AASHTOWare BrDR 7.5.0 Reinforced Concrete Structure Tutorial RC4 - Two Span Reinforced Concrete Slab Example

RC4 - Two Span RC Concrete Slab

BrDR Training
RC4 - Two Span Reinforced Concrete Slab Example

Topics Covered

- Reinforced concrete slab input as girder line.
- Cross section based input.
- Slab depth varies parabolically over the pier.

Reinforced concrete slab input as girder line
From the Bridge Explorer create a new bridge and enter the following description data:

Close the window by clicking OK. This saves the data to memory and closes the window.

Bridge Components

To enter the materials to be used by members of the bridge, go to the Components tab of the Bridge Workspace, and click on \pm to expand the tree for Materials. The tree with the expanded Materials branch is shown below:

\begin{tabular}{|c|c|c|}
\hline Wor \& kspace \& $-\square \times$

\hline Bridge \& Components \&

\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1- Components

Appurtenances
Beam Shapes

早

Connectors
Factors

LRFD Substructure Design Settings
Materials

Aluminum
Concrete
Prestress Bar
Prestress Strand
Reinforcing Steel
Soil
Structural Steel
Timber
\end{tabular}}

\hline
\end{tabular}

To add a new concrete material, click on Concrete in the tree and select New from the Manage group of the WORKSPACE ribbon (or right mouse click on Concrete and select New).

RC4 - Two Span RC Concrete Slab

Add the concrete material by selecting from the Concrete Materials Library by clicking the Copy from library button. The following window opens:

Select the Class A (US) material and click OK.

The selected material properties are copied to the Bridge Materials - Concrete window as shown below.

Click OK to apply the data and close the window.

Add the following Reinforcement Steel (Grade 60) in the same manner.

Since this example is a reinforced concrete slab, beam shapes need not be defined. The slab will be entered later as a cross section.

The reinforced concrete slab will be entered as Girder line Structure Definition in BrDR. Since a Structure Typical Section is not defined for girder line structures, appurtenances are not defined. The dead load due to the appurtenances will be entered later as member loads.

The default impact factors for LRFD and LFD will be used, so the next step will be to define a Superstructure. Bridge Alternatives will be added after a superstructure is defined.

Superstructure Definition

Double click on SUPERSTRUCTURE DEFINITIONS or click on SUPERSTRUCTURE DEFINITIONS and select New from the Manage group of the Workspace ribbon (or right mouse click on SUPERSTRUCTURE DEFINITIONS and select New from the popup menu) to create a new structure definition.

Select Girder line Superstructure from the New Superstructure Definition window, click OK to open the Girder Line Superstructure Definition window. Enter the data as shown below.

Click OK to apply the data and close the window.

RC4 - Two Span RC Concrete Slab

Navigate to the Bridge Alternatives node in the Bridge Workspace tree and create a new Bridge Alternative, a new Structure, and a new Structure Alternative as shown in STL1 tutorial.

The partially expanded Bridge Workspace tree is shown below:
Workspace

Load Case Description

Double click on the Load Case Description node in the Bridge Workspace tree to open the Load Case Description window and define the dead load cases as shown below. The completed Load Case Description window is shown below.

Click OK to apply the data and close the window.

Member

Open the Member window by selecting Member in Bridge Workspace tree and click on New from the Manage tab of the WORKSPACE ribbon (or by double clicking on Member in bridge workspace tree).

Fill in the window with the following information. If F1 is pressed while this window is active, the Help topic for the Member window will be displayed. This Help topic describes that girder spacing, and member location are not required for a slab member, therefore no data will be entered for those items.
The first Member Alternative created will automatically be assigned as the Existing and Current Member alternative for this Member.

Click OK to apply the data and close the window.

RC4 - Two Span RC Concrete Slab

Member Loads

Expand 12" Slabline in the Bridge Workspace tree and double click on Member Loads to open the Girder
Member Loads window. This structure has 2 parapets each weighing $300 \mathrm{lb} / \mathrm{ft}$. A 12 " wide strip of slab is defined as the member, and the bridge cross section has a width of 27 ft . So, the parapet load applied to this member will be $(2 * 300 \mathrm{lb} / \mathrm{ft})^{*} 1^{\prime} / 27^{\prime}=22 \mathrm{lb} / \mathrm{ft}$.

Click New to add a row in Uniform tab of this window and enter the data as shown below:

Click OK to apply the data and close the window.

Member Alternative

Select MEMBER ALTERNATIVES in the Bridge Workspace tree and click on New from the Manage group of the WORKSPACE ribbon (or double-click MEMBER ALTERNATIVES in the tree) to create a new alternative.

The New Member Alternative window shown below will open. Select Reinforced Concrete for the Material type,
Reinforced Concrete Slab for the Girder type and click OK.

(14. New Member Alternative		
Material type:	Girder type:	
Post tensioned concrete	Advanced Concrete RC	
Prestressed (pretensioned) concrete	Reinforced Concrete I	
Reinforced concrete	Reinforced Concrete Slab	
Steel	Reinforced Concrete Tee	
Timber		
	OK	Cancel

RC4 - Two Span RC Concrete Slab

The Member Alternative Description window will open. Enter the data as shown below.

Click OK to apply the data and close the window.

RC4 - Two Span RC Concrete Slab

Cross section based input

Cross Sections

Expand 12" wide slab line (E) (C) member alternative on the Bridge workspace tree and double click on Cross
Sections to open the Cross Sections window and create a new cross section. This member contains three cross sections as illustrated below.

RC4 - Two Span RC Concrete Slab

Enter each cross-section Dimensions and Reinforcement data as shown below:

Section 1

RC4 - Two Span RC Concrete Slab

Section 2:

RC4 - Two Span RC Concrete Slab

Section 3:

RC4 - Two Span RC Concrete Slab

Slab depth varies parabolically over the pier

Cross Section Ranges

Double click on the Cross Section Ranges in the Bridge Workspace tree to open the Cross Section Ranges window. Apply the cross sections over the length of the member as shown below:

Click OK to apply the data and close the window.

Shear Reinforcement Ranges and Bracing Ranges are not applicable to this member so no data will be entered in these windows. There is no requirement to define any points of interest since none of the information entered will be overridden in this example.

RC4 - Two Span RC Concrete Slab

Live Load Distribution

Open the Live Load Distribution window from the Bridge Workspace tree and go to the LRFD tab. Click the Compute from typical section... button, enter values as shown below in the pop-up window.

Click Continue to compute the live load distribution factors. Once the Analysis is complete, click the OK button in the LRFD Distribution Factor Progress window to apply these factors in the Live Load Distribution window.

Deflection distribution factors:

RC4 - Two Span RC Concrete Slab

Moment and shear have the same distribution factors (moment is shown below).

The member alternative can now be analyzed.

RC4 - Two Span RC Concrete Slab

LRFR Rating

To perform an LRFR rating, click the Analysis Settings button on the Analysis group of the DESIGN/RATE ribbon which opens the Analysis Settings window.

Click the Open template button and select the LRFR Design Load Rating to be used in the rating and click OK.
The Analysis Settings will be as shown below.

RC4 - Two Span RC Concrete Slab

Next click the Analyze button on the DESIGN/RATE ribbon to perform the rating.

Bridge Workspace - 2SpanRCSlab				ANALYSIS	REPORTS
BRIDGE WORKSPACE	WORKSPACE	TOOLS	VIEW	DESIGN/RATE	REPORTING
	Tabular Spec Results Check	cation Detail Res		$\begin{aligned} & \text { ts Save } \\ & \text { h Results } \end{aligned}$	

Tabular Results
When the rating is finished you can review the results by clicking the Tabular Results button on the Results group of the DESIGN/RATE ribbon. The window shown below will open.

RC4 - Two Span RC Concrete Slab

LRFD Design Review

To perform an LRFD design review, click the Analysis Settings button on the Analysis group of the DESIGN/RATE ribbon which opens the Analysis Settings window. Note: The Design review option is only available if you have a license for the BrD software.

Select the vehicles to be used in the analysis as shown below and click OK.

Next click the Analyze button on the ribbon to perform the analysis.
Bridge Workspace-2SpanRCSlab
BRIDGE WORKSPACE
WORKSPACE

Engine Outputs

The BrDR LRFD analysis will generate a spec check results file. Click the Engine Outputs button on the

Results group of the DESIGN/RATE ribbon to open the following window.
To view the spec check results, double click the Spec Check Results in this window.

The spec check results file will be displayed as shown below.

			$0 \text {. }$	ㅁ \times结 $\left\{\begin{array}{c}0 \\ \xi_{0}^{3} \\ \text { () }\end{array}\right.$
C:\Users\SharanyaRao\Documents\AASHTOWare\BrDR75i\2SpanRCSlab\SlabGir		Search...		
\& C:\Users\SharanyaRao\Doc... $\times \square$				
Bridge ID : 2SpanRCSlab	NBI Structure ID : 2Span	CSlab		\wedge
Bridge : 2 Span RC Slab	Bridge Alt :			
Superstructure Def: Slab Girderline				
Member : 12" Slabline	Member Alt : $12^{\prime \prime}$ wide sl	b line		
Analysis Preference Setting :				
AASHTO LRFD Specification, Edition 9, Interim 0				

Article	Status
Flexure (5.6.3.2, 5.6.3.3)	Pass
Crack Control $(5.6 .7)$	Pass
Shear (5.7.3.3, 5.7.2.5, 5.7.2.6, 5.7.3.5)	Ignore by User
Fatigue (5.5.3.2)	Pass
Deflection (2.5.2.6.2)	Pass

Girder Positive Flexure Analysis

Location (ft)	LS	Load Comb	$\begin{gathered} \mathrm{Mr} \\ \text { (kip-ft) } \end{gathered}$	$\begin{gathered} \text { Mu } \\ \text { (kip-ft) } \end{gathered}$	Design Ratio Mr/Mu	Code
0.000	STR-I	1	120.79	0.00	99.000	Pass
3.000	STR-I	2	120.79	36.25	3.332	Pass
6.000	STR-I	2	120.79	59.41	2.033	Pass
9.000	STR-I	2	120.79	70.33	1.718	Pass
12.000	STR-I	2	120.79	70.27	1.719	Pass
15.000	STR-I	2	120.79	62.50	1.933	Pass
18.000	STR-I	2	120.79	46.13	2.618	Pass
20.000	STR-I	2	120.70	31.68	3.810	Pass
21.000	STR-I	2	122.75	24.19	5.074	Pass
24.000	FAT-I	4	152.75	8.62	17.723	Pass
27.000	FAT-I	4	218.66	4.40	49.650	Pass
an nnol	titt	1	202		anann	

