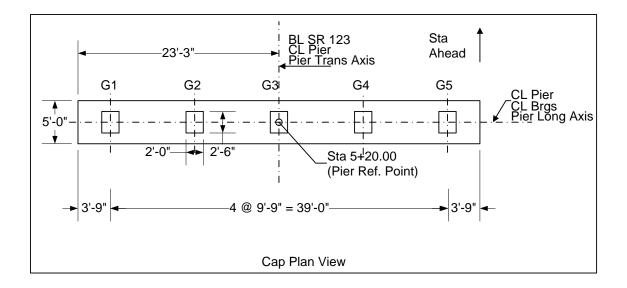
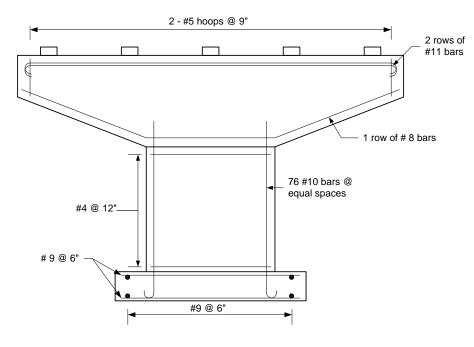
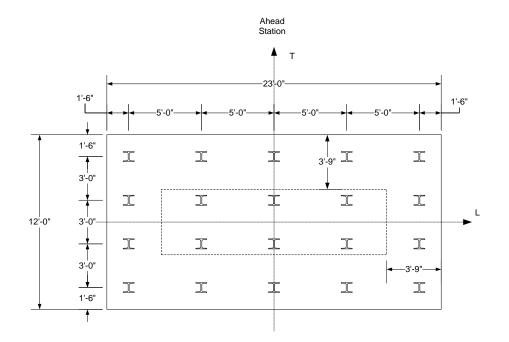

AASHTOWare BrDR 7.5.0 Substructure Tutorial Pier1 - Solid Shaft Pier Example





Pier Elevation Looking Sta Ahead



Pier Side View

Pier Reinforcement

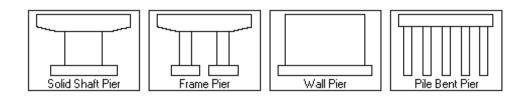
Footing Plan View

BrDR Substructure Training

Pier 1 - Solid Shaft Pier Example

This example describes the entry and analysis of a reinforced concrete solid shaft pier in BrDR Substructure. In this example, a two span continuous steel superstructure is supported by a solid shaft pier.

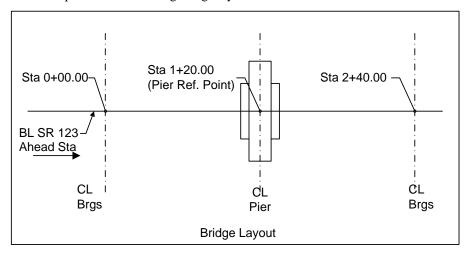
Topics Covered


- BrDR substructure capabilities
- Locating substructure units
- Two span continuous steel superstructure
- Reinforced concrete, solid shaft pier on a pile footing
- Pier skew 0 degrees
- Specification checking of reinforcement

This example uses many default settings and loadings in BrDR Substructure instead of overriding these values with user defined input. For example, the Environmental Conditions window contains default wind and temperature settings from the AASHTO specifications. Users have the ability to override these values, but this example uses the default values and thus that window is not shown in this example. Another feature users have in the program is to override the computed loads on the pier with user defined loads. This example uses the computed loads and does not override any of them.

Note: It is assumed that users are familiar with the BrDR Superstructure module and as such this example does not go into detail describing BrDR Superstructure windows or bridge workspace navigation.

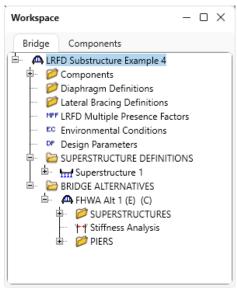
BrDR Substructure Capabilities


The BrDR Substructure module currently has the capability to describe the pier gross geometry, compute loads acting on the pier, perform a finite element analysis of the pier, compute the load combination results, and perform specification checks for the reinforcement. Four types of reinforced concrete pier alternatives can be described - solid shaft (hammerhead) piers, frame piers, wall piers and pile bent piers.

A three-dimensional schematic is available showing a to-scale drawing of the pier alternative. BrDR can compute the loads acting on the pier and allows the user to override forces if needed. Superstructure dead load and live load reactions are computed based on the superstructure definition assigned to the superstructure supported by the pier. BrDR generates a three-dimensional finite element model of the pier based on the input modeling parameters. A finite element analysis of the pier is performed, and load combination results are generated based on the limit states included. The analysis results can be viewed in a text output and also be viewed on the three-dimensional schematic of the pier. Detailed specification check results can be viewed, and summary reports of the specification results can be generated.

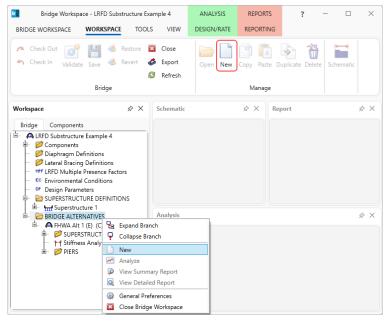
Locating substructure units

In BrDR, substructures are defined relative to bridge alternatives and the superstructures in a bridge alternative. Through this arrangement, loads from the superstructure can be carried down to the substructures.


This example has the following bridge layout.

This bridge alternative and pier will be described in BrDR Substructure by adding a bridge alternative to the bridge with **BID 23** from the sample database.

Double click on **BID23 LRFD Substructure Example 4** from the **Bridge Explorer** (or click and select **Open**) to open the bridge as shown below.

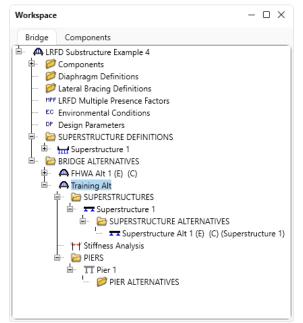

Br			AASHTOWa	re Bridge Design a	nd Rating	? -	-		\times
BRIDGE EXPLORER BRIDG	GE FOLDER	RAT	TE TOOLS	VIEW					
New Open Batch ~	Find Copy		Copy Remove To From	Delete					
····☆ Favorites Folder ····∅ Recent Bridges		BI		ridge ID iningBridge2	Bridge Name FloorLine FS Training Bridge 2			District nknown	
🖙 🎾 All Bridges				ainingBridge3	FloorLine GF Training Bridge 3		-	nknown	ì-
🗄 🎾 Templates			9 TrussTrainin		Truss Training Example				F.
📁 Deleted Bridges		2	0 LRFD Subst	ructure Example 1	LRFD Substructure Example 1				-
		2	1 LRFD Subst	ructure Example 2	LRFD Substructure Example 2				
		2	2 LRFD Subst	ructure Example 3	LRFD Substructure Example 3				
		> 2		ructure Example 4	LRFD Substructure Example 4 (NHI H	lammer He			
			4 Visual Refer		Visual Reference 1		U	nknown	
			5 Culvert Exar		Culvert Example 1				-
		2	Curved Guid	de Spec	Curved Guide Spec Example(LFR)				
									Þ
					Total Bridge Count:	34			

Expand the **Bridge Workspace** as shown below. This bridge already contains a superstructure definition and a bridge alternative. This superstructure definition will be reused in this tutorial and a new bridge alternative, and a new pier will be created.

Bridge Alternative

Navigate to the **BRIDGE ALTERNATIVES** section and create a new bridge alternative by double clicking on **BRIDGE ALTERNATIVES** (or click and select **NEW** or right click and select **NEW**) as shown below.

Enter data in this window as shown below, click **Apply** to create the bridge alternative and click the **Superstructure wizard...** button. The data on this tab orients the bridge alternative reference line. In this example the substructure units will be located with respect to this bridge alternative reference line. The bridge alternative is 240 feet long and the starting station is 0+00.


Bridge Alternative				-			
ternative name: Traini	ng Alt						
Description Substru	ictures						
Description:							
Horizontal curvatu	ire		Global positioning				
Reference line length:	240	ft	Distance:	ft			
O Start bearing	End bea	ring	Offset:	ft	ft		
Starting station:	0	ft	Elevation:	ft			
Bearing:	N 90^ 0' 0.0	00" E					
Bridge alignment			Start tangent length:		ft		
O Curved			Curve length:		ft		
Tangent, curve			Radius:		ft		
Tangent, curve			Direction:	.eft 🗸			
Curved, tanger			End tangent length:		ft		
Superstructure wizard	Culvert wiza	ard					
			ОК	Apply	Cance		

Click the Generate names buttons to have the wiza	ard generate superstructure name.
---	-----------------------------------

rs can only be	e creat	ed if the Brid	The wizard will also create F ge Alternative does not con		
mber of supe	rstruct	ures 1	\sim		
Prefix to use v	vhen g	enerating na	mes		
Superstructu	ire pre	fix:	Superstructure %	Generate nar	mes
Superstructu	ire alte	rnative prefi	K: Superstructure Alt %	Generate nar	mes
Superstruc	· · · · · · · · · · · · · · · · · · ·		Superstructure alternative	Superstructure definition	
Superstruct			Superstructure Alt 1	Superstructure 1 V	
					<i>a</i>
Substructure (_				
First unit type	: Abu	itment	~		
		itment			

Click **OK** to apply the data and close the window. Click **OK** on the **Bridge Alternative** window to apply the data and close the window.

The **Bridge Workspace** tree is now updated with the newly added bridge alternative, its superstructure definition and superstructure alternative as shown below.

Pier

Double click on Pier 1 node in the Bridge Workspace tree and enter the following data.

Pier							-)
er name: Pier 1 Description Stream flow									
Pier skew angle Input skew angle Input bearing angle	Skew angle: 0	Degree	; Desc	ription:					
Finished groundline elevation:	5.5	ft	Super	structure define	d in BrDR				
Soil density:	0.12	kcf							
Consider as expansion Pier location relative to bridge Station: 120 ft Computed pier location relativ	Offset:	0 ft	coordinates						
Station: 120 ft		X: 120	ft						
Offset: 0 ft		Y: 0	ft						
Existing Current Pier al	Iternative name	Description							
									ļ
						ок	Apply	Canc	
							עיאאר	Canc	-

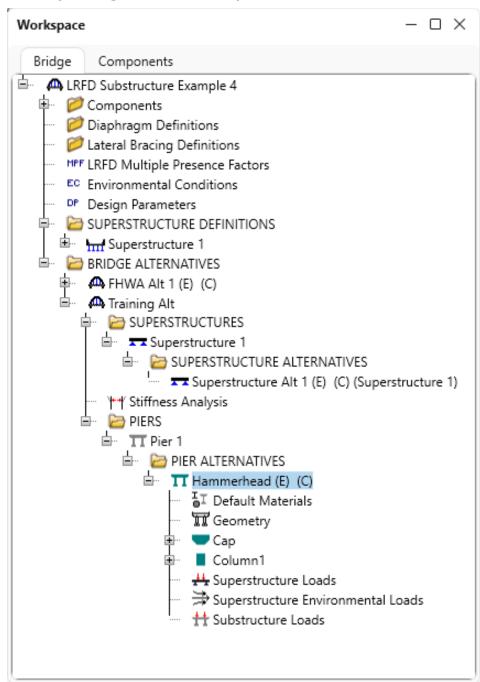
The pier is not subject to stream flow, so no data is required in the **Stream flow** tab of this window. Click **OK** to apply the data and close the window.

Pier Alternative

Double click on **PIER ALTERNATIVE** in the **Bridge Workspace** tree. The following **New Pier Alternative** window opens. Select **Solid Shaft Pier** and click **Next**.

A New Pier Alternative		>
Frame Pier	Solid Shaft Pier	Wall Pier Pile Bent Pier
		< Back Next > Cancel

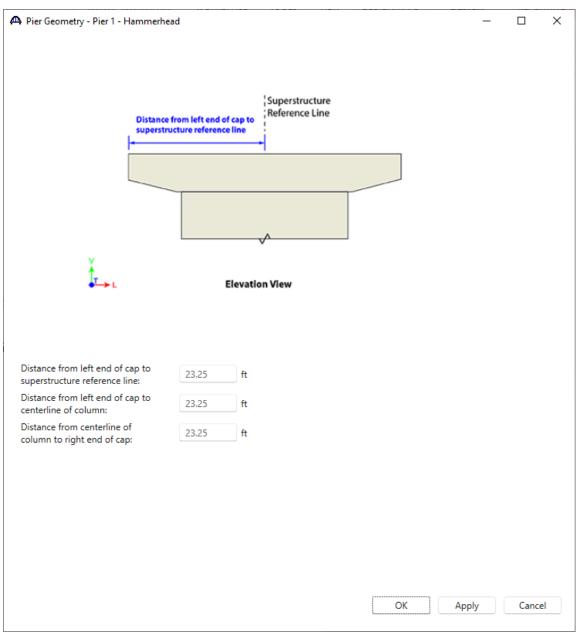
Enter a name for the pier alternative and click the **Finish** button to close the wizard to create the new pier alternative.


A New Pier Alternative	×
Туре:	RC SolidShaft Pier
Name:	Hammerhead
Description:	
Units:	US Customary 🗸
	< Back Finish Cancel

The Pier Alternative window opens as shown below.

me: Hamme	erhead	Type: RC Solid	Shaft Pier		
Description	Stiffness Reports				
Description:		Units: US Cus	tomary	~	
		LRFD substrue	ture design set	tings	
		Prelimina			
				Preliminary Design Setting (US)	
			ride default		
		Design se	ttings:		
		C Final mod	e		
		Default d	esign settings:	Final Design Setting (US)	
		Over	ride default		
		Design se	ttings:		
		Advanced D	LA		

Click **OK** to create the new pier alternative and close the window.


The Bridge Workspace tree with the newly added Pier Alternative is shown below.

Pier Geometry

Double click on the Geometry node in the Bridge Workspace tree to define the geometry of the pier.

This window allows the user to define some basic pier geometry. Note that the figure in this window is not drawn to scale. The location of the pier beneath the superstructure is set in this window by entering the distance from the superstructure reference line to the left end of the cap or wall. This is an important input since a bad value could result in girders not being supported by the pier. Enter the following data and click the **OK** button to apply the data and close the window.

Cap Properties - Description

Double click on **Cap** node in the **Bridge Workspace** tree to open the **Cap Properties** window for this pier alternative and enter the following data.

The loads from the superstructure will be applied at the bearing seat elevation specified in this tab.

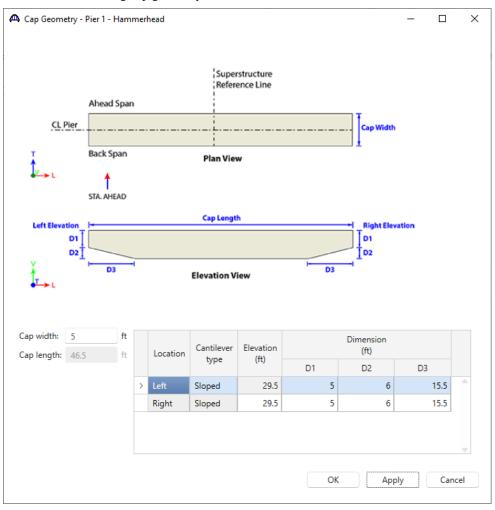
The **Additional loads** tab allows to define additional, user defined loads on the cap. This example does not contain any additional loads on the cap.

Des	cription	Additional lo	ads						
Caj	p type: Be	eam Shape Cap	Cap top configuration	on: Sloped		Cap mater	rial: Class A (US)	\sim	
~	Pedestals		Exposure factor: 1						
	Member	CL bearing station (ft)	Angle between CL member and CL support (Degrees)	Bearing seat elevation (ft)	Pedestal width (ft)	Pedestal length (ft)			
>	G1	120	90	30.5	2	2.5			-
	G2	120	90	30.5	2	2.5			
	G3	120	90	30.5	2	2.5			
	G4	120	90	30.5	2	2.5			
	G5	120	90	30.5	2	2.5			

Click **OK** to apply the changes and close the window.

Cap Components

Double click on the **Components** node under **Cap** in the **Bridge Workspace** tree to open the **Cap Components** window. Select the **Sloped Cantilever** for both the left and right cantilevers.


Cap Components - Pier 1 - Hammerhead		-	
Cap type 🔘 Beam 💿 Inverted Tee Beam			
Cap left cantilever Cap right cantilever			
Straight Cantilever			
straight Cantilever Sloped Cantilever			

🕰 Cap Components - Pier 1 - Hammerhead		- C	2	×
Cap type O Beam Inverted Tee Beam Cap left cantilever Cap right cantilever				
Straight Cantilever				
	DK Apply		Cancel	
			sancer	

Click **OK** to apply the changes and close the window.

Cap Geometry

Double click on the **Geometry** node under **Cap** in the **Bridge Workspace** tree to open the **Cap Geometry** window and enter the following cap geometry data.

Click **OK** to apply the data and close the window.

Cap Reinforcement

From the **Bridge Workspace** tree, double click on the **Reinforcement** node under **Column** to open the **Cap Reinforcement** window and enter the following data in each tab as shown below.

lexura		Sh															
	-	udina e: 8	al skin	Baric	pacing: 8		in Bar	material: Gra	de 60	~		irrup clear o			in		
Ddi	r size	e: 0	Ý	Dar s	pacing: 8		in bar	materiai: Ora	ue oo	~	St	irrup clear (over: 2.5		in		
Prir	mary	/ flex	ural														
	_		cement inpu			_											
	C) Si	mplified	Ad	vanced	✓ R	einforcemer	nt follows cap	profile	e							
			Measu		Vertical					Start	Straight	End	Hook at	Hook at	Developed	Developed	
	9	Set	from ci		distance (in)	Bar size	Number	Materia	ł	distance (ft)	length (ft)	distance (ft)	start	end	at start	at end	
;	>	1	Тор	\sim	3.83	11 ×	10	Grade 60	\sim	0.5	45.5	46	\checkmark	~			-
		2	Тор	\sim	8.24	11 ~	10	Grade 60	\sim	0.5	45.5	46	\sim	 Image: A set of the set of the			
		3	Bottom	\sim	3.625	8 ~	5	Grade 60	\sim	0.5	45.5	46					
																	w
														New	Duplicate	Delete	2

	B	Bar size	Number of legs		rial	Measure from		Direct	tion	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)	
	5	\sim	4	Grade 60	\sim	Left Edge of Cap	\sim	Right	\sim	0.375	1	0	0	0.375	
>	5	\sim	4	Grade 60	\sim	Left Edge of Cap	\sim	Right	\sim	0.375	61	9	45.75	46.125	

Click **OK** to apply the data and close the window.

Column Properties

Double click on the **Column** node in the **Bridge Workspace** tree to open the **Column Properties** window. Enter the **Exposure factor** as shown below.

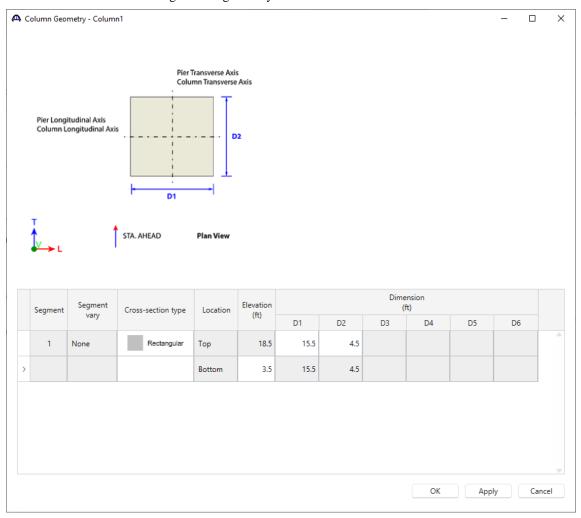
🕰 Colu	ımn Prope	rties -Pier 1	- Hammerhead			-		×
Name:	Column1							
Desc	cription	Additiona	al loads					
	Existing	Current	Foundation alternative name	Description				
								A
Exp	osure facto	or: 1						
					OK	Apply	Cano	el

Click **OK** to apply this data and close the window.

Column Components

Double click on the **Components** node under **Column** in the **Bridge Workspace** tree to open the **Column Components** window. This window allows to specify the cross-section segments in the column. Segment crosssections can vary linearly over their height. In this example, the cross-section is constant over its height.

Segment 1
Segment 2


BrDR sets the default column cross section type as circular (**Round**) when a column is created. This example uses a rectangular column cross section. Change the cross section to **Rectangular** as shown and click **OK**.

Iass A (US) ∨ None ∨ Rectangular ∨ Segment 1	1	Class A (US)	None	\sim	Postorauli			111 5	սեծարու	
					Rectangula	ar 🗸		Hł,		
			í						Segmen	it 2

Click **OK** to apply the data and close the window.

Column Geometry

Double click on the **Geometry** node under **Column** in the **Bridge Workspace** tree to open the **Column Geometry** window and enter the following column geometry data.

Click **OK** to apply the data and close the window.

Column - Reinforcement Definitions

Double click on the **Reinforcement Definitions** folder under **Column** in the **Bridge Workspace** tree to open the **Column Reinforcement** window and create a new reinforcement definition for the column. The reinforcement definitions will later be assigned to ranges over the height of the column. Click the **Generate pattern** button to open the **Generate Pattern Wizard** to create a pattern for the column flexural reinforcement.

🕰 Column Reinforcement Pier 1 -	Hammerh	ead				-		×
Ν	lame:							
	Bundle	bars						
++Y	Bar	Bar size	Material	X (in)	Y (in)			
T Sta Ahead								
Generate pattern					New	Duplicate	Delet	e
					OK	Apply	Cance	ł

The **Clear cover** is cover to the face of the flexural reinforcement. In this case the cover to the face of the ties is 2.5" and the tie is a #4 bar, so the clear cover is 3.0".

A Generate Pattern W	izard					×
Pattern name:	76#10	DBars	Bundle type	Bar size:	3 ~	
Column segment: Segment cross section:		Rectangular	Single 2 Parallel 2 Perpendicular	Material: Clear cover:	Grade 60 3	in
Top / bottom:	Тор		3 Bar	Transverse number of bars:	8	
Overall trans. width:	54	in		Longitudinal number of bars:	32	
Overall long. width:	186	in				
						OK Cancel

Enter the data shown above and click **OK** to create the following pattern.

	ivame:	76#10	OBars						
	Bun	dle ba	rs						
++Y	Bar	r	Bar size	Materi	al	X (in)	Y (in)		
	1	3	\sim	Grade 60	~	-89.8125	-23.8125		
+X	2	3	\sim	Grade 60	~	-84.01814	-23.8125		
	3	3	\sim	Grade 60	\sim	-78.22379	-23.8125		
	4	3	\sim	Grade 60	\sim	-72.42943	-23.8125		
Sta Ahead	5	3	\sim	Grade 60	~	-66.63508	-23.8125		
↓ L	6	3	\sim	Grade 60	~	-60.84072	-23.8125		
	7	3	\sim	Grade 60	~	-55.046371	-23.8125		
	8	3	\sim	Grade 60	~	-49.25201	-23.8125		
	9	3	\sim	Grade 60	~	-43.45766	-23.8125		
	10	3	\sim	Grade 60	~	-37.66330	-23.8125		
	11	3	\sim	Grade 60	\sim	-31.86895	-23.8125		
	12	3	\sim	Grade 60	\sim	-26.07459	-23.8125		
	13	3	\sim	Grade 60	~	-20.28024	-23.8125		
	14	3	\sim	Grade 60	~	-14.48588	-23.8125		
	15	3	~	Grade 60	~	-8.6915323	-23.8125		
nerate pattern						(New	Duplicate	Delete

Make sure to uncheck the **Bundle bars** checkbox.

Click **OK** to apply the reinforcement data and close the window.

Column Reinforcement

Double click on the **Reinforcement** node under **Column** in the **Bridge Workspace** tree to open the **Column Reinforcement** window. Assign the created pattern as shown below. The negative start distance is used because the rebars extend into the footing.

lexu	ıral	Shear											
	Set	Start distance (ft)	Straight length (ft)	End distance (ft)	Pattern		Hook at start	Hook at end	Developed at start	Developed at end	Follows profile		
>	1	-3	25	22	76#10Bars	\sim	\sim			 Image: A set of the set of the			1

Navigate to the **Shear** tab of this window and enter the following shear reinforcement. The ties extend into the footing as they would be detailed on the design drawings, but BrDR will not consider the shear reinforcement in the footing or cap when performing specification checks.

	_	reinfo Ties	orcement type Spirals		s designed as	ties						
	Ba	r size	Trans. number of legs	Long. number of legs	Material		Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)	
>	4	\sim	2	2	Grade 60	\sim	-1.5	1	0	0	-1.5	
	4	\sim	2	2	Grade 60	\sim	-1.5	18	12	18	16.5	

Click **OK** to apply the data and close the window.

Note: A warning message will be issued that the flexural reinforcement is not located inside the footing and that the shear reinforcement extends below the column. This message is issued because the rebar is defined as extending into the footing, but the footing dimensions have not been entered yet. Click **'Yes'** to save the reinforcement data. Steps to add a foundation alternative will follow.

Bridge D	esign & Rating	×
?	Reinforcement extends into the footing but a current Foundation Alternative is not defined yet. Save reinforcement as is?	
	Yes No	

Foundation Alternative

Double click on the **FOUNDATION ALTERNATIVE** folder in the **Bridge Workspace** tree and the **New Foundation Alternatives Wizard** will open. Select the **Pile Footing** option and click **Next**.

A New Foundation Alternative Wizard	Х
Spread Footing Pile Footing	
< Back Next > Cancel Help	
Sta Ahead Pier Transverse Axis Superstructure Longitudinal Axis	
Ahead Superstructure Longitudinal Axis	
Pier Longitudinal Axis Superstructure Transverse Axis	
Footing Length	

Enter the following description of the foundation.

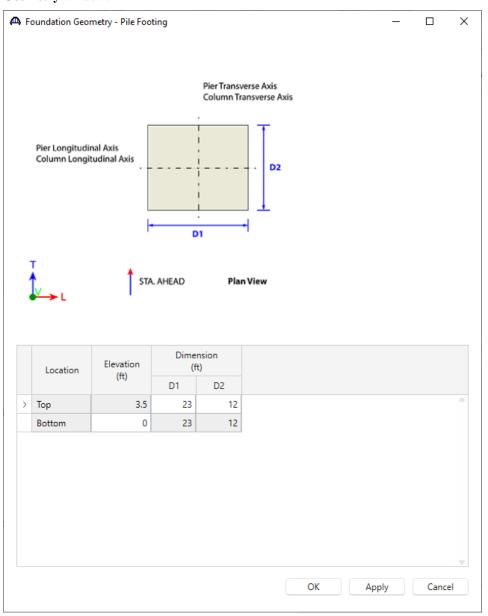
A New Foundation Alterna	tive Wizard				×
Туре:	Pile	e Foundation			
Name:	Pile	e Footing			
Description	n:		A		
Units:	US	Customary	~		
Footing wi	dth: 12	ft	Fc	ooting thicknes	s: 3.5 ft
Footing ler	ngth: 23	ft			
Footing ma	aterial: Clas	ss A (US)	~		
Piles					
Pile material:	Steel Pile	~			
Pile type:	Rolled H Sł	hape \checkmark			
Pile pattern:	5 🗘 A	cross	Pile edge distance:	1.5	ft
	4 🗘 D	Down	Steel shape:	HP 14x89	~
Pile embedment depth:	1	ft	Steel material:	Grade 50	~
Bottom of pile elevation:	-10	ft	Factored comp. resistance:	340	kip
Point of fixity elevation:	-5	ft	Factored tension resistance:		kip
			< Back F	inish	Cancel Help

Click Finish and the Foundation Properties window will open as shown below.

Found	otion	Dror	perties		occri	ntion
rounu	ation	FIU	Jerties	- 00	ESCH	ριισπ

Foundation Properties	-Pier 1-Hammerhead-Coli	umn1		- 🗆	×
me: Pile Footing		Foundation type: Pile Foundation			
Description Additi	onal Loads Soil Pil	25			
Description:		Units: US Customary \lor			
Footing		Foundation seal			
Footing material:	Class A (US) V	Foundation seal	Material: Class A (US)		
Exposure factor:		Width: ft			
		Length: ft Bottom elevation: ft			
		bottom cicyation.			
				(\mathbf{r})	
				Four	ndations are not included
				in the fi	nite element model of
				the pier,	but it can be described
				in BrDR	
			ОК	Apply Cancel	

Foundation Properties - Piles


Navigate to the **Piles** tab to view the pile information. Update the Material to **Grade 50** for each row as shown below.

ie:	Pile Foo	ting				Foundati	on ty	pe: Pile Foundat	tion										
esc	ription	Additio	nal Load	ds Soil	Piles														
Pile	layout w	izard		Pile type:		Rolled	H SI	nape											
				Pile embedr	nent d	lepth: 1		ft											
				Point of fixit	y elev	ation: -5		ft											
		Loc	al							Ba	itter			Pile		Factored	Factored		
	Pile	Coord		Shape		Materia		Strong axis			Vertical to	Bottom elevation	Resistance	head	Downdrag force	comp.	tension		
	name	L (ft)	T (ft)					direction		Axis	1 horizontal	(ft)	Туре	fixity (%)	(kip)	resistance (kip)	resistance (kip)		
	Pile1	-10	-4.5	HP 14x89	\sim	Grade 50	~	Longitudinal	\sim	None 🗸		-10	Bearing \vee			340	0		Í
	Pile2	-5	-4.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None \sim		-10	Bearing \sim			340	0		
	Pile3	0	-4.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
	Pile4	5	-4.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
>	Pile5	10	-4.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None \sim		-10	Bearing \sim			340	0		
	Pile6	-10	-1.5	HP 14x89	~	Grade 50	~	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
	Pile7	-5	-1.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
	Pile8	0	-1.5	HP 14x89	\sim	Grade 50	~	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
	Pile9	5	-1.5	HP 14x89	\sim	Grade 50	~	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
	Pile10	10	-1.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
	Pile11	-10	1.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
	Pile12	-5	1.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
	Pile13	0	1.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None 🗸		-10	Bearing 🗸			340	0		
	Pile14	5	1.5	HP 14x89	\sim	Grade 50	~	Longitudinal	\sim	None 🗸		-10	Bearing 🗸			340	0		
	Pile15	10	1.5	HP 14x89	~	Grade 50	\sim	Longitudinal	\sim	None 🗸		-10	Bearing \sim			340	0		
	Pile16	-10	4.5	HP 14x89	\sim	Grade 50	\sim	Longitudinal	\sim	None 🗸		-10	Bearing $$			340	0		
	Pile17	-5	4.5	HP 14x89	~	Grade 50	~	Longitudinal	\sim	None 🗸		-10	Bearing \vee			340	0		,
				1		1				1		1	1	1			New	Duplicate)elete

Click the **OK** button. Do not click the **Cancel** button as that will cause the creation of the new foundation alternative to be cancelled.

Foundation Geometry

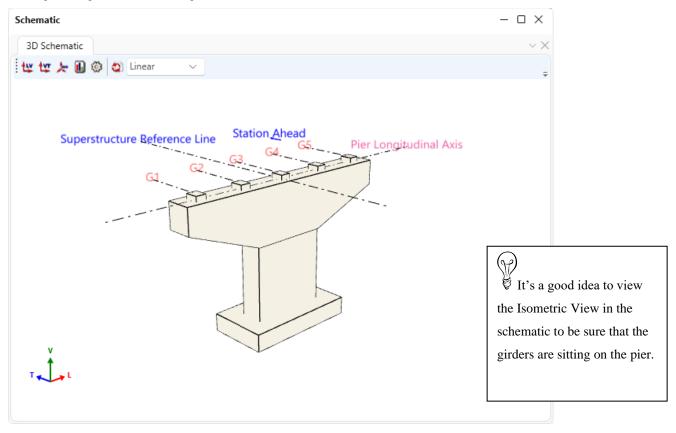
Double click on the **Geometry** window under the newly added foundation alternative to open the **Foundation Geometry** window.

The bottom of footing elevation is zero. Click **OK** to apply this data and close the window.

Foundation Reinforcement

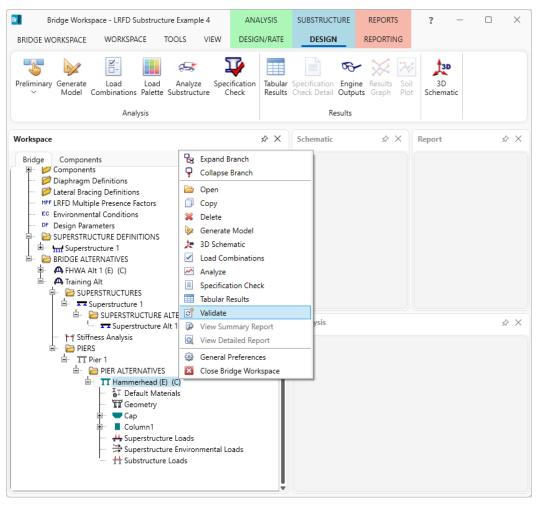
Double click on the **Reinforcement** window under the newly added pier alternative to open the **Foundation Reinforcement** window. Enter the data as shown below.

Irrection of bottommost rebar: Longitudinal Top longitudinal reinforcement Bar size: 9 < Number: 24 Hooked Fully developed Bottom longitudinal reinforcement Bar size: 9 < Number: Additional reinforcement Bottom longitudinal reinforcement Bar size: 9 < Number: 24 Bottom longitudinal reinforcement Bar size: 9 < Number: 24 Bottom tranverse reinforcement Bar size: 9 < Number: 24 Bottom tranverse reinforcement Bar size: 9 < Number: 24 Bottom tranverse reinforcement Bar size: 9 < Number: 46 Hooked	irection of topmost	rebar:	Longit	udinal 🗸	Top bar clear cover:	3	in End cover	3	in	
Bar size: 9 Number: 24 Bar size: 9 Number: 46 Hooked Hooked Fully developed Bottom longitudinal reinforcement Bottom tranverse reinforcement Bar size: 9 Number: 24	irection of bottomm	iost rebar:	Longit	udinal 🗸	Bottom bar clear cover	3	in Material:	Grade 60	~	
Bottom longitudinal reinforcement Bar size: 9 Number: 24	Top longitudinal r	einforceme	ent			Top transverse r	einforcement			
Fully developed Fully developed Bottom longitudinal reinforcement Bottom tranverse reinforcement Bar size: 9 < Number: 24	Bar size:	9	\sim	Number:	24	Bar size:	9	~ Numb	er: 46	
Bar size: 9 V Number: 24 Bar size: 9 V Number: 46			ement					nt		
	Bottom longitudir			Number	24				ver: 46	
	-	9				_			40	
Fully developed Fully developed	Bar size:	9				Hooked				


Click **OK** to apply the data and close the window.

3D Schematic - Pier

To view the **3D Schematic** of the pier, select the pier alternative - **Hammerhead** node in the **Bridge Workspace** tree and click the **3D Schematic** button on the **SUBSTRUCTURE DESIGN** ribbon (or right click and select **3D Schematic**) as shown below.


Bridge Workspace - LRFD Substructure	Example 4	ANALYSIS	SUBST	RUCTURE	REPORTS		?	_		×
BRIDGE WORKSPACE WORKSPACE TOO	OLS VIEW	DESIGN/RATE	DE	SIGN	REPORTING					
Preliminary Generate Load Load . V Model Combinations Palette Sul Analysis		fication heck Tabular Results	Specific Check E	ation Engir Detail Outpu Results	ne Results Soi uts Graph Plo					
Workspace Bridge Components	Expand Br		×	Schematic		\$ ×	Report		,	\$ X
		Model latic ibinations ion Check								
└── ▼▼ Superstructure Alt 1 ── `** Stiffness Analysis	view Juli	mary Report iled Report		Analysis					;	s ×
PIERS PIER ALTERNATIVES PIER AL	General P Close Brid s Loads	references ige Workspace								

The **3D** Schematic is a to-scale drawing of the pier alternative. This schematic view has a lot of useful features like rotating, scaling, and dimensioning.

Validating a Pier Alternative

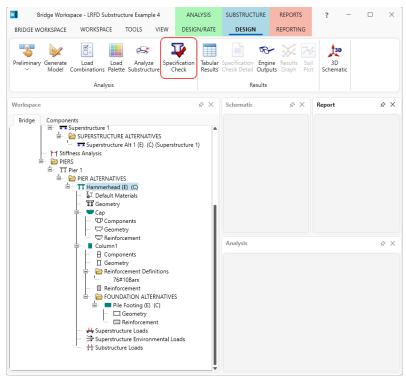
Another useful feature is to validate the pier alternative once the geometry is defined. Validation process alerts the user to any missing or incorrect data in the pier description. To validate, right click on the pier alternative and select **Validate** as shown below.

This opens a window which contains warnings and errors if the pier alternative is in error or missing data.

Report	- 🗆 ×
Validation - Hammerhead	~ ×
Total Number of Messages: 47 Number of Information Messages: 47 Number of Warning Messages: 0 Number of Error Messages: 0	Î
Pier Alternative: Hammerhead Hammerhead (Solid Shaft Pier Alternative)	
Column1 (Column) Existing foundation altern	native: Pile Footing
Current foundation alterr Pile Footing (Foundation	native: Pile Footing
Pile Footing (Foundation Pile1	
Pile2	No errors or warnings.
Pile ₃	No errors or warnings.
Pile4	No errors or warnings.
	No errors or warnings.
Pile5	No errors or warnings.
Pile6	No errors or warnings.
Pile7	No errors or warnings.
Pile8	
Pile9	No errors or warnings.
Pile10	No errors or warnings.
Theo	No orrors or warnings

Load Palette

Click on the Load Palette button from the Analysis group of the SUBSTRUCTURE DESIGN ribbon. Click on the

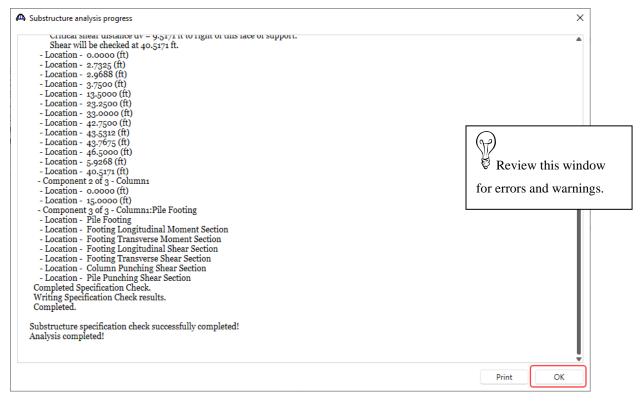

Select all button and click OK to apply the settings and close the window.

🗛 Load Pala	tte				- 🗆	×
Use	Input defined	Override	Use	Input defined	Override	
DC 🗹	\checkmark		EH Active 🗹	NA		
DW 🔽	\checkmark		EH At-Rest 🗹	NA		
ш 🔽	~					
PL 🔽	\times					
			TU 🗹	\times		
BR 🗹	\times		TG 🗹	NA		
ст 🔽	NA		SH 🗹	\times		
WA 🔽	\checkmark		CR 🗹	NA		
ws 🗸	~		SE 🗹	NA		
WL 🔽	~		FR 🗹	\times		
			cv 🗹	NA		
Select all	Clear all	Open template	Save template	ОК	Cancel]

A specification check will now be performed on the pier.

Specification Check - Pier

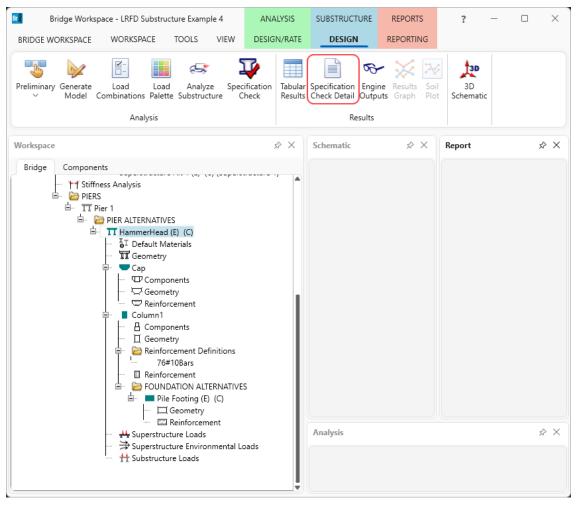
With **Hammerhead** selected in the **Bridge Workspace** tree, click on the **Specification Check** button from the **Analysis** group of the **SUBSTRUCTURE DESIGN** ribbon.


The Bridge Validation window appears as shown below. Click on the Continue spec check button to perform the

specification checks.

A Bridge Validation	×
Total Number of Messages: 47 Number of Information Messages: 47 Number of Warning Messages: 0 Number of Error Messages: 0	Î
Pier Alternative: Hammerhead Hammerhead (Solid Shaft Pier Alternative) Columni (Column) Existing foundation alternative: Pile Footing Current foundation alternative: Pile Footing Pile Footing (Foundation Alternative) Pile No errors or warnings. Pile2 No errors or warnings. Pile3 No errors or warnings. Pile4 No errors or warnings. Pile5 No errors or warnings. Pile6 No errors or warnings. Pile7	·
Continue spec check Cancel spec check	

Substructure analysis progress window opens showing the analysis log. Once the analysis the complete, click the


OK button to close this window.

For the FE analysis results do not exist on the hard drive, when a spec check is performed, BrDR will perform the FE analysis automatically. The next time a spec check is run, BrDR will use the existing FE analysis results. This saves time and allows the user to fine tune reinforcement and geometry without redoing the FE analysis every time. Once an optimal reinforcement and geometry is found that satisfies the spec checks, a final FE analysis and spec check can be performed.

Specification Check Detail

Specification check results can be reviewed by clicking the **Specification Check Detail** button from the **Results** group of the **SUBSTRUCTURE DESIGN** ribbon. The window shown below opens.

BrDR performs spec checks at each node in the finite element model along with locations where the reinforcement developed and at a distance dc from the face of each column.

Properties Properties Protectication filter Properties	 ✓ ✓ 				
🔺 🚞 Pier Component	Specification reference	Limit State	Flex. Sense	Pass/Fail	Τ
🖉 🤖 Cap	✓ 5.10.8 Shrinkage and Temperature Reinforcement		N/A	Passed	
🛅 0.00 ft.	5.4.2.5 Poisson's Ratio		N/A	General Comp.	
🛅 2.73 ft.	5.4.2.6 Modulus of Rupture		N/A	General Comp.	
i 2.97 ft.	5.5.4.2 Strength Limit State - Resistance Factors		N/A	General Comp.	
i 3.75 ft.	5.7.2.2 Rectangular Stress Distribution		N/A	General Comp.	
i 5.93 ft.	× 5.7.3.2 Flexural Resistance (Reinforced Concrete)		N/A	Failed	
i 13.50 ft.	✓ 5.7.3.3.2 Minimum Reinforcement		N/A	Passed	
15.50 ft.	NA 5.7.3.4 Control of Cracking by Distribution of Reinforcement		N/A	Not Required	
€ 23.25 ft.	 5.7.3.4(a) Longitudinal Skin Reinforcement 		N/A	Passed	
33.00 ft.	✓ 5.8.2.1 Torsion		N/A	Passed	
i 40.52 ft.	Cracked_Moment_of_Inertia Section Property Calculations		Positive Flexure	General Comp.	
= 42.75 ft.	Cracked_Moment_of_Inertia Section Property Calculations		Negative Flexure	General Comp.	
i 43.53 ft.					
43.77 ft.					
iiii 46.50 ft.					
🔺 🚞 Column1					
🛅 0.00 ft.					
iiii 15.00 ft.					
🔺 🚞 Column1:Pile Footing					
🚞 Pile Footing					
🚞 Footing Longitudinal Moment Section					
Footing Transverse Moment Section					
Footing Longitudinal Shear Section					
Footing Transverse Shear Section					
i Column Punching Shear Section					

Open the spec check detail window for the flexural resistance at the center of the cap. The following is noted for this window, other spec articles are similar:

- For each spec check location, both the left and right sides of the point are evaluated. (Note: for the example shown below: The LL loading is not symmetric, so the left/right sides of the cap midpoint show slightly different max/min load values.)
- The design ratio is printed out for the article. The design ratio is the ratio of capacity to demand. A design ratio less than one indicates the demand is greater than the capacity and the spec article fails. A design ratio equal to 99.0 indicates the section is subject to zero demand.
- The user has control over which limit states are investigated. For this example, Preliminary Design Mode is used and the default Preliminary Design Setting only contains the Strength-I limit state. For each limit state, the max and min force effect is checked. Thus, each limit state shows two rows of data.
- The LL load combination is shown in this column. If the location is not at a node in the FE model (e.g., the node is at a point where the rebar is fully developed), this column will list two load combinations separated by a comma. The first load combination is the combination considered at the left end and the second load combination is the combination considered at the right end of the FE element that contains this location. The resulting load displayed is a linear interpolation between the two displayed load cases.

Spec Check Detail for 5.7.3.2 Flexural Resistance (Reinforced Concrete)	_		×
5 Concrete Structures 5.7 Material Properties 5.7.3 Flexural Members 5.7.3.2 Flexural Resistance (AASHTO LRFD Bridge Design Specifications, Fifth Edition - 2010, with 2010 interims)			Î
Pier Cap Section - At Location = 23.2500 (ft) - Left			
Cross Section Properties			1
Depth = 132.00(in) Width = 60.00(in)			
Area = 7920.00(in^2)			1
Flexural Reinforcement			
As Dist. From Bottom (in^2) (in) 15.60 128.17 15.60 123.76 3.95 3.63			
f'c = 4.00 ksi			1
Note: If the capacity has been overridden, the Resistance is computed as override phi*override capac Otherwise the Resistance is computed as per the Specification.		2	
Limit State Load Mu Phi Mn Phi Mn Phi Carbination kin fr	Mn	Mr/Mu	
Combination kip-ft ki	39	1.90 0.78	1
Pier Cap Section - At Location = 23.2500 (ft) - Right			
Cross Section Properties			
Depth = 132.00(in) Width = 60.00(in)			
Area = 7920.00(in^2)			
Flexural Reinforcement			_
4			•
		ОК	: