AASHTOWare BrDR 7.5.0 Substructure Tutorial Pier4 – BrDR Substructure Moment Magnification

Topics Covered

- 3 column frame pier
- Moment magnification analysis
- Using AASHTO LRFD Bridge Design Specifications, 9th Edition

3 column frame pier

This example uses the pier in **BID 20, LRFD Substructure Example 1** provided in the sample database delivered with the software. Double click on **BID 20** from the **Bridge Explorer** to open the bridge (or select **Open** from the **Bridge** group of the **BRIDGE** ribbon, or right click and select **Open**) as shown below.

Expand the Bridge Workspace tree to show the pier alternative.

3D Schematic - Pier Alternative

With pier alternative **3-column pier** selected in the **BWS** tree, click on the **3D Schematic** button from the **SUBSTRUCTURE DESIGN** ribbon (or right click and select **3D Schematic**) to open the schematic as shown below.

The isometric schematic of this pier is shown below after pressing the Isometric button as shown below.

Pier Alternative – Stiffness tab

Double click on the **3-column pier** node in the **BWS** tree to open the **Pier Alternative** window and navigate to the **Stiffness** tab. Click on the **Compute Slenderness Ratio** button and BrDR will compute the KL/r ratios that can be used to determine the effect of slenderness as per AASHTO LRFD Article 5.7.4.3.

: 3-column pier		Type: RC Frame Pier		
cription Stiffn	ess Reports			
Compute slenderness ratio	Analysis n Method:	First Order Elastic w/Moment Mag v		
Pier longitudinal	axis			
Sidesway O Braced	Unbraced	Unbraced length: 26 ft Effective length factor, K	0.65	
Slenderness	results			
Vp-to-d	ate			
Gross area:	21.20576	ft^2 Moment of inertia: 11.9282346 ft^4 Radius of gyration:	0.75	ft
KL/r:	22.53334			
Pier transverse a Sidesway Braced	vis O Unbraced	Unbraced length: 26 ft Effective length factor, K	2	
Slenderness	results			
Up-to-d	ate	that Mamont of inaction 17 71202041 that Padiment mustices	15	-
Gross area:	21.20576	Ttri2 moment of inertia: 47.7129384; Ttri4 Radius of gyration:	1.5	10
KL/r:	34.66667			

Click **OK** to apply the data and close the window.

Specification Check

In this example, moment magnification should be considered to account for the effects of slenderness. Launch a specification check of the pier by clicking on the **Specification Check** button from the **Analysis** group of the **SUBSTRUCTURE DESIGN** ribbon as shown below

The program will first compute the elastic moments on the pier, then compute moment magnification factors and then compute the magnified moments. The magnified moments are then used in specification articles.

Engine Outputs

A report showing the moment magnification calculations can be found in the **Engine Outputs** window as shown below.

BRIDGE WORKSPACE WORKSPACE TOOLS VIEW DESI	GN/RATE DESIGN	REPORTING		
Preliminary Generate Load Load Analyze Model Combinations Palette Substructure Check	Tabular Specification Results Check Detail Results	ne Results Soil uts Graph Plot S	3D Schematic	
Workspace ☆ ×	Schematic	☆ × Report		\$ X
Bridge Components Image: Design Parameters SUPERSTRUCTURE DEFINITIONS Image: Design Parameters Superstructure (right support is rolled) Image: Design Parameters Image: Design Parameters Image: Design Parameters Image: De	Analysis			\$ X
 III Geometry Cap COLUMNS H Superstructure Loads Superstructure Environmental Loads H Substructure Loads 				

A LRFD Substructure Example 1 -		×
 LRFD Substructure Example 1 Continuous span steel bridge Pier 2 SingleLaneReactions Cap LRFD Reinf Dev Length Calcs Log File Column1 LRFD Reinf Dev Length Calcs Log File Column2 LRFD Reinf Dev Length Calcs Log File Column3 LRFD Reinf Dev Length Calcs Log File SuperDLReactions2 SubDLReactions2 FrictionReactions2 WindOnSubReactions2 WindOnSubReactions2 WindOnSubReactions2 WindOnSubReactions2 SuperOverturnReactions2 WindOnLiveReactions2 ShrinkageOfSuperReactions2 ShrinkageOfSuperReactions2 ShrinkageOfSuperReactions2 Stricter CollisionReactions2 VehicleCollisionReactions2 VehicleCollisionReactions2 VehicleCollisionReactions2 VehicleCollisionReactions2 VehicleCollisionReactions2 WentReactions2 WentReactions2 SettlementOfSubReactions2 SettlementOfSubReactions2 WeindPollisionReactions2 WeindPollisionReactions2		
 LL Scan Summary Column1Foundation Alt 1 LRFD Reinf Dev Length Calcs Log File Column2Copy of Foundation Alt 1 LRFD Reinf Dev Length Calcs Log File Spec Check Results Column1FoundationAlt1 Bearing Pressure Detail Bearing Pressure Detail Bearing Pressure Detail Bearing Pressure Summary Column3CopyofFoundationAlt1 Bearing Pressure Detail Bearing Pressure Summary 		
	Cance	!

This report contains the elastic moments, the moment magnification factors and the resulting magnified moments for each load combination. Load Combination 1 is composed of the following load cases.

I MomentMagnification - Notepad	– 🗆 X
File Edit Format View Help	
Bridge ID: LRFD Substructure Example 1 NBI Structure ID: LRFD_EX1_sub	^
Bridge: LRFD Substructure Example 1 Bridge Alt: Continuous span steel bridge	
Substructure: Pier 2 Substructure Alt: 3-column pier	
Date: Inursday, January 25, 2024 8:37:13 AM	
Report Filename: C:\Users\SharanvaRao\Documents\AASHTOWare\BrDR75CDSubstructureExample1\Continuousspansteelbridge\Pier2\3-co	lumnpier\MomentMagnification.txt
(Load case 1 - Superstructure DC)	
Load case 631 - Substru	ucture
Axis convention: x = above the pier transverse axis, y = about the pier longitudinal axis Temperature Fall	
Load Combination:LC 1 = 1.000 (1.25DC(1) + 1.25DC(2) + 1.75LL(3) + 1.75BR(619) + 1.20TU(631))	
First-Order Elastic M2b First-Order Elastic M2s Magnified /	Moments
(k1p-tt) (k1p-t) (k1p-tt) (k1p	ft) Mov
Column No Elemental Nodel Deltask Deltask pertask muy muy Deltask Deltas muy muy muy muy not 1 437 1 000 0 00 288 23 87 22	288 23
37 1.697 Load case 3	-67.55
2 37 38 1.391 Load case 0 - LL + DV + 1.437 Load case 619 - Braking 1 Lane	289.98
39 1.391 1.031 -8.23 0.00 1.437 Sta Back Dir	-66.85
3 39 40 1.283 1.041 -61.89 0.00 1.437	288.23
41 1.283 1.041 -40.70 0.00 1.437 1.000 0.00 -67.55 -52.20	-67.55
Load Combination:LC 2 = 1.000 (1.25DC(1) + 1.25DC(2) + 1.75LL(3) + 1.75BR(619) + 1.20TU(632))	
First-Order Elastic M2b First-Order Elastic M2s Magnified M	Moments
(kip-ft) (kip-ft) (kip-	ft)
Column No ElementID NodeID DeltaBx DeltaBy Mux Muy DeltaSx DeltaSy Mux Muy Mcx	Mcy
1 35 36 1./32 1.054 -209./3 0.00 1.437 1.000 0.00 288.23 -467.26	288.23
3/ 1.72 1.054 -210.22 0.00 1.437 1.000 0.00 -07.55 -304.17	-07.55
	-66.85
3 39 40 1.303 1.028 259.23 0.00 1.437 1.000 0.00 288.23 337.71	288.23
41 1.303 1.028 249.95 0.00 1.437 1.000 0.00 -67.55 325.61	-67.55
< compared to the second s	>
Ln 1, Col 1	100% Windows (CRLF) UTF-8

Tabular Results

The load case descriptions can be found in the Tabular Results window for the Pier Alternative.

Navigate to the Loads tab. Click on the **New** button, and then click on the **Load Cases** button. By scrolling down the window, the many load cases can be reviewed.

New Open	Save Save as		Generat
lel Loads Reactions	Displacements Forces	Envelope Spec check results Options	
elect		N	
O Load cases		Name	
Load combinations		Superstructure DC	•
	2	Substructure Self Weight - DC	
	3	LL1 T DV:1	
	4	LL2 T DV:2	
	5	LL3 T DV:3	
_	6	LL4 T DV:4	
_	7	LL5 T DV:5	
_	8	LL6 T DV:6	
_	9	LL7 T DV:7	
-	10	LL8 T DV:8	
	11 LL9 T DV:9 12 LL10 T DV:10	LL9 T DV:9	
	13	11 11 T DV-11	•
(Select all Clear all		

The following axis convention is used:

DeltaBx and DeltaBy are computed based on the braced/unbraced selections the user makes on the Pier Alternative

- Stiffness tab.

The magnified moments, Mcx and Mcy, are then used in the specification checks.

The following is a detailed description of the moment magnification process excerpted from the BrDR Substructure Method of Solution manual:

First-Order Elastic Analysis using Moment-Magnification

Moment magnification takes into account the effects of deflection on force effects by using the approximate moment magnification adjustment method presented in AASHTO Article 4.5.3.2.2b. This method can be used for members with $K\ell_u/r$ less than 100.

$$M_c = \delta_b M_{2b} + \delta_s M_{2s} \qquad (4.5.3.2.2b-1)$$

 M_{2b} is the moment on compression member due to factored gravity loads that result in no appreciable sidesway calculated by conventional first-order elastic analysis. BrD substructure will assume that the following loads contribute to the M_{2b} moment: DL of Superstructure, DL of Substructure, LL, Substructure Temperature, Substructure Shrinkage.

 M_{2s} is the moment on compression member due to factored lateral or gravity loads that results in sidesway, Δ , greater than lu/1500, calculated by conventional first-order elastic frame analysis. BrD substructure will assume that the following loads contribute to the M_{2s} moment: Wind on Superstructure, Wind on Substructure, Water loads, Superstructure Temperature, Superstructure Shrinkage. The deflection produced by these loads will not be checked against the lu/1500 limit.

Moment magnification factors will be computed for both the longitudinal and transverse axes of the columns at each point of interest in the columns. Since the moment magnification factors are load dependent, they are computed for each load combination.

Article 4.5.3.2.2b gives equations to determine magnification factors, δ_b and δ_s . This article further states that δ_s shall be taken as 1.0 for members braced against sidesway.

The following equation is given for δ_b :

$$\delta_b = \frac{c_m}{1 - \frac{P_u}{\phi_K P_e}} \ge 1.0 \quad (4.5.3.2.2b-3)$$

 ϕ_K is the stiffness reduction factor equal to 0.75 for concrete.

Article 4.5.3.2.2b gives an equation for C_m for members braced against sidesway and without transverse loads between supports. For all other cases, C_m shall be taken as 1.0. Since the columns on a pier typically experience transverse loads, BrD Substructure will assume C_m is 1.0.

The following equation is given for δ_s :

$$\delta_{s} = \frac{1}{1 - \frac{\sum P_{u}}{\phi_{K} \sum P_{e}}} \quad (4.5.3.2.2b - 4)$$

Pe is the Euler buckling load for the column. It is taken as:

$$P_e = \frac{\pi^2 EI}{(Kl_u)^2} \qquad (4.5.3.2.2b - 5)$$

For concrete compression members, Article 5.6.4.3 also applies. That article specifies that the EI to use in the Euler buckling load computation shall be the larger of:

$$EI = \frac{\frac{E_c I_g}{5} + E_s I_s}{1 + \beta_d} \qquad (5.6.4.3 - 1)$$

$$EI = \frac{\frac{E_c I_g}{2.5}}{1 + \beta_d}$$
(5.6.4.3 - 2)

For columns that do not have a constant cross section over their length, a weighted average EI will be computed. BrD does not include the reinforcement in the computation of EI.

 β_d is the ratio of maximum factored permanent load moments to maximum factored total load moment, always positive. This value will be computed at each point of interest by dividing the factored moment due to dead loads by the total factored moment at that point.

In this analysis, the order of load application does not affect the analysis results. Superposition can be used to determine the force effects due to the load combinations. The computation and application of the moment magnification factors occurs during the computation of the LRFD combinations within the substructure module.