>perating |          |   |

Click **OK** to apply the data and close the window.

### Tabular Results

Next click the Analyze button on the Analysis group of the DESIGN/RATE ribbon to perform the rating.



When the rating is finished results can be reviewed by clicking the Tabular Results button on the Results group of

### the **DESIGN/RATE** ribbon.

| Bridge Workspace - PS6TrainingBridge                                                                                                           | ANALYSIS                   | REPORTS   | ? | - | × |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|---|---|---|
| BRIDGE WORKSPACE WORKSPACE TOOLS VIEW                                                                                                          | DESIGN/RATE                | REPORTING |   |   | ^ |
| Analysis Analyze Analysis Events Analysis Analysis Analysis Events Analysis Events Analysis Events Analysis Analysis Analysis Analysis Results | sults Save<br>Paph Results |           |   |   |   |

#### The window shown below will open.

| <b>A</b> | Analysis Re    | sults - Type      | VI Beam       |                 |                      |               |                  |                      |                         |              | - 🗆          | ×        |
|----------|----------------|-------------------|---------------|-----------------|----------------------|---------------|------------------|----------------------|-------------------------|--------------|--------------|----------|
|          | Print<br>Print |                   |               |                 |                      |               |                  |                      |                         |              |              |          |
| Rep      | oort type:     |                   | - Lane/       | Impact load     | ing type             | Display       | Format           |                      |                         |              |              |          |
| Ra       | ting Results   | Summary           | ~ O           | As requeste     | ed ODetail           | ed Single     | rating leve      | l per row            | $\sim$                  |              |              |          |
|          |                |                   |               |                 |                      |               |                  |                      |                         |              |              |          |
|          | Live Load      | Live Load<br>Type | Rating Method | Rating<br>Level | Load Rating<br>(Ton) | Rating Factor | Location<br>(ft) | Location<br>Span-(%) | Limit State             | Impact       | Lane         |          |
|          | HS 20-44       | Axle Load         | LFR           | Inventory       | 62.41                | 1.734         | 118.31           | 1 - (97.2)           | Design Shear - Concrete | As Requested | As Requested | <b>i</b> |
|          | HS 20-44       | Axle Load         | LFR           | Operating       | 104.22               | 2.895         | 118.31           | 1 - (97.2)           | Design Shear - Concrete | As Requested | As Requested | 1        |
|          | HS 20-44       | Lane              | LFR           | Inventory       | 64.81                | 1.800         | 3.44             | 1 - (2.8)            | Design Shear - Concrete | As Requested | As Requested | ł        |
|          | HS 20-44       | Lane              | LFR           | Operating       | 108.24               | 3.007         | 3.44             | 1 - (2.8)            | Design Shear - Concrete | As Requested | As Requested | 1        |
|          |                |                   |               |                 |                      |               |                  |                      |                         |              |              |          |
| AA       | SHTO LFR En    | igine Versior     | n 7.5.0.3001  |                 |                      |               |                  |                      |                         |              |              |          |
| Ana      | alysis prefere | ence setting:     | None          |                 |                      |               |                  |                      |                         |              |              |          |
|          |                |                   |               |                 |                      |               |                  |                      |                         |              | CI           | ose      |