AASHTOWare BrDR 7.5.0 Reinforced Concrete Structure Tutorial RC5 – Schedule Based Tee Example

BrDR Training

RC5 – Schedule Based Tee Example

Topics Covered

- Reinforced concrete schedule based tee input as girder system.
- Export of schedule based reinforced concrete beams to an analysis engine
- Schedule based reinforced concrete Point of Interest wizard

Reinforced concrete schedule based tee input as girder system

From the Bridge Explorer create a new bridge and enter the following description data:

A RC-5SchBased							-		×
Bridge ID: RC-5SchBa	sed	NBI structure	ID (8): RC-5SchBased		Template Bridge comple	tely defined	Superstri Culverts Substruct	uctures tures	
Description Desc	ription (cont'd)	Alternatives	Global reference point	Traffic	Custom agency field	s			
Name:	RC5-Schedule E	Based RC Tee Exar	nple		Year built:				
Description:	RC5-Schedule E	Based RC Tee Exar	nple, LRD Design						
Location:					Length:		ft		
Facility carried (7):					Route number:	-1			
Feat. intersected (6):					Mi. post:				
Default units:	US Customary	\sim							
Bridge associa	tion 🗸 E	BrR 🗹 BrD 🗌	BrM						
					OK	A	Apply	Cance	1

Close the window by clicking **OK**. This saves the data to memory and closes the window.

Bridge Components

To enter the materials to be used by members of the bridge, click on the **Components** tab of **Bridge Workspace**, and expand the tree for Materials. The tree with the expanded **Materials** branch is shown below.

To add a new concrete material, click on **Concrete** in the **Components** tree and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Concrete** and select **New**).

Add the concrete material by selecting from the Concrete Materials Library by clicking the **Copy from Library** button. The following window opens:

Name	Description	Library	Units	f'c	f'ci	alpha	DL density	Modulus density	Std modulus of elasticity	LRFD modulus of elasticity	Poisson's ratio	Modulus of rupture	
Class A	Class A cement concrete	Standard	SI / Metric	28.00		0.0000108000	2400.00	2320.00	25426.08	27730.36	0.200	3.33	Γ
Class A (US)	Class A cement concrete	Standard	US Customary	4.000		0.0000060000	0.150	0.145	3644.15	3986.55	0.200	0.480	
Class B	Class B cement concrete	Standard	SI / Metric	17.00		0.0000108000	2400.00	2320.00	19811.84	23520.23	0.200	2.60	
Class B (US)	Class B cement concrete	Standard	US Customary	2.400		0.0000060000	0.150	0.145	2822.75	3368.12	0.200	0.372	
Class C	Class C cement concrete	Standard	SI / Metric	28.00		0.0000108000	2400.00	2320.00	25426.08	27730.36	0.200	3.33	
Class C (US)	Class C cement concrete	Standard	US Customary	4.000		0.0000060000	0.150	0.145	3644.15	3986.55	0.200	0.480	

Select the Class A (US) material and click OK. The selected material properties are copied to the Bridge Materials

Bridge Ma	terials - Concrete			_	
Name:	Class A (US)				
Description:	Class A cement concrete	9			
Compressive	e strength at 28 days (f'c):	4.000	ksi		
nitial compr	essive strength (f'ci):		ksi		
Composition	of concrete:	Normal			
Density (for	dead loads):	0.150	kcf		
Density (for	modulus of elasticity):	0.145	kcf		
oisson's rat	io:	0.200			
Coefficient o	f thermal expansion (α):	0.0000060000	1/F		
Splitting ten	sile strength (fct):		ksi		
.RFD Maxim	um aggregate size:		in		
	Compute				
itd modulus	of elasticity (Ec):	3644.15	ksi		
RFD modul	us of elasticity (Ec):	3986.55	ksi		
td initial mo	odulus of elasticity:		ksi		
RFD initial r	nodulus of elasticity:		ksi		
Std modulus	of rupture:	0.48	ksi		
RFD modul	us of rupture:	0.48	ksi		
		1.000			

- **Concrete** window as shown below.

Click **OK** to save the data to memory and close the window.

Add the **reinforcement steel** in the same manner.

🕰 Bridge Mat	terials - Reinforc	ing Steel		 _		×
Name:	Grade 60					
Description:	60 ksi reinforci	ng steel				
Material prop	perties					
Specified yiel	ld strength (fy):	60.000	ksi			
Modulus of e	elasticity (Es):	29000.00	ksi			
Ultimate stre	ngth (Fu):	90.000	ksi			
Туре —						
Plain						
C Epoxy	ized					
	Copy t	o library Copy f	rom library OK	Apply	Cance	4

Since reinforced tee girder is used, beam shapes need not be defined.

Since this is a girder system structure, an appurtenance needs to be defined.

Bridge Appurtenances

To enter an appurtenance to be used within the bridge, expand the tree branch labeled **Appurtenances** in the **Components** tab. Select **Generic** and click on **New** from the **Manage** button on the **WORKSPACE** ribbon (or double click on **Generic**).

Bridge	Workspace - RC-55	chBased	d	ANALYSIS	REPORTS		? –	
BRIDGE WORKSPACE	WORKSPACE	TOOLS	S VIEW	DESIGN/RATE	REPORTING			
Check Out Check In Validate	Save Restore	Close	Export Refre	sh Oper N	New Copy Paste	Duplicate Delete	Schematic	
Workspace	bildge	#	× Sche	matic	≢ ×	Report		# ×
Connectors Connectors	res s tructure Design Set	tings	Anal	ysis		, 	_	# ×

Enter the following data to model the elevated curb on this structure.

Click **OK** to save the data to memory and close the window. This appurtenance will be used on both the left and right side of the typical section which will be defined later in this example.

The default impact factors, standard LRFD and LFD factors will be used so the next step will be to define a Superstructure. Bridge Alternatives will be added after a superstructure is defined.

Superstructure Definition

Returning to the **Bridge** tab of the **Bridge Workspace**, double click on **SUPERSTRUCTURE DEFINITIONS** (or click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the **Manage** group of the **WORKSPACE** ribbon or right mouse click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the popup menu) to create a new structure definition. The window shown below will appear.

A New Superstructure Definition	×
Girder system superstructure	
Girder line superstructure	Superstructure definition wizard
 Floor system superstructure 	
Floor line superstructure	
 Truss system superstructure 	
Truss line superstructure	
Reinforced concrete slab system superstructure	
Concrete multi-cell box superstructure	
Advanced concrete multi-cell box superstructure	
	OK Cancel
	OK Cancel

Select Girder system superstructure, click OK and the Superstructure Definition window will open. Enter the

data as shown below.

A Girder System Superstructure Defin	ition			- 🗆 X
Definition Analysis Specs	Engine			
Name: Schedule Base	Enter span lengths along the reference line: Span Length (tt) 1 78.00 2 98.00 3 78.00			Modeling Modeling Multi-girder system MCB With frame structure simplified definition Deck type: Concrete Deck For PS/PT only Average humidity: % Member alt. types Steel P/S K/C Timber P/T
Horizontal curvature along refere Horizontal curvature Superstructure alignment Curved Tangent, curved, tangent Tangent, curved Curved, tangent	ence line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT: Design speed: Superelevation:	↓	ft ft ft ft mph %	
				OK Apply Cancel

Click **OK** to save the data to memory and close the window.

Navigate to the **Bridge Alternatives** node in the Bridge Workspace tree and create a new **Bridge Alternative**, a new **Structure**, and a new **Structure Alternative** as shown in **STL1 tutorial**.

The partially expanded Bridge Workspace tree is shown below.

Load Case Description

Click Load Case Description in the Bridge Workspace tree to define the dead load cases. Select the Add Default Load Case Descriptions button to create the following load cases.

Load case name	Description	Stage		Туре	Time* (days)	
DC1	DC acting on non-composite section	Non-composite (Stage 1)	D,DC	*		
DC2	DC acting on long-term composite section	Composite (long term) (Stage 2)	D,DC	*		
DW	DW acting on long-term composite section	Composite (long term) (Stage 2)	D,DW	-		
SIP Forms	Weight due to stay-in-place forms	Non-composite (Stage 1)	D,DC	-		

Click **OK** to save the data to memory and close the window.

Structure Framing Plan Details

Double-click on **Framing Plan Detail** in the Bridge Workspace tree to describe the framing plan in the **Structure Framing Plan Details** window. Enter the data as shown below.

Structure	e Framii	ng Plan Details										-		
mber of	spans:		Number of gird	ders:	4									
ayout	Diap	hragms												
				G	irder spa	cing orien	tation							
Su	pport	Skew (degrees)		() ()) Perpend	dicular to g upport	girder							
Þ	1	0.000		_					_					
	2	0.000				Girder	spacing							
	3	0.000			Girder bay	(I Start of	U End of							
	4	0.000				girder	girder							
				Þ	1	8.00	8.00	<u>~</u>						
				_	2	8.00	8.00							
					3	8.00	8.00							
			Y					Y						
										OK	Apply	1	Cano	e

Structure Framing Plan Detail - Diaphragms

Switch to the **Diaphragms** tab to enter diaphragm spacing. Enter the diaphragm locations shown below for **girder bay 1**. Click on the **Copy bay to...** button to copy the diaphragms to the other 2 bays in the structure.

			ard	wiz	0	Copy bay t	~		ау: 1	er ba
Load (kip) Diaphragm	Load (kip)	ind tance (ft)	E dist (Length (ft)	Number of spaces	Diaphragm spacing	tart tance (ft)	S dis	oport nber	Sup
jirder		Right girder	Left girder			(ft)	Right girder	Left girder		
0.00 2.7000Not Assigned *	2.7000	0.00	0.00	0.00	1	0.00	0.00	0.00	*	1
28.75 1.3500Not Assigned *	1.3500	28.75	28.75	28.75	1	28.75	0.00	0.00	*	1
58.50 1.3500Not Assigned	1.3500	58.50	58.50	29.75	1	29.75	28.75	28.75	*	1
78.00 5.4000Not Assigned *	5.4000	78.00	78.00	19.50	1	19.50	58.50	58.50	*	1
19.50 1.3500Not Assigned *	1.3500	19.50	19.50	19.50	1	19.50	0.00	0.00	*	2
78.50 1.3500Not Assigned *	1.3500	78.50	78.50	59.00	2	29.50	19.50	19.50	*	2
98.00 5.4000Not Assigned	5.4000	98.00	98.00	19.50	1	19.50	78.50	78.50	*	2
19.50 1.3500Not Assigned	1.3500	19.50	19.50	19.50	1	19.50	0.00	0.00	*	3
49.25 1.3500Not Assigned *	1.3500	49.25	49.25	29.75	1	29.75	19.50	19.50	*	3
	2 7000	78.00	78.00	28.75	1	28.75	49.25	49.25	-	3

Click **OK** to save the data to memory and close the window.

Structure Typical Section - Deck

Define the structure typical section by double-clicking on **Structure Typical Section** in the **Bridge Workspace** tree. Input the data describing the typical section as shown below.

A Structure Typical Section	-		×
Distance from left edge of deck to superstructure definition ref. line Deck thickness Left overhang			
Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Superstructure definition reference line is within v the bridge deck.			
superstructure definition reference line: 16.50 ft 16.50 ft			
Distance from right edge of deck to superstructure definition reference line: 16.50 ft 16.50 ft			
Left overhang: 4.50 ft 4.50 ft			
Computed right overhang: 4.50 ft 4.50 ft			
ОК	Apply	Cano	el

Structure Typical Section – Deck (cont'd)

Select the Deck(cont'd) tab. Enter the values shown below.

A Structure Typical Section	-		×
Distance from left edge of deck to justance from right edge of deck to superstructure definition ref. Ine superstructure Definition ref. Ine thickness the Reference Line Reference Line Reference Line Right overhang			
Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Deck concrete: Class A (US) Total deck thickness: 6.5000 Load case: Engine Assigned Deck crack control parameter: kip/in Sustained modular ratio factor: 2.000 Deck exposure factor:			
OK	Apply	Canc	el

Structure Typical Section - Generic

Select the Generic tab. Enter the values shown below. The previously defined appurtenance will be used here.

¢	Front									
eck	k Deck (cont'd)	Parapet	Median	Railing Ge	neric Sidewalk	Lane posit	ion Striped	d lanes W	earing surface	
1	Name		Load case	Measure to	Edge of deck dist. measured from	Distance at start (ft)	Distance at end (ft)	Front face orientation		
,	Elevated Curb	DC1		Back -	Left Edge +	0.00	0.00	Right -		
	Elevated Curb	DC1	-	Back +	Right Edge 🔹	0.00	0.00	Left •		

Structure Typical Section – Lane Position

Select the Lane position tab. Enter the values shown below.

Struc	ture Typical	Section				-		
V	Travelv	(A) (B) (B) (A) (B) (A) (A) (A) (A) (A) (B) (A) (A) (B) (A) (B) (A) (B) (ure Definition Reference Line					
Deck	Deck (co	nt'd) Parapet Median	Railing Generic Sidewa	alk Lane position Striped	d lanes Wearing surface			
	Travelway number	Distance from left edge of travelway to superstructure definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at end (B) (ft)			
×	1	-14.00	14.00	-14.00	14.00			
E U	RFD fatigue							
[Lanes ava	ilable to trucks: Truck fraction:	Compute		New Dup	licate	Delete	

Click **OK** to save the data to memory and close the window.

Structure Typical Section - Schematic

A schematic of the structure typical section can be viewed by selecting the **Structure Typical Section** node on the **Bridge Workspace** tree and clicking on the **Schematic** button on the **WORKSPACE** ribbon.

The Structure Typical Section schematic is displayed below.

Shear Reinforcement

Expand the **Shear Reinforcement Definitions** node in the **Bridge Workspace** tree, select **Vertical** and click on **New** from the **Manage** group of the **WORKSPACE** ribbon (or double click on **Vertical**).

Define the stirrup as shown below.

A Shear Reinforcement Definition - Vertic	al			_		Х
Name: #4 Stirrup						
Vertical Shear Reinforcement	Material: Bar size: Number of legs: Inclination (alpha):	Grade 60 4 v 2.00 90.0	Degrees		>	
		0	K	Apply	Cance	:1

Click **OK** to save to memory and close the window.

Bar Mark Definitions

Bar Mark Definitions are used to define the longitudinal flexural reinforcement in schedule based reinforced concrete members. Select **Bar Mark Definitions** in the **Bridge Workspace** tree and click the **New** button from the **Manage** group of the **WORKSPACE** ribbon.

This bridge uses the following bar mark definitions. Add these definitions.

🗛 Bar Mar	k Definition			-		×
Name:	F1	Material:	Grade 60		\checkmark	
Bar types:		Bar size:	11 🗸			
	Tupe: Straight	Bar type:	Straight 🗸			
			Dimension			
	K a	A:	254.5000 ft			
	Type: 1					
	Type: 2					
	Type: 3					
			OK	Apply	Cancel	

Click **OK** to save to memory and close the window.

Click **OK** to save to memory and close the window.

Click **OK** to save to memory and close the window.

Click **OK** to save to memory and close the window.

Click **OK** to save to memory and close the window.

Click **OK** to save to memory and close the window.

Click **OK** to save to memory and close the window.

Click **OK** to save to memory and close the window.

The expanded Bridge Workspace Tree is shown below.

Describing a member

Open the **G2** Member window by double clicking on **G2** in the bridge workspace tree. This member does not require any additional information to be entered. The first Member Alternative created will automatically be assigned as the **Existing** and **Current** Member alternative for this Member.

A Member													-		×
Member name:	G2				Lir	nk with:	None	\checkmark							
Description:															
	Existing	Curren	t Membe	er alternat	tive name	Descr	ription								
															^
															~
Number of spar	s: ≎	S	pan no.	Span length (ft)		1									
		×	1	78.00)										
			2	98.00)										
			3	78.00	,										
										0	K	Арр	ly	Cano	el

Defining a Member Alternative

Double-click on **MEMBER ALTERNATIVES** in the **Bridge Workspace** tree for member **G2** to create a new alternative. The **New Member Alternative** window shown below will open. Select **Reinforced Concrete** for the **Material Type** and **Reinforced Concrete Tee** for the **Girder Type**.

Material type:	Girder type:
Post tensioned concrete	Advanced Concrete RC
Prestressed (pretensioned) concrete	Reinforced Concrete I
Reinforced concrete	Reinforced Concrete Tee
Steel	
Timber	
	OK Cancel

Click **OK** to close the window and create a new member alternative.

The **Member Alternative Description** window will open as shown below. Enter the data as shown and Click **OK** to save to memory and close the window.

Description Specs Factors Engine Import Control options Haterial type: Reinforced Concrete Girder type: Reinforced Concrete Tee Modeling type: Multi Girder System Default units: US Customary Girder property input method End bearing locations © Schedule based Cross-section based Default rating method: Load case: Engine Assigned Additional self load: % Crack control parameter (Z) Bottom of beam: kip/in Bottom of beam: kip/in	Description Specs Factors Engine Import Control options Description: Material type: Reinforced Concrete Girder type: Reinforced Concrete Tee Modeling type: Multi Girder System Default units: US Customary © Schedule based End bearing locations Cross-section based Left: 6.0000 Right: 6.0000 in Self load Default rating method: Load case: Engine Assigned LFR Additional self load: % Stown of beam: Crack control parameter (Z) Exposure factor Bottom of beam: kip/in Bottom of beam:	
escription: Material type: Reinforced Concrete Girder type: Reinforced Concrete Tee Modeling type: Multi Girder System Default units: US Customary	Description: Material type: Reinforced Concrete Girder type: Reinforced Concrete Tee Modeling type: Mutti Girder System Default units: US Customary v Girder property input method Schedule based Cross-section based End bearing locations Left: 6.0000 in Right: 6.0000 in Default rating method: Load case: Engine Assigned v Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: kip/in Bottom of beam:	
Girder type: Reinforced Concrete Tee Modeling type: Multi Girder System Default units: US Customary v Girder property input method Schedule based Cross-section based Self load Load case: Engine Assigned v Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: kip/fn	Girder type: Reinforced Concrete Tee Modeling type: Multi Girder System Default units: US Customary Schedule based Cross-section based Left: 6.0000 in Right: 6.0000 in Self load Load case: Engine Assigned Kip/ft Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: kip/fin Bottom of beam: Kip/in	
Modeling type: Multi Girder System Default units: US Customary Girder property input method End bearing locations Left: 6.0000 in Right: 6.0000 in Self load Load case: Engine Assigned Default rating method: Load case: Engine Assigned Crack control parameter (Z) Exposure factor Bottom of beam: kip/in Bottom of beam:	Girder property input method End bearing locations Schedule based Cross-section based Left: 6.0000 in Right: 6.0000 in Self load Load case: Engine Assigned Kip/ft Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: kip/in Modeling type: Multi Girder System Default units: US Customary	
Girder property input method End bearing locations ● Schedule based Left: 6.0000 in ○ Cross-section based Right: 6.0000 in Self load	Girder property input method End bearing locations Schedule based Cross-section based Left: 6.0000 in Right: 6.0000 in Self load Load case: Engine Assigned Kip/ft Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: kip/in Bottom of beam:	
Girder property input method Schedule based Cross-section based Self load Load case: Engine Assigned Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Bottom of beam: kip/in Kip/in	Girder property input method Schedule based Cross-section based Left: 6.0000 Right: 6.0000 in Self load Load case: Engine Assigned Default rating method: Load case: Engine Assigned Additional self load: Kip/ft Additional self load: Crack control parameter (Z) Bottom of beam: kip/in Bottom of beam:	
Schedule based Cross-section based Left: 6.0000 n Right: 6.0000 in Default rating method: Load case: Engine Assigned Default rating method: LFR Additional self load: kip/ft Additional self load: Crack control parameter (Z) Exposure factor Bottom of beam: Bottom of beam:	● Schedule based Left: 6.0000 in Right: 6.0000 in Self load Default rating method: Load case: Engine Assigned ✓ Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: kip/in	
Cross-section based Right: 6.0000 in Self load Load case: Engine Assigned LFR Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: Source factor	Cross-section based Right: 6.0000 Self load Load case: Engine Assigned Default rating method: LFR Additional self load: kip/ft Additional self load: Crack control parameter (Z) Exposure factor Bottom of beam: kip/in Bottom of beam:	
Self load Default rating method: Load case: Engine Assigned Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Bottom of beam: Bottom of beam: Exposure factor Bottom of beam: Bottom of beam: Substance Substance Substance Substance Substance Substance Substance Substance Substance Substance Su	Self load Load case: Engine Assigned Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: Bottom of beam:	
Sell load Default rating method: Load case: Engine Assigned Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Bottom of beam: Bottom of beam:	Sen Ioad Load case: Engine Assigned Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Bottom of beam: kip/in Bottom of beam:	
Load case: Engine Assigned Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: Bottom of beam:	Load case: Engine Assigned Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: kip/in	
Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: Bottom of beam:	Additional self load: kip/ft Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: Bottom of beam:	
Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: Bottom of beam:	Additional self load: % Crack control parameter (Z) Exposure factor Bottom of beam: kip/in Bottom of beam:	
Crack control parameter (Z) Exposure factor Bottom of beam: kip/in	Crack control parameter (Z) Exposure factor Bottom of beam: Bottom of beam:	
Bottom of beam: kip/in Bottom of beam:	Bottom of beam: kip/in Bottom of beam:	
		Carrie

For a schedule based reinforced concrete member, it is important to enter a value for the **End Bearing Locations** in this window. This data describes the distance from the physical end of the beam to the centerline of the end bearings. It is important to enter this value here so that when bar mark definitions are assigned to the reinforcement profile, the bars can start to the left of the first support line and to the right of the last support line.

If the bars start to the left of the first support line and to the right of the last support line, BrDR will consider the bars to be partially developed at the centerline of the bearing. Then the analysis engine will be able to compute the \mathbf{d} distance from the extreme compression fiber to the centroid of the tension reinforcement. This \mathbf{d} value is required to compute the shear capacity of the section. If the rebar starts at the centerline of the bearing, it will be considered as zero percent developed at this point so a \mathbf{d} distance cannot be computed, and the shear capacity of the beam will be zero.

Girder Profile

Expand the **Schedule Based Tee** member alternative on the **Bridge Workspace** tree, double click on **Girder Profile** to open the **Girder Profile** window and enter the data on each tab as shown below:

Girder Profile - Section

A Girder Profile	– 🗆 X
Type: Reinforced Concrete Tee Section Web depth Reinforcement Allow flange width to vary	
Tributary width: 96.0000 in 24.0000 in 24.0000 in 24.0000 in A: in CJ: in CJ: in	Top flange Material: Class A (US) Modular ratio: Eff. width (Std): 96.0000 Eff. width (LRFD): 96.0000 Struct. thick: 6.5000 Other parts Material: Class A (US) Medular ratio:
	OK Apply Cancel

The Std. effective flange width of this interior girder is computed as follows:

AASHTO Article 8.10.1:

Total effective flange width shall not exceed ¹/₄ Span Length = 78'/4 = 19.5' = 234''Effective flange width overhanging each side of web <= 6(ts) = 6*(6.5'') = 39'' or ¹/₂ clear distance to next web = 6'/2 = 3' = 36''. Beam spacing = 8' therefore ¹/₂ clear distance to next web = (8'(12'') - 24'')/2 = 72''/2 = 36''. Effective flange width = 36'' + 24'' web + 36'' = 96''.

The LRFD effective flange width is computed as follows:

AASHTO LRFD Article 4.6.2.6.1:

For interior beams, effective flange width taken as the least of:

average spacing of adjacent beams = 8'(12'') = 96''

Girder Profile - Web

irc	der Profile												_		X
e: Sec	Reinforce	ed Concrete Tee /eb depth Reinfor	rcei	ment											
	Begin depth (in)	Depth vary		End depth (in)	Support number	Start distance (ft)	Length (ft)	End distance (ft)							
	46.0000	None	*	46.0000	1 *	0.000	57.500	57.500							<u>_</u>
	46.0000	Parabolic Concave	*	78.0000	1 *	57.500	19.500	77.000							
	78.0000	None	*	78.0000	1 *	77.000	2.000	79.000							
	78.0000	Parabolic Concave	٣	46.0000	2 *	1.000	19.500	20.500							
Þ	46.0000	None	*	46.0000	2 *	20.500	57.000	77.500							
	46.0000	Parabolic Concave	*	78.0000	2 *	77.500	19.500	97.000							
	78.0000	None	*	78.0000	2 *	97.000	2.000	99.000							
	78.0000	Parabolic Concave	*	46.0000	3 -	1.000	19.500	20.500							
	46.0000	None	٣	46.0000	3 *	20.500	57.500	78.000							
															~
										New	D	uplicate		Delete	
										O	<	Apply	1	Can	cel

Girder Profile - Reinforcement

Roint	forced C	oncrete	Tee															
stion	Web d	lanth	Reinforcement															
cuon	web u	leptit	Reinforcement															
Set	Bar mark	Invert	Measured from	Distance (in)	Std number	LRFD number	Bar spacing (in)	Side cover (in)	Supp	ort ber	Directio	n	Start distance (ft)	Straight length (ft)	End distance (ft)	Start fully developed	End fully developed	
▶ 1	F1 *		Top of Girder *	2.8300	2.00	2.00			1	Ŧ	Left	*	0.250	254.500	254.250			
2	F2 *		Top of Girder *	2.8300	3.00	3.00			2	Ŧ	Left	Ŧ	32.500	65.000	32.500			
3	F3 *		Top of Girder	2.8300	4.00	4.00			2	Ŧ	Left	Ŧ	28.750	57.500	28.750			
4	F4 *		Top of Girder *	2.8300	2.00	2.00			2	*	Left	-	24.000	48.000	24.000			
5	F5 *		Top of Girder *	2.8300	6.00	6.00			2	*	Left	*	16.000	32.000	16.000			
6	F2 *		Top of Girder *	2.8300	3.00	3.00			3	*	Left	*	32.500	65.000	32.500			
7	F3 *		Top of Girder *	2.8300	4.00	4.00			3	*	Left	-	28.750	57.500	28.750			
8	F4 *		Top of Girder *	2.8300	2.00	2.00			3	Ŧ	Left	٣	24.000	48.000	24.000			
9	F5 *		Top of Girder *	2.8300	6.00	6.00			3	*	Left	*	16.000	32.000	16.000			
10	G2 *		Bottom of Girder *	6.5000	2.00	2.00			1	Ŧ	Left	*	0.250	254.500	254.250			
11	G1 *		Bottom of Girder *	6.5000	4.00	4.00			1	Ŧ	Left	*	0.250	57.750	57.500			
12	G3 *		Bottom of Girder *	6.5000	4.00	4.00			2	*	Right	-	20.500	57.000	77.500			
13	G1 *		Bottom of Girder *	6.5000	4.00	4.00			4	*	Left	*	57.500	57.750	0.250			
14	G4 *		Bottom of Girder *	3.0000	6.00	6.00			1	*	Left	-	0.250	254.500	254.250			

Export of schedule based reinforced concrete beams to an analysis engine

The BrDR **export** to the analysis engine will compute the required development lengths for the reinforcing steel based on the data entered in this window. These required development lengths are considered when the girder profile is exported to the analysis engine. In the export, BrDR transforms the schedule-based definition of the concrete member into a list of cross sections and assigns these cross sections to ranges along the length of the member. Cross sections are **cut** where the reinforcing steel is developed.

BrDR assumes that the user has described the schedule of reinforcement as it physically exists in the bridge. BrDR considers the required development length of the reinforcement when it exports cross sections for use by an analysis engine. If you do not want BrDR to consider the required development length, either the **Start/End fully developed** box for the range of reinforcement on the **Girder Profile: Reinforcement** tab should be checked or the **Fully developed** box on the **Point of Interest: Development** tab needs to be checked. Checking either of these fully developed boxes means that the reinforcement as entered is fully developed and the full length of the bar will be included in the generated cross sections.

The following simplified example illustrates how cross sections are generated:

The reinforcement profile consists of three #8 bars.

Reinforcement Profile

BrDR computes the development length of the bars as ℓ_d . The bars are fully developed at the ℓ_d distance from the end of the bar.

Exported Cross Section Ranges

Two cross sections are generated in this example. Cross Section 1 contains zero rebar. Cross Section 2 contains all three rebars. Cross Section 1 is applied from the end of the beam to the point where the bars become fully developed. Cross Section 2 is applied over the length where the bars are fully developed. In this example the Bar Spacing or Side Cover values are not entered, as illustrated by the blank cells in the Reinforcement window shown previously. Since these values were not entered, BrDR will not consider the AASHTO specifications that deal with development length modification factors related to these items. It is important to keep in mind that if these values were entered, the bar spacing, and side cover will apply to the bars being described in this row of the table not all the bars in that layer of reinforcement. The following example illustrates this:

	er Pro	ofile														-	
e:	Rein	forced C	oncrete	Tee													
ect	ion	Web d	epth	Reinforcement													
	Set	Bar mark	Invert	Measured from	Distance (in)	Std number	LRFD number	Bar spacing (in)	Side cover (in)	Support number	Direction	Start distance (ft)	Straight length (ft)	End distance (ft)	Start fully developed	End fully developed	
	1	F2 *		Bottom of Girder *	3.0000	3.00	3.00	6.0000	1.5000	1 *	Left *	0.250	65.000	64.750			-
F.	2	F3 -		Bottom of Girder *	3.0000	2.00	2.00	6.0000	4.5000	1 *	Left -	0.250	57.500	57.250			

BrDR uses the bar spacing and side cover of all the bars at the same vertical distance to compute the horizontal locations of the bars when determining the modification factors related to bar spacing and side cover.

If we select **F1** while the Reinforcement tab is open, the BrDR help topic for this window will open as shown below. This help topic contains very important information regarding the data on this window and it should be thoroughly reviewed prior to using the schedule based reinforcement features in BrDR.

This help topic contains links to several other useful topics that should be reviewed prior to defining schedule-based reinforcement in BrDR.

The Export of Schedule Based Reinforced Concrete Members topic contains the rules and assumptions BrDR uses

when exporting schedule based reinforced concrete members to the analysis engine.

This topic also has links to flowcharts which can be referred to determine how BrDR exports the schedule based reinforced concrete members.

The BrDR export to the analysis engine will also check the actual lap lengths of schedule based reinforcement against required lap lengths and provide this information to the user for evaluation. BrDR considers bars to be lapped if the vertical distance to their centroids is equal or if their clear cover is equal and the bars overlap along the length of the member.

When an analysis or design review is run, a file is created that contains the input and output of the calculations BrDR performed to compute the required development lengths and to check the lap lengths. This file can be accessed from the **Engine Outputs** button from the **Results** group of the **DESIGN/RATE** ribbon.

Live Load Distribution factors

Open the **Live Load Distribution** window from the **Bridge Workspace** tree to open the **Live Load Distribution** window.

Click the **Compute from Typical Section...** button to compute the live load distribution factors for this member. The completed **Live Load Distribution** window is shown below.

			Distribution	factor					
	Lanes		(wheels	5)					
	loaded	Shear	Shear at supports	Moment	Deflection				
	1 Lane	1.250	1.250	1.250	0.500	 			
Þ	Multi-lane	1.333	1.750	1.333	1.000				

Girder Profile - Schematic

A schematic view of the reinforcement profile is available while the **Girder Profile** label is selected on the Bridge Workspace tree. See below.

Shear Reinforcement Ranges

Double-click on **Shear Reinforcement Ranges** in the Bridge Workspace tree to open the RC Shear Reinforcement Ranges window and enter values as shown below.

ļ	Start Dis	stance	,		Spacing						
	Name		Sup	port nber	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)		
	#4 Stirrup	-	1	-	0.00	1	0.0000	0.00	0.00		
	#4 Stirrup	*	1	*	0.00	25	6.0000	12.50	12.50		
	#4 Stirrup	*	1	*	12.50	40	12.0000	40.00	52.50		
	#4 Stirrup	*	1	*	52.50	68	9.0000	51.00	103.50		
	#4 Stirrup	*	2	*	25.50	7	12.0000	7.00	32.50		
	#4 Stirrup	*	2	*	32.50	22	18.0000	33.00	65.50		
	#4 Stirrup	*	2	*	65.50	7	12.0000	7.00	72.50		
	#4 Stirrup	*	2	*	72.50	68	9.0000	51.00	123.50		
	#4 Stirrup	*	3	*	25.50	40	12.0000	40.00	65.50		
Þ	#4 Stirrup	*	3	*	65.50	25	6.0000	12.50	78.00		
_											_
	Stirrup wizard							New	Duplicate	e	Delete

Schedule based reinforced concrete Point of Interest wizard

Schedule based reinforced concrete members have a wizard to help create points of interest for a member. The wizard can be accessed by selecting **Points of Interest** in the Bridge Workspace tree and clicking the **Wizard** button on the **Tools** ribbon as shown below:

This wizard helps to quickly create points of interest based on criteria that is selected in the wizard. Select options as shown in the window below and click **Generate.**

Reinford	ted Concrete	r on control in					
General	Delete						
Source	e						
✓ Loc	cation of inte	rest					
\checkmark	0% Span						
\checkmark	40% End sp	an					
\checkmark	50% Interio	r span					
\checkmark	100% Span						
	Tenth points	5					
✓ Loc	cation of cha	nge of gird	er properties				
Sch	nedule based	reinforcem	nent develop	nent - Std	specs		
Sch	nedule based	reinforcem	nent developr	nent - LRFI) specs		
Sch	nedule based	reinforcem	nent developr	nent - LRFI	O specs		
✓ Sch Gen	nedule based ierate	reinforcem	nent developr	nent - LRFI) specs		
Gener	erate ated points o	reinforcen	nent developr	nent - LRFI) specs		
Gener	erate ated points of point	reinforcem of interest	nent developr	nent - LRFI	O specs		
Gener	erate ated points of Po	reinforcen of interest	nent developr	nent - LRFI	O specs ource		A .
Gener	erate ated points o	reinforcen of interest -	nent developr	nent - LRFI	O specs ource	 	
Gener	nedule based nerate ated points o Po	reinforcem of interest	nent developr	nent - LRFI	O specs ource	 	A.
Gener	nedule based nerate ated points o Po	reinforcem of interest –	nent developr	nent - LRFI	ource	 1	
Gener	nedule based nerate ated points o Po	reinforcen of interest	nent developr	nent - LRFI	ource	 	
Gener	nedule based nerate ated points o Pc	reinforcen	nent developr	nent - LRFI	ource		*
Gener	nedule based nerate ated points o Po	of interest	nent developr	nent - LRFI	ource		
Gener	elete	of interest i	nent developr	nent - LRFI	ource		A
Gener	elete	of interest	nent developr	nent - LRFI	ource		
Gener	elete	of interest	nent developr	nent - LRFI	ource		

If the user selects to use the reinforcement development source type, by checking any of the options under the **Source** section of this window, BrDR creates 6 points of interest for each reinforcement profile entered in the **Girder Profile** window. As detailed in the help, these 6 points are:

- 1 Physical start of bar
- 2 Point to determine where bar is no longer required to resist flexure, max of (effective depth of member, 15db, 1/20 clear span) from start of bar
- 3 Point where bar is 100% developed at the start of bar
- 4 Point where bar is 100% developed at the end of bar
- 5 Point to determine where bar is no longer required to resist flexure, max of (effective depth of member, 15db, 1/20 clear span) from end of bar
- 6 Physical end of bar

If more than one point of interest is generated at a location, then the wizard will delete duplicate points of interest when the **OK** button is selected.

The member alternative can now be analyzed.

LFR Analysis

To perform an LFR rating, select the Analysis Settings button from the Analysis group of the DESIGN/RATE ribbon to open the Analysis Settings window as shown below.

Bridge Wo	orkspace - RC -5SchBased	ANALYSIS	REPORTS	?	-	×
BRIDGE WORKSPACE	WORKSPACE TOOLS VIEW	DESIGN/RATE	REPORTING			^
a# a= =	· ·					
	Tabular Specification Engine Res	tulte Sava				
Settings Events	Results Check Detail Outputs Gr	aph Results				
Analysis	Results					

Select the vehicles to be used in the rating as shown below and click **OK**.

Analysis Settings	-		×
O Design review Rating Rating Rating LFR	~		
Analysis type: Line Girder			
Lane / Impact loading type: As Requested V Apply preference setting: None	~		
Vehicles Output Engine Description			
Traffic direction: Both directions	Advanced]	
Vehicle selection Vehicle selection Vehicle selection Vehicle summary Vehicle summary Vehicle summary Rating vehicles InventoryHS 20-44HS 20-44H			
Reset Clear Open template Save template OK Applate	pply	Cance	el

Tabular Results

Next click the Analyze button from the Analysis group of the DESIGN/RATE ribbon to perform the rating.

When the rating is finished the results can be reviewed by clicking the **Tabular Results** button on the **Results** group of the ribbon. The window shown below will open.

4	Analysis R	esults - Sch	edule Based Tee								-		×
	Print Print												
Rep	ort type:		_ Lan	e/Impact loa	ding type	Display Fo	ormat						
Ra	ting Results	s Summary	· •	As requested	d 🔿 Detailed	Single ra	ting level	per row	~				
_					1	1			1	1			
	Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane		
	HS 20-44	Axle Load	LFR	Inventory	54.12	1.503	201.59	3 - (32.8)	Design Shear - Concrete	As Requested	As Requested		A
	HS 20-44	Axle Load	LFR	Operating	92.30	2.564	201.59	3 - (32.8)	Design Shear - Concrete	As Requested	As Requested		
	HS 20-44	Lane	LFR	Inventory	67.69	1.880	110.50	2 - (33.2)	Design Flexure - Concrete	As Requested	As Requested		
	HS 20-44	Lane	LFR	Operating	113.72	3.159	65.90	1 - (84.5)	Design Shear - Concrete	As Requested	As Requested		
													×.
AAS	SHTO LFR E	ngine Versio	on 7.5.0.3001										
Ana	ilysis prefer	ence setting	g: None										
												Cl	ose