AASHTOWare BrDR 7.5.0
Substructure Tutorial
Pier4 - BrDR Substructure Moment Magnification

## Topics Covered

- 3 column frame pier
- Moment magnification analysis
- Using AASHTO LRFD Bridge Design Specifications, $9^{\text {th }}$ Edition


## 3 column frame pier

This example uses the pier in BID 20, LRFD Substructure Example 1 provided in the sample database delivered with the software. Double click on BID 20 from the Bridge Explorer to open the bridge (or select Open from the Bridge group of the BRIDGE ribbon, or right click and select Open) as shown below.


Expand the Bridge Workspace tree to show the pier alternative.


3D Schematic - Pier Alternative
With pier alternative 3-column pier selected in the BWS tree, click on the 3D Schematic button from the SUBSTRUCTURE DESIGN ribbon (or right click and select 3D Schematic) to open the schematic as shown below.


The isometric schematic of this pier is shown below after pressing the Isometric button as shown below.


Pier Alternative - Stiffness tab
Double click on the 3-column pier node in the BWS tree to open the Pier Alternative window and navigate to the Stiffness tab. Click on the Compute Slenderness Ratio button and BrDR will compute the KL/r ratios that can be used to determine the effect of slenderness as per AASHTO LRFD Article 5.7.4.3.


Click OK to apply the data and close the window.

## Specification Check

In this example, moment magnification should be considered to account for the effects of slenderness. Launch a specification check of the pier by clicking on the Specification Check button from the Analysis group of the SUBSTRUCTURE DESIGN ribbon as shown below


The program will first compute the elastic moments on the pier, then compute moment magnification factors and then compute the magnified moments. The magnified moments are then used in specification articles.

Engine Outputs
A report showing the moment magnification calculations can be found in the Engine Outputs window as shown below.


Pier4 - BrDR Substructure Moment Magnification


This report contains the elastic moments, the moment magnification factors and the resulting magnified moments for each load combination. Load Combination 1 is composed of the following load cases.


## Tabular Results

The load case descriptions can be found in the Tabular Results window for the Pier Alternative.


Navigate to the Loads tab. Click on the New button, and then click on the Load Cases button. By scrolling down the window, the many load cases can be reviewed.


The following axis convention is used:


## Plan View of Column



DeltaBx and DeltaBy are computed based on the braced/unbraced selections the user makes on the Pier Alternative - Stiffness tab.

The magnified moments, Mcx and Mcy, are then used in the specification checks.

## Pier4 - BrDR Substructure Moment Magnification

The following is a detailed description of the moment magnification process excerpted from the BrDR Substructure Method of Solution manual:

## First-Order Elastic Analysis using Moment-Magnification

Moment magnification takes into account the effects of deflection on force effects by using the approximate moment magnification adjustment method presented in AASHTO Article 4.5.3.2.2b. This method can be used for members with $\mathrm{K} \ell_{\mathrm{u}} / \mathrm{r}$ less than 100 .

$$
\begin{equation*}
M_{c}=\delta_{b} M_{2 b}+\delta_{s} M_{2 s} \tag{4.5.3.2.2b-1}
\end{equation*}
$$

$\mathrm{M}_{2 \mathrm{~b}}$ is the moment on compression member due to factored gravity loads that result in no appreciable sidesway calculated by conventional first-order elastic analysis. BrD substructure will assume that the following loads contribute to the $\mathrm{M}_{2 \mathrm{~b}}$ moment: DL of Superstructure, DL of Substructure, LL, Substructure Temperature, Substructure Shrinkage.
$\mathrm{M}_{2 \mathrm{~s}}$ is the moment on compression member due to factored lateral or gravity loads that results in sidesway, $\Delta$, greater than lu/1500, calculated by conventional first-order elastic frame analysis. BrD substructure will assume that the following loads contribute to the $\mathrm{M}_{2 \mathrm{~s}}$ moment: Wind on Superstructure, Wind on Substructure, Water loads, Superstructure Temperature, Superstructure Shrinkage. The deflection produced by these loads will not be checked against the lu/1500 limit.

Moment magnification factors will be computed for both the longitudinal and transverse axes of the columns at each point of interest in the columns. Since the moment magnification factors are load dependent, they are computed for each load combination.

Article 4.5.3.2.2b gives equations to determine magnification factors, $\delta_{\mathrm{b}}$ and $\delta_{\mathrm{s}}$. This article further states that $\delta_{\mathrm{s}}$ shall be taken as 1.0 for members braced against sidesway.

The following equation is given for $\delta_{\mathrm{b}}$ :

$$
\delta_{b}=\frac{C_{m}}{1-\frac{P_{u}}{\emptyset_{K} P_{e}}} \geq 1.0
$$

$\emptyset_{K}$ is the stiffness reduction factor equal to 0.75 for concrete.

Article 4.5.3.2.2b gives an equation for $\mathrm{C}_{\mathrm{m}}$ for members braced against sidesway and without transverse loads between supports. For all other cases, $\mathrm{C}_{\mathrm{m}}$ shall be taken as 1.0 . Since the columns on a pier typically experience transverse loads, BrD Substructure will assume $\mathrm{C}_{\mathrm{m}}$ is 1.0 .

## Pier4 - BrDR Substructure Moment Magnification

The following equation is given for $\delta_{s}$ :

$$
\begin{equation*}
\delta_{s}=\frac{1}{1-\frac{\sum P_{u}}{\phi_{K} \sum P_{e}}} \tag{4.5.3.2.2b-4}
\end{equation*}
$$

$P_{e}$ is the Euler buckling load for the column. It is taken as:

$$
P_{e}=\frac{\pi^{2} E I}{\left(K l_{u}\right)^{2}} \quad(4 \cdot 5 \cdot 3 \cdot 2.2 b-5)
$$

For concrete compression members, Article 5.6.4.3 also applies. That article specifies that the EI to use in the Euler buckling load computation shall be the larger of:

$$
\begin{align*}
& E I=\frac{\frac{E_{c} I_{g}}{5}+E_{S} I_{S}}{1+\beta_{d}}  \tag{5.6.4.3-1}\\
& E I=\frac{\frac{E_{c} I_{g}}{2.5}}{1+\beta_{d}}
\end{align*}
$$

For columns that do not have a constant cross section over their length, a weighted average EI will be computed. BrD does not include the reinforcement in the computation of EI.
$\beta_{\mathrm{d}}$ is the ratio of maximum factored permanent load moments to maximum factored total load moment, always positive. This value will be computed at each point of interest by dividing the factored moment due to dead loads by the total factored moment at that point.

In this analysis, the order of load application does not affect the analysis results. Superposition can be used to determine the force effects due to the load combinations. The computation and application of the moment magnification factors occurs during the computation of the LRFD combinations within the substructure module.

