AASHTOWare BrDR 7.5.0 Reinforced Concrete Structure Tutorial RC8 – Reinforced Concrete Tee Beam Using BrDR LRFD Engine

Introduction – Elevation and Section

Typical Section

Framing Plan

Diaphragm weight = 1.2 kips/.each

Material Properties

Slab Concrete: Class A (US) f'c = 4.0 ksi, modular ratio n = 8Slab Reinforcing Steel: AASHTO M31, Grade 60 with Fy = 60 ksi

BrDR Training

RC6 - Reinforced Concrete Tee Beam Using BrDR LRFD Engine

Topics Covered

- Reinforced concrete schedule based tee input as girder system.
- Export of schedule based reinforced concrete beams to the BrDR LRFD analysis engine
- BrDR LRFD specification checking

Reinforced concrete schedule based tee input as girder system.

Open the **Bridge Workspace** for **BID 11, RCTrainingBridge1** from the **BRIDGE EXPLORER** by selecting the bridge in the **BRIDGE EXPLORER** and clicking the **Open** button from the **Bridge** group of the ribbon (or by right clicking the bridge and selecting **Open** from the drop-down menu) as shown below.

Br		AASHTOWare B	ridge Design and Rating		1	? — !		×
BRIDGE EXPLORER BRIDGE FOLDER	RATE	TOOLS VIEW						
New Open Batch Find Copy Paste	Copy To •	Remove Delete From						
Bridge M	anage							
	E 🛋	Bridge ID	Bridge Name	District	County	Facility		
Recent Bridges	1	TrainingBridge1	Training Bridge 1(LRFD)	Unknown	Unknown (P)	SR 0051		
All Bridges	2	TrainingBridge2	Training Bridge 2(LRFD)	Unknown	Unknown (P)	N/A		
Deleted Bridges	3	TrainingBridge3	Training Bridge 3(LRFD)	Unknown	Unknown (P)	I-79		
Deleted bridges	4	PCITrainingBridge1	PCI TrainingBridge1(LFD)					
	5	PCITrainingBridge2	PCITrainingBridge2(LRFD)					
	6	PCITrainingBridge3	PCI TrainingBridge3(LFD)					
	7	PCITrainingBridge4	PCITrainingBridge4(LRFD)					
	8	PCITrainingBridge5	PCI TrainingBridge5(LFD)					
	9	PCITrainingBridge6	PCITrainingBridge6(LRFD)					
	10	Example7	Example 7 PS (LFD)					
) 11	RCTrainingBridge1	RC Training Bridge1/LED)					
	12	TimberTrainingBridge1 📴	Open Ctrl+O					
	13	FSys GFS TrainingBridge	Copy Ctrl+C	Unknown	Unknown (P)	NJ-Turnp	ike	
	14	FSys FS TrainingBridge2	Delete	Unknown	Unknown (P)	1-95		
	15	FSys GF TrainingBridge3	Rate	Unknown	Unknown (P)	1-95		
	16	FLine GFS TrainingBridge	Rating Results	Unknown	Unknown (P)	I-75		
	17	FLine FS TrainingBridge2	Manage Analysis Events	Unknown	Unknown (P)	I-75		
	18	FLine GF TrainingBridge	Hedate PrM Patients	Unknown	Unknown (P)	1-95		
	19	TrussTrainingExample	D					
	20	LRFD Substructure Exam	Report Iool					
	21	LRFD Substructure Exam 🦉	Attachments			SR 4034		
	22	LRFD Substructure Exam	General Preferences					Ŧ
	٩ 📄						•	
			Total Brid	ge Count:	31			

The **Bridge Workspace** is shown below.

SUPERSTRUCTURE DEFINITION

Double click on **SUPERSTRUCTURE DEFINITIONS** (or click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the **Manage** group of the **WORKSPACE** ribbon or right mouse click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the popup menu) to create a new structure definition.

A New Superstructure Definition		Х
Girder system superstructure]
◯ Girder line superstructure	Superstructure definition wizard	
Floor system superstructure		ļ
Floor line superstructure		
 Truss system superstructure 		
 Truss line superstructure 		
Reinforced concrete slab system superstructure		
Concrete multi-cell box superstructure		
Advanced concrete multi-cell box superstructure		
	OK Cancel	

Select the **Girder system superstructure** and click **OK** to open the **Girder System Superstructure Definition** window. Enter the data as shown below.

A Girder System Superstructure Definition		– 🗆 X
Definition Analysis Specs Engine		
Name: RC6 Tee Beam		Modeling Multi-girder system MCB
Description:		With frame structure simplified definition Deck type:
Default units: US Customary V Number of spans: 1 Number of girders: 5 Span Length (ft) 1 40.00		Concrete Deck
	0	
Superstructure alignment or the set of the support line	ε: π	
Curved Curved	π	
Tangent, curved, tangent	tt	
Tangent, curved Direction:	Left v	
Curved, tangent End tangent length:	ft	
Distance from last support line to P	: #	
Design speed:	mph	
Superelevation:	%	
		OK Apply Cancel

Click **OK** to apply the data and close the window.

Load Case Description

Expand the tree for **RC6 Tee Beam** superstructure and double click on the **Load Case Description** node in the **Bridge Workspace** tree to open the **Load Case Description** window and define the dead load cases. Use the **Add Default Load Case Descriptions** button to create the following load cases. The completed **Load Case Description** window is shown below.

Load case name	Description	Stage		Туре	Time* (days)	
DC1	DC acting on non-composite section	Non-composite (Stage 1) *	D,DC	-		
DC2	DC acting on long-term composite section	Composite (long term) (Stage 2) 🔹	D,DC	-		
DW	DW acting on long-term composite section	Composite (long term) (Stage 2) 🍷	D,DW	-		
SIP Forms	Weight due to stay-in-place forms	Non-composite (Stage 1)	D,DC	Ŧ		

Structure Framing Plan Detail - Layout

Double-click on **Framing Plan Detail** in the **Bridge Workspace** tree to describe the framing plan in the **Structure Framing Plan Details** window. Enter the data as shown below.

🗛 s	truc	ture Frami	ng Plan Deta	ils									_		×
Nur	nbe	r of spans:	1	Number of gir	ders:	5									
L	ayo	ut Diap	hragms												
					G	irder spa	cing orien	tation							
		· ·	Skew			Perpen	dicular to g	girder							
		Support	(degrees)		C) Along s	upport								
	•	1	0.000				Girder	spacing		1					
		2	0.000			Girder	(f	t)							
						bay	Start of girder	End of airder							
						1	6.00	6.00							
						2	6.00	6.00							
						3	6.00	6.00							
					•	4	6.00	6.00							
				-					-						
										J					
											OK	An	nhu	Const	
											UK	Ар	עיקי	Carlot	3

Structure Framing Plan Detail - Diaphragms

Switch to the **Diaphragms** tab to enter diaphragm spacing. Enter the diaphragm locations shown below for **Girder bay 1**. Click on the **Copy bay to...** button to copy the diaphragm locations to bays 2 to 4.

tructur	e Fram	ing Plan Deta	ils								_		
mber of	f spans	: 1	Number o	of girders: 5									
ayout	Dia	phragms											
irder b	ay: 4		>	Copy bay	to	Dia v	phragm vizard						
Suj	pport mber	S disi	tart tance (ft)	Diaphragm spacing	Number of spaces	Length (ft)	E dis	ind tance (ft)	Load (kip)	Diaphragm			
		Left girder	Right girder	(11)			Left girder	Right girder					
1	*	0.00	0.00	0.00	1	0.00	0.00	0.00	1.2000	Not Assigned *			Î
										New Dupl	icate	Delete	
										ОК	Apply	Cano	ce

Click on the Copy bay to... button. The Copy Diaphragm Bay window opens as shown below.

🗛 Copy Diaphragm B	ay	×
	Bay 1 Bay 2	
Select the new bay(s):	Bay 3	
	Apply Cancel	

Select **Bay 2**, **Bay 3** and **Bay 4** and click **Apply** to copy the diaphragm locations to bays 2 to 4.

Structure Typical Section - Deck

Next define the structure typical section by double-clicking on **Structure Typical Section** in the **Bridge Workspace** tree. Input the data describing the typical section as shown below.

Distance from left edge of deck to superstructure definition ref. line Deck thickness Left overhang Deck Cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface Superstructure definition reference line is within withe bridge deck. Start End Distance from left edge of deck to superstructure definition reference line: 15.00 ft Distance from right edge of deck to 15.00 ft 15.00 ft	
superstructure detrition ret. line superstructure detrition ret. line Deck Deck + thickness Relaterace Line Peck Superstructure detrition ret. ine Relaterace Line Relaterace Line Peck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Superstructure definition reference line is within We heridge deck. Start End Distance from left edge of deck to superstructure definition reference line: 15.00 Distance from right edge of deck to 15.00 Distance from right edge of deck to 15.00	
↓ thickness 1 Heterence Line ↓ ↑ Left overhang ↑ Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface Superstructure definition reference line is within ✓ Distance from left edge of deck to 15.00 ft Distance from right edge of deck to 15.00 ft	
Left overhang Left overhang Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface Superstructure definition reference line is within v the bridge deck. Start End Distance from left edge of deck to superstructure definition reference line: Distance from right edge of deck to 15.00 ft 15.00 ft 15.00 et	
Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface Superstructure definition reference line: is within It he bridge deck. It he bridge deck. Distance from left edge of deck to superstructure definition reference line: 15.00 ft 15.00 ft Distance from right edge of deck to 15.00 ft 15.00 ft	
Superstructure definition reference line is within v the bridge deck. Start End Distance from left edge of deck to superstructure definition reference line: 15.00 ft Distance from right edge of deck to 15.00 e	
Start End Distance from left edge of deck to superstructure definition reference line: 15.00 ft Distance from right edge of deck to 15.00 e	
Distance from left edge of deck to superstructure definition reference line: Distance from right edge of deck to 15.00 e, 15.00 e,	
Distance from right edge of deck to 15.00 e 15.00 e	
superstructure definition reference line:	
Left overhang: 3.00 ft 3.00 ft	
Computed right overhang: 3.00 ft 3.00 ft	
ОК Арріу	

Structure Typical Section – Deck (cont'd)

The **Deck (cont'd)** tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described previously. Enter data as shown below.

A Structure Typical Section	-		×
Distance from left edge of deck to Distance from right edge of deck to superstructure definition ref. line			
Deck Deck			
Left overhang			
Deck Deck (cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Deck concrete: Class A (US)			
Total deck thickness: 8.0000 in			
Load case: Engine Assigned			
Deck crack control parameter: kip/in			
Sustained modular ratio factor: 2.000			
OK	Apply	Canc	el
		cane	

Structure Typical Section - Parapets

The two parapets are described using the **Parapet** tab. Click **New** to add a row to the table. The name of the parapet defaults to the only barrier described for the bridge. Change the **Load Case** to **DC2**. Reinforced concrete structures only have 1 stage but for this example, select **DC2** since the dead load of the parapets needs to be uniformly distributed to all girders and BrDR only allows that type of load distribution in stage 2. Select **Back** in the **Measure to** field (we are locating the parapet on the deck by referencing the back of the parapet to the left edge of the deck). Enter **0.0** for the **Distance at start** and **Distance at end**. Change the **Front face orientation** to **Right**. The completed tab is shown below.

A	Stru	ucture Typical Section	on	1										-		×
E	ack_		Fro -	nt												
	Dec	k Deck (cont'd)		Parapet	Median	Railing Generic	Sidewalk	Lane posit	ion	Striped	lanes	Wearing surface				
		Name		Load case	Measure to	Edge of deck dist. measured from	Distance at start (ft)	Distance at end (ft)	From	nt face ntation						
		Jersey Barrier 🔹	·	DC2 -	Back -	Left Edge 🔹	0.00	0.00	Right						2	÷
	Þ	Jersey Barrier 🔹	· I	DC2 -	Back -	Right Edge 🛛 👻	0.00	0.00	Left	-						
																7
												New	Duplicate	[Delete	
												ОК	Apply		Cano	el

Structure Typical Section - Lane positions

Select the **Lane position** tab. Enter the values shown below or click the **Compute...** button to automatically compute the lane positions. A window showing the results of the computation opens.

number	definition reference line		travelway to superstructure	travelway to superstructure	
	at start (A) (ft)	definition reference line at start (B) (ft)	definition reference line at end (A) (ft)	definition reference line at end (B) (ft)	
1	-13.25	13.25	-13.25	13.25	-

Click **Apply** to apply the computed values. The **Lane Position** tab is populated as shown below.

Stru	ucture Typical	Section				-		×
_	Travely	(A)	ure Definition Reference Line					
Dec	k Deck (co	ont'd) Parapet Median	Railing Generic Sidewa	alk Lane position Striped	lanes Wearing surface			
	Travelway number	Distance from left edge of travelway to superstructure definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at end (B) (ft)			
P	1	-13.25	13.23	-15.25	13.25			
	LRFD fatigue Lanes ava	nilable to trucks:	Compute		New Du	iplicate	Delete	
					ОК	Apply	Canc	el

Schematic – Structure Typical Section

A schematic view of the structure typical section is available while the **Structure Typical Section** node is selected on the Bridge Workspace tree.

The schematic of the Structure Typical Section is shown below.

Superstructure Loads – DL Distribution

Double-click on the **Superstructure Loads** node in the Bridge Workspace tree to open the **Superstructure Loads** window. Navigate to the **DL Distribution** tab of this window. The **DL Distribution** tab of the **Superstructure Loads** window is shown below. BrDR only provides the **Uniformly to all girders** distribution option for stage 2 dead loads. Even though reinforced concrete only has 1 stage, we previously assigned our parapets to stage 2 on the Structure Typical Section window to take advantage of the **Uniformly to all girders** option. The export to the BrDR LRFD analysis engine will uniformly distribute the parapets to all girders and assign that load to the stage 1 model.

	S					_	>
Uniform temperatu	re Gradient t	emperature	Wind	DL distrib	oution		
- Stand 1 decid la	ad aliatella etiana u						
Stage I dead lo	ad distribution						
By tributary a	irea	burin					
By transverse	continuous-be	am analysis					
By percentage	e continuous-be	ann anarysis					
Uy percentag							
Girder	Percentage (%)						
▶ 1		-					
2							
3							
4							
5		~					
O User-defined	dead load						
Stage 2 dead lo	ad distribution						
 Uniformly to 	all girders						
O Bu tributanu							
 By tributary a 	area						
 By tributary a By transverse 	area e simple-beam a	inalysis					
By tributary a	area e simple-beam a e continuous-be	analysis am analysis					
 By tributary a By transverse By transverse By percentage 	area : simple-beam a : continuous-be :e	inalysis am analysis					
 By tributary a By transverse By transverse By percentag 	area e simple-beam a e continuous-be le Percentage (%)	inalysis am analysis					
By transverse By transverse By percentag Girder	area e simple-beam a e continuous-be le Percentage (%)	analysis am analysis					
 By tributary a By transverse By transverse By percentag Girder 1 2 	area e simple-beam a e continuous-be le Percentage (%)	amalysis am analysis					
 By tributary a By transverse By transverse By percentag Girder ▶ 1 2 3 	area e simple-beam a e continuous-be le Percentage (%)	amalysis am analysis					
 By tributary a By transverse By transverse By percentag Girder 1 2 3 4 	area e simple-beam a e continuous-be le Percentage (%)	amalysis am analysis					
 By tributary a By transverse By transverse By percentag Girder I <li< td=""><td>area e continuous-be le Percentage (%)</td><td>amalysis am analysis</td><td></td><td></td><td></td><td></td><td></td></li<>	area e continuous-be le Percentage (%)	amalysis am analysis					
 By tributary a By transverse By transverse By percentag Girder I <li< td=""><td>area e simple-beam a e continuous-be le Percentage (%)</td><td>amalysis am analysis</td><td></td><td></td><td></td><td></td><td></td></li<>	area e simple-beam a e continuous-be le Percentage (%)	amalysis am analysis					
 By tributary a By transverse By transverse By percentag Girder 1 2 3 4 5 User-defined 	area e continuous-be le Percentage (%) dead load	amalysis am analysis					
 By tributary a By transverse By transverse By percentag Girder I Q 3 4 5 User-defined 	area e continuous-be le Percentage (%) dead load	am analysis am analysis					
 By tributary a By transverse By transverse By percentag Girder I <li< td=""><td>area e simple-beam a e continuous-be le Percentage (%) dead load</td><td>analysis am analysis</td><td></td><td></td><td>OK</td><td></td><td></td></li<>	area e simple-beam a e continuous-be le Percentage (%) dead load	analysis am analysis			OK		

Shear Reinforcement

Define shear reinforcement to be used by the girders. Expand the **Shear Reinforcement Definitions** node on the Bridge Workspace tree, select **Vertical** and click on **New** from the **Manage** group of the Workspace ribbon (or double click on **Vertical**). Define the stirrup as shown below. Click **OK** to apply the data and close the window.

Bridge V	/orkspace - RCTrain	ingBridge1	1	ANAI	YSIS	REP	ORTS			? –		×
BRIDGE WORKSPACE	WORKSPACE	TOOLS	VIEW	DESIGN	I/RATE	REPC	RTING					^
Check Out	Restore	×	\$ 🕄		∍ [``		1	S	1	*		
Validate	Save Revert	Close E	xport Refre	sh Op	en Nev	и Сор	y Paste	Duplicate	Delete	Schemat	ic	
	Bridge						Manage					
Workspace		щ	× Sch	ematic			μ×	Repor	t		甲	×
Bridge Components			_									
🖹 🧥 🕰 RCTrainingBrid	lge1 hts		^									
Elevate	d Curb											
I Glass A	(US)											
Orade Grade (50 Definitions											
🖉 Lateral Bra	cing Definitions											
🖶 🖬 SUPERSTRI	UCTURE DEFINITIOI re Definition #1	NS										
🗄 🖷 🖬 Schedu	le Based RC Structu Beam	ire										
	act/Dynamic Load	Allowance	Ana	alysis							щ	×
	d Case Description ming Plan Detail											
🧭 Brad	cing Deterioration											
- Stru	icture Typical Sectio	iection on										
🔤 🕂 Sup	erstructure Loads ar Reinforcement D	efinitions										
	Vertical											
E ØME	Mark Definitions MBERS											
🖶 🗁 BRIDGE AL	TERNATIVES Alternative #1 (F) (0										
_ ++ bhage		c,										
<u> </u>												
🕰 Shear Reinforce	ment Definition	- Vertical							—		>	×
		_										
Name: #4 stirrup	S											
	\bigcap											
		-										
		M	latorialı		Grade	60				V	1	
		IV D	aterial.		A					•		
		Б	ar size:		4	*						
		N	lumber of	legs:	2.00							
	Vertical	l In	nclination	(alpha):	90.0		Degree	es				
ļ	Shear Reinfor	cement										
	J											
					[0	K	Арр	oly	Can	cel	
					-							-

Bar Mark Definitions

Select **Bar Mark Definitions** from the Bridge Workspace tree and click the **New** button from the **Manage** group of the Workspace ribbon (or double click on **Bar Mark Definitions**) to open the **Bar Mark Definition** window.

Create the following Bar Mark Definition to be used for the longitudinal reinforcement in the beam.

🗛 Bar Mar	k Definition				-		×
Name:	#9 Bar	Material:	Grade 60			~	
Bar types:		Bar size:	9	~			
	A	Bar type:	Straight	~			
	Type. Straight		Dimension				
	K B H	A:	40.5000	ft			
	Type: 1						
	Type: 2						
	Type: 3						
			ОК	ļ	Apply	Cance	4

Click **OK** to apply the data and close the window.

Describing member G2

The **Member** window for member **G2** shows the data that was generated when the structure definition was created. No changes are required at this time. After Member Alternatives are defined it will appear in the list of member alternatives.

A Member	-		×
Member name: G2 Link with: None			
Description:			
Existing Current Member alternative name Description			
			*
Number of spans: Span Span length no. (ft) > 1 40.00			
ОК	Apply	Cano	el

Supports

Expand the **G2** member on the **Bridge Workspace** tree and double click on **Supports** to open the **Supports** window. Support constraints were generated when the structure definition was created and are shown below. No changes are required.

1	atia 20 Canaan	2D Flashia	2			
Support	Support	Trans	slation constraints	Rotation constraints		
number	type	X	Y	Z	1	
1	Pinned	· V	V			
2	Roller	-	1			

Defining a Member Alternative

Double click on **MEMBER ALTERNATIVES** in the Bridge Workspace tree for member **G2** to create a new alternative. The **New Member Alternative** window shown below will open. Select **Reinforced concrete** for the **Material type** and **Reinforced Concrete Tee** for the **Girder type**.

Naterial type:	Girder type:
Post tensioned concrete	Advanced Concrete RC
Prestressed (pretensioned) concrete	Reinforced Concrete I
Reinforced concrete	Reinforced Concrete Tee
Steel	
Timber	

Enter the following data in the Member Alternative window.

ember altern	ative: Tee	e Beam Alt							
Description	Specs	Factors	Engine	Import	Control options				
Description:					Material type:	Reinforced Concrete	2		
					Girder type:	Reinforced Concrete	e Tee		
					Modeling type:	Multi Girder System			
					Default units:	US Customary	~		
Cross-	section ba	sed	Right:	6.0000	in in Default rating meth	od:			
Load case	:	Engine As	signed	~	LFR	~			
Additiona	I self load:		kip/ft						
Additiona	I self load:		%						
Crack cor Bottom o	ntrol paran f beam:	neter (Z)	kip/in	Exposur Bottom (e factor of beam: 1.000				

For a schedule based reinforced concrete member, it is important to enter a value for the End Bearing Locations on this window. This data describes the distance from the physical end of the beam to the centerline of the end bearings. It is important to enter this value here so that when the bar mark definitions are assigned to the reinforcement profile, the bars can start to the left of the first support line and to the right of the last support line.

If the bars start to the left of the first support line and to the right of the last support line, BrDR will consider the bars to be partially developed at the centerline of the bearing. Then the analysis engine will be able to compute the **d** distance from the extreme compression fiber to the centroid of the tension reinforcement. This **d** value is required to compute the shear capacity of the section. If the rebar starts at the centerline of the bearing, it will be considered as zero percent developed at this point so a **d** distance cannot be computed, and the shear capacity of the beam will be zero.

Girder Profile - Section

The girder profile can now be defined. Expand the **Tee Beam Alt** member alternative on the Bridge Workspace tree, double click on the **Girder Profile** node to open the **Girder Profile** window and enter the following section properties.

🕰 Girder Profile	– 🗆 X
Type: Reinforced Concrete Tee Section Web depth Reinforcement Allow flange width to vary Tributary width: 72.0000 in	Top flange Material: Class A (US) Modular ratio: Eff. width (Std): in
26.0000 in A: in CJ: in	Eff. width (LRFD): 72.0000 in Struct. thick: 7.5000 in Other parts Material: Class A (US)
	OK Apply Cancel

The LRFD effective flange width is computed as follows.

AASHTO LRFD Article 4.6.2.6.1

For interior beams, effective flange width taken as least of:

• average spacing of adjacent beams = 6'(12'') = 72''

Girder Profile - Web

Enter the following data for the web.

Gir	der Profile								_		×
ype:	Reinforce	ed Concrete Tee									
Sec	tion	eb depth Reinfor	rcement								
	Begin depth (in)	Depth vary	End depth (in)	Support number	Start distance (ft)	Length (ft)	End distance (ft)				
₽	40.0000	None	* 40.0000	1 *	0.000	40.000	40.000				-
											-
								New	Duplicate	Delete	
								OK	Apply	Canc	el

Girder Profile – Reinforcement

Enter the following data for the reinforcement.

🗛 G	rder Pro	ofile														_		×
Тур	: Rein	nforced Cond	crete Tee															
S	ction	Web dep	th Re	inforcement														
	Set	Bar mark	Invert	Measured from	Distance (in)	Std number	LRFD number	Bar spacing (in)	Side cover (in)	Support number	Direction	Start distance (ft)	Straight length (ft)	End distance (ft)	Start fully developed	End fully developed	1	
	1	#9 Bar *		Bottom of Girder 🔹	3.0640	8.00	8.00			1 -	Left *	0.250	40.500	40.250				A
																		*
														New	Duplica	ate [)elete	
														OK	A	oply	Cano	el

Shear Reinforcement Ranges

Double-click on the **Shear Reinforcement Ranges** on the Bridge Workspace tree to open the **Shear Reinforcement Ranges** window and enter the data as shown below.

} ₽	C Shear Reinforcem	ent	Ranges	;					_		×
	Start Distance	,	- H	òpacing							
	Name	Sunu	upport umber	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)			
	#4 stirrups *	1	*	0.00	1	0.0000	0.00	0.00			-
Þ	#4 stirrups *	1	*	0.00	40	12.0000	40.00	40.00			
											-
	Stirrup wizard						New	Duplicate	e	Delet	te ol
							UN	Арру		Canc	

Live Load Distribution Factors

The BrDR LRFD analysis engine will compute the live load distribution factors. No values need to be entered if the user wants the BrDR engine to compute them.

A Live Load Distribution	_		×
Standard LRFD			
Distribution factor input method			
 Use simplified method Use advanced method 			
Allow distribution factors to be used to compute effects of permit loads with routine traffic			
Action: Deflection			
Support Start Length End distance (Janes)			
number (ft) (ft) (ft) 1 lane Multi-lane			
		1	-
Compute from typical section View calcs Duplicat	e	Delete	
ОК Ар	oly	Cance	el

LRFD Design Review

To perform an LRFD design review, click the **Analysis Settings** button on the **Analysis** group of the **DESIGN/RATE** ribbon which opens the **Analysis Settings** window.

Br	Bridge Wo	rkspace - RCTrainin	ıgBridge1		ANALYSIS	REPORTS	?	-	×
BRIDGE	WORKSPACE	WORKSPACE	TOOLS VIE	W I	DESIGN/RATE	REPORTING			^
*	as 🗄		₽\$~	$\overset{\sim}{\sim}$	H.				
Analysis Settings	Analyze Analysi Events	s Tabular Specific Results Check D	ation Engine Detail Outputs	Results Graph	Save Results				
	Analysis		Results						

Click the **Open Template** button and select **HL-93 Design Review** to be used in the rating and click **OK**. The **Analysis Settings** window will appear as shown below.

Analysis Settings					-		
Design review Rating		Design m	ethod:	LRFD	~		
nalysis type: Line Girder	~						
ne / Impact loading type: As Requested	~	Apply pre	eference setting:	None	~		
Vehicles Output Engine Description							
Traffic direction: Both directions	~		Refresh	Temporary vehicles	Advanced		
Vehicle selection			Vehicle summa	У			
- Standard - EV2 - EV2 - EV3 - HL-93 (SI) - HS 20 (SI) - HS 20 (SI) - HS 20-44 - LRFD Fatigue Truck (SI) - LRFD Fatigue Truck (US) - Agency - User defined - Temporary		Add to >> Remove from <<	☐ - Design HL-i Permit I =-Fatigue 'LRFI	ioaos 33 (US) oads Ioads D Fatigue Truck (US)			
Reset Clear Open template	Save te	mplate		OK	Apply	Canc	el:

Next click the Analyze button on the Analysis group of the DESIGN/RATE ribbon to perform the rating.

The Analysis log should always be reviewed when performing an analysis with the BrDR LRFD Engine.

Informational messages are displayed in blue, warning messages are displayed in green and error messages are displayed in red font.

Analysis		_ 🗆 ×
Analysis - Tee Beam Alt		~ ×
Analysis Event Control of the second secon	<pre>to effectively Warning - remove the multiple presence factor from the distribution factors. Warning - Additionally, the one-lane distribution factors will be used for fatigue. Info - Finished loading influence lines with selected vehicles for Stage 3 Span Model Info - Finished load analysis successfully completed!*** Info - Performing LRPD Specification Check Info - Tee Beam Alt - STAGE 3 - Support Location - 0.0000 (ft) Critical shear distance dv =3.0288 (ft) to right of this support. Shear will be checked at 3.0288 (ft) to right of this support. Shear will be checked at 3.0288 (ft) to left of this support. Shear will be checked at 36.9712 (ft) - Location - 2.4572 (ft) - Location - 4.0000 (ft) - Location - 4.0000 (ft) - Location - 16.0000 (ft) - Location - 16.0000 (ft) - Location - 16.0000 (ft) - Location - 23.0000 (ft) - Location - 23.0000 (ft) - Location - 23.0000 (ft) - Location - 30.0000 (ft) - Location - 3.0288 (ft) -</pre>	
	Serrors A Warnings	
		Close

The following steps are performed in a design review using the BrDR LRFD analysis engine.

 Finite element models are generated for the dead load and live load analyses. A Stage 1 FE model is generated for the dead loads on the reinforced concrete beam. A Stage 3 FE model is generated for the live load analysis. Reinforced concrete beams only have 1 stage so the Stage 1 and Stage 3 models contain the same cross section properties.

The model generated by the export to the BrDR LRFD analysis engine will contain node points at locations where the cross section properties change, span tenth points, support locations, and user defined points of interest.

- 2. The Stage 1 FE model is analyzed for the dead load. The Stage 3 FE model is loaded with unit loads at each node to generate influence lines for the beam. The influence loads are then loaded with the selected vehicles to find the maximum live load effects.
- 3. Load combinations are generated for the loadings and specification checks are performed at each of the nodes in the finite element model as well as the locations where schedule based reinforcement is developed.

The report containing the calculations of the rebar development locations is shown below.

	- 0	×						
ICTrainingBridge1 ⇒ RCG Tee Beam ⇒ G2 ⇒ Tee Beam Alt → Lrid Beinf Dev Length Calcs Log File (1 ⇒ AASHTO_LRFD → Live Load Distribution Factors Calc → Live Load Distribution Factors Calc → Live Load Distribution Factors Calc → Live Load Spec Check Results → Log File	Vonday Jan. 23, 2023 11:30:04) :ulations :ulations Summary							
LrfdReinfDevLengthCalcs - Notepad						-		×
File Edit Format View Help								
Bridge: RC Training Bridge1(LF Structure: RC6 Tee Beam Member: G2 Member Alt: Tee Beam Alt	:D)							
Spec: AASHTO LRFD Bridge Desig Edition: 9 Year: 2020 including 0 interim Note: These development length 	<pre>in Specifications is i calculations are only valid for Bar Mark Def: #9 Bar Bar St</pre>	#11 bars or smaller	• in normalweight	concrete	with f'c up	to 15	.0 ks:	i.
Keim. See #. 1	bar hark ber. #5 bar bar bar se	are bistance0.250						
INPUT: Distance: 0.000 ft Bar Size: 9 Bar Clr Cover: 2.500 in	Reinf. Set #: 1 Bar Dia: 1.128 in Bar Clr Spacing:N/A	Bar Mark Def: #9 B Bar Area: 1.00 i Bar Side Cover: N	lar n^2 I/A					
Bar C/C Spacing: N/A	Bar Fy: 60,000 psi	Epoxy: FALSE						
Hooked Bar: FALSE Concrete f'c: 4,000 psi Consider Fully Developed Start Consider Fully Developed End I	Hook At End of Mor: FALSE Concrete Composition: Normal t Ind: FALSE Ind: FALSE	Stirrup Spacing: Top Bar: FALSE	12.000 in					
Hooked Bar: FALSE Concrete f'c: 4,000 psi Consider Fully Developed Start Consider Fully Developed End 1 OUTPUT: Article 5.10.8.2.1a-2: Basic Article 5.10.8.2.1b: Concr Article 5.10.8.2.1b: Concr Article 5.10.8.2.1b: Concr Article 5.10.8.2.1c: reinf Article 5.10.8.2.1c: exces Article 5.10.8: Comput	Hook At End of Mbr: FALSE Concrete Composition: Normal t Ind: FALSE Ind: FALSE Dev. Length = 81.22 in forcement location factor : 1.0 ing factor: 1.0 rete density modification factor forcement confinement factor: 0.4 is reinforcement factor: 1.0000 red Dev. Length = 32.49 in	Stirrup Spacing: Top Bar: FALSE (5.4.2.8): 1.0000 000	12.000 in					

A summary and a detailed report of the computed live load distribution factors are available.

Х A RCTrainingBridge1 B-RCTrainingBridge1 RC6 Tee Beam ⊟-G2 ia⊡Tee Beam Alt ····· Lrfd Reinf Dev Length Calcs Log File AASHTO LRFD Live Load Distribution Factors Calculations Live Load Distribution Factors Calculations Summary (Monday Jan. 23, 2023 11:30:06) -Stage 3 Spec Check Results Log File LRFD Dist Factor Summary - Notepad Х File Edit Format View Help ~ ** ** Note that this file contains the distribution factors ** computed by the BrD wizard based on the bridge description ** ** in BrD on the date and time below. These computed values ** ** may not match those shown in BrD if the user has changed ** ** the BrD bridge description after these distribution ** ** ** factors were computed. *********** Bridge: RC Training Bridge1(LFD) Bridge ID: RCTrainingBridge1 NBI Structure ID: RCTrainBridge1 BID: 11 Superstructure Def: RC6 Tee Beam Member: G2 Member Alternative: Tee Beam Alt Date: 1/23/2023 Time: 11:30:06 AM AASHTO LRFD Bridge Design Specifications, Edition 9, Interim 0 Moment Distribution Factor Schedule Start End Single Lane Multi Lane DF DF Distance Distance (ft) (ft) (Lanes) (Lanes) -----_____ 0.00 40.00 0.491(A) 0.630(A) Shear Distribution Factor Schedule Start End Single Lane Multi Lane Distance Distance DF DF (ft) (ft) (Lanes) (Lanes) _ _ _ _ _ _ _ _ _ 0.00 40.00 0.600(A) 0.671(A) < > Ln 1, Col 1 100% Windows (CRLF) UTF-8

BrDR LRFD specification checking

A summary report of the specification check results is also available. This summary report lists the design ratios for each spec article at each spec check location point. The design ratio is the ratio of capacity to demand. A design ratio less than one indicates the demand is greater than the capacity and the spec article fails. A design ratio equal to 99.0 indicates the section is subject to zero demand.

🗛 RCTrainii	ngBridge1						-		Х							
自-RCTrain 白-RC6 白-4	ingBridge1 Tee Beam G2 ⊡-Tee Beam Alt ⊡-AASHTO_LI Live Lor Live Lor Log File	Dev Length RFD ad Distribut ad Distribut Spec Chec	n Calcs Log H tion Factors tion Factors k Results (N	File Calculations Calculations S Ionday Jan. 23	Summary 3, 2023 11:3	0:09)										
		C:\Users\S	haranyaRao)\Documents\/	AASHTOWa	re\BrDR75i	\RCTrai	ningl 🔻	c C	Search	۱		Q,	• ŵ	口 公 戀	×
	Bridge ID : R Bridge : RC 7 Superstructur Member : G2 Analysis Pref	CTraining I CTraining I Training I Te Def : R		NE Br Me	3I Stru idge A ember	cture] lt : Alt :]	ID : R Fee Be	.CTra eam A	inBridş Alt	ge1				^		
	AASHTOLE	TED Spec	cification <u>,</u> C heck	Edition 9, I	<u>(nterim 0</u> ary											
			Article			Status	1									
		Flexure ((5.6.3.2, 5	.6.3.3)		Pass	1									
		Crack	Control (5	5.6.7)		Pass	1									
	Shear ((5.7.3.3, 5	5.7.2.5, 5.	7.2.6, 5.7.3.	.5)	Fail	1									
		Fatig	gue (5.5.3	.2)		Pass	1									
		Deflect	tion (2.5.2	2.6.2)		Pass]									
	Girder I	Positiv	e Flex	ure An	alysis											
	Location (ft)	LS	Load Comb	Mr (kip-ft)	Mu (kip-ft)	De	sign F	latio I	Mr/M	u	Code]				
	0.000	STR-I	1	120.91	0.0	00			99	.000	Pass					
	2.457	STR-I	1	1276.49	298.3	36			4	.278	Pass					\sim
	1 2 0 2 0	CTTD T	I 1	1076.40	1 2/22	171			2	471	n	1				

The specification checks can be viewed by selecting the **Specification Check Detail** on the **Results** group of the **DESIGN/RATE** ribbon.

A Specification C	hecks for Tee Bea	rm Alt - 17 of 223		- 0	×
Properties Specification filter	Generate	Articles All articles Format Bullet list Report			
Superstruct Superstruct Stage 3 S	ure Component Beam Alt Span 1 - 0.00 ft. Span 1 - 2.46 ft. Span 1 - 2.46 ft. Span 1 - 4.00 ft. Span 1 - 4.00 ft. Span 1 - 16.00 ft. Span 1 - 24.00 ft. Span 1 - 24.00 ft. Span 1 - 28.00 ft. Span 1 - 36.00 ft. Span 1 - 36.07 ft.	Specification reference Limit State ✓ 2.5.2.6.2 Criteria for Deflection 5.4.2.1 Compressive Strength ■ 5.4.2.1 Compressive Strength 5.4.2.5 Poisson's Ratio ■ 5.4.2.5 Poisson's Ratio 5.4.2.6 Concrete Density Modification Factor ✓ 5.5.3.2 Reinforcing Bars and Welded Wire Reinforcement 5.5.4.2 Strength Limit State - Resistance Factors ■ 5.6.2.2 Rectangular Stress Distribution ✓ 5.6.3.3 Minimum Reinforcement ✓ 5.6.3.3 Minimum Reinforcement Transverse Reinforcement dv distance from support Transverse Reinforcement ✓ 5.7.3.3 Nominal Shear Resistance	Flex. Sense N/A N/A	Pass/Fail Passed Passed General Comp. General Comp. Passed Passed	
S	Span 1 - 37.54 ft. Span 1 - 40.00 ft.	Rebar developed at this point Cof_Inertia Section Property Calculations	N/A N/A N/A	General Comp. Failed General Comp.	

The BrDR RC LRFD engine performs spec checks at span tenth points, cross section property change points, and support locations. In addition, the program will perform spec checks at distance dv from the support and at locations where schedule based reinforcement starts/stops and is fully developed. The program will perform spec checks at user defined points of interest as well but note that a BrDR point of interest need not be created to have spec checks performed at the preceding locations.

Open the spec check detail window for the flexural resistance at midspan. The following is noted for this window, other spec articles are similar:

1. For each spec check location, both the left and right sides of the point are evaluated. The Deflection article is an exception to this since deflection must be the same between the left and right sides of a point.

- 2. The design ratio is printed out for the article. The design ratio is the ratio of capacity to demand. A design ratio less than one indicates the demand is greater than the capacity and the spec article fails. A design ratio equal to 99.0 indicates the section is subject to zero demand.
- 3. The Strength-I, Service-I and Fatigue limit states are the only limit states investigated. For each limit state, the max and min force effect is checked. Thus, each limit state shows two rows of data.
- 4. The LL load combination is shown in this column. If the location is not at a node in the FE model (e.g., the node is at a point where the rebar is fully developed), this column will list two load combinations separated by a comma. The first load combination is the combination considered at the left end and the second load combination is the combination considered at the right end of the FE element that contains this location. The resulting load displayed is a linear interpolation between the two displayed load cases.

Br Spec Check Deta	ail for 5.6.3.2 Flexural Resi	stance (Reinforced C	oncrete)					-		×
5 Concrete Str 5.6 Design for 5.6.3 Flexura 5.6.3.2 Flexura (AASHTO LRFD H	ructures r Flexural and Axia l Members ral Resistance Bridge Design Speci	l Effects - B H fications, Nint	Regions th Editic	on)						^
RC T-Beam - At	t Location = 20.000	0 (ft) - Left	1							
	Cross Sectio	n Properties								
Total height = Flange Width = Flange Thick = No fillet spec Area = 1372.0	= 39.50(in) = 72.00(in) = 7.50(in) cified. 00(in^2)	Web Widt Web Widt	n Top = n Bot =	26.00(in) 26.00(in)						
Flexural Rein	forcement									
As Dist Bo (in^2) 8.00	t. From Dttom (in) 3.06									
f'c = 4.00 ks:	i									
Note: If the o	capacity has been o se the Resistance i	verridden, the	Resistan	ice is compute	d as ove:	rride phi*over:	ride capacity.			
3	4							Ē	2	
Limit State	Lord	Ma	Dhi	Mrs	Ove:	rride	Mr=	Mm	()(1)	
Limit State	Combination	kin-ft	FILL	kin-ft	FILL	kin-ft	kin-ft	PIL)	riu	
STR-I	1	1218.90	0.900	1418.32			1276.49	1.	.05	
STR-I	1	311.17	0.900	1418.32			1276.49	4.	.10	
STR-I	2	1233.57	0.900	1418.32			1276.49	1.	.03	
STR-I	2	311.17	0.900	1418.32			1276.49	4.	.10	
SER-I	1	795.30	0.900	1418.32			1276.49	1.	.61	
SER-1	1	345.75	0.900	1418.32			1276.49	3.	50	
SER-I SER-I	2	345.75	0.900	1418.32			1276.49	3	. 69	
FAT-I	3	283.40	0.900	1418.32			1276.49	4	.50	
FAT-I	3	0.00	0.900	1418.32			1276.49	99.	.00	
FAT-II	3	129.55	0.900	1418.32			1276.49	9.	.85	\sim
<										>
								[Oł	<

Tabular Results

Tabular dead load and live load analysis results are available in the Analysis Results window. They can be reviewed by clicking the **Tabular Results** button on the **Results** group of the **DESIGN/RATE** ribbon. The window shown below will open.

Bridge Work	kspace - RCTrainingBridge1		ANALYSIS	REPORTS	?	-	×
BRIDGE WORKSPACE	WORKSPACE TOOLS	VIEW	DESIGN/RATE	REPORTING			^
Analysis Settings Analysis Analysis Analysis	Tabular Results Check Detail Out Result	ogine Results tputs Graph ts	Save Results				

"	Analy	rsis Results -	Tee Beam Al	t						_		×
	Print Print											
Rej	oort typ	be:		Stage			0	ead Load Cas	e			
De	ead Loa	ad Actions	\sim	Non-co	omposite (Stag	ge 1)	~	Load Case 1 -	Self Load(Stage	: 1:[🖌		
								Load Case 1 -	Self Load(Stage	1:D,DC)		
	-	Location	%		Moment	Shear	Axial	Load Case 2 -	Exterior Diaphr	agm Loads(Stage	1:D,DC)	
	Span	(ft)	Span	Side	(kip-ft)	(kip)	(kip)	Load Case 3 -	Parapet Loads(I	DC2:Stage 1:D,DC)	
►	1	0.00	0.0	Right	0.00	29.33	0.0	29.33	0.0000	0.0000		-
	1	4.00	10.0	Both	105.60	23.47	0.0	0	0.0000	-0.0362		
	1	8.00	20.0	Both	187.73	17.60	0.0	0	0.0000	-0.0684		
	1	12.00	30.0	Both	246.40	11.73	0.0	0	0.0000	-0.0937		
	1	16.00	40.0	Both	281.60	5.87	0.0	0	0.0000	-0.1097		
	1	20.00	50.0	Left	293.33	0.00	0.0	0	0.0000	-0.1152		
	1	20.00	50.0	Right	293.33	0.00	0.0	0	0.0000	-0.1152		
	1	24.00	60.0	Both	281.60	-5.87	0.0	0	0.0000	-0.1097		
	1	28.00	70.0	Both	246.40	-11.73	0.0	0	0.0000	-0.0937		
	1	32.00	80.0	Both	187.73	-17.60	0.0	0	0.0000	-0.0684		
	1	36.00	90.0	Both	105.60	-23.47	0.0	0	0.0000	-0.0362		
	1	40.00	100.0	Left	0.00	-29.33	0.0	29.33	0.0000	0.0000		
												-
AA	SHIOL	.RFD Engine	Version 7.5.0	.3001								
An	alysis p	reterence se	tting: None									
											Cle	ose

🗛 Ani	lysis Results -	Tee Beam A	Alt													-		×
Prir	t																	
Report 1	ype:		Stage		1	Live Load		Li	ve Load Type									
Live Lo	ad Actions	~	Composit	e (short term) (St	age 3) 🖌	HL-93 (US)		~ <i>F</i>	xle Load	~								
								L	ane									
Spa	Location (ft)	% Span	Positive Moment (kip-ft)	Negative Moment (kip-ft)	Positive Shear (kip)	Negative Shear (kip)	Positive Axial (kip)	Negativ Axial (kip) T	ixle Load andem ruck + Lane	/e in	Positive X Deflection (in)	Negative X Deflection (in)	Positive Y Deflection (in)	Negative Y Deflection (in)	% Impact Pos Reaction	% Impact Neg Reacti	t on	
	1 0.00	0.0	0.00	0.00	49.23	3 0.00	0.00	т 0	andem + Lane	0.00	0.0000	0.0000	0.0000	0.0000	33.000	0.	000	-
	4.00	10.0	160.96	0.00	42.81	-2.85	0.00	0.0	0		0.0000	0.0000	0.0000	-0.0278				
	1 8.00	20.0	273.63	0.00	36.39	-5.71	0.00	0.0	0		0.0000	0.0000	0.0000	-0.0530				
	1 12.00	30.0	338.02	0.00	29.97	-8.56	0.00	0.0	0		0.0000	0.0000	0.0000	-0.0727			_	
	1 16.00	40.0	372.89	0.00	24.26	5 -12.84	0.00	0.0	0		0.0000	0.0000	0.0000	-0.0849			_	
	1 20.00	50.0	368.87	0.00	18.55	5 -18.55	0.00	0.0	0		0.0000	0.0000	0.0000	-0.0888			_	
	1 24.00	60.0	372.89	0.00	12.84	-24.26	0.00	0.0	0		0.0000	0.0000	0.0000	-0.0849				
	1 28.00	70.0	338.02	0.00	8.56	5 -29.97	0.00	0.0	D		0.0000	0.0000	0.0000	-0.0727			_	
	1 32.00	80.0	273.63	0.00	5.71	-36.39	0.00	0.0	D		0.0000	0.0000	0.0000	-0.0530			_	
	1 36.00	90.0	160.96	0.00	2.85	5 -42.81	0.00	0.0	0		0.0000	0.0000	0.0000	-0.0278				
	1 40.00	100.0	0.00	0.00	0.00	-49.23	0.00	0.0	0 49.23	0.00	0.0000	0.0000	0.0000	0.0000	33.000	0.	000	
																		~
ΔΔSHT	LRED Engine	Version 7.5	0 3001															
Analysis	nreference se	atting: None																
- analysis	preference a	-tung. None														[Clo	ose

Note these values include dynamic load allowance, distribution factors and any live load scale factor entered in the **Analysis Settings** window.

Method of Solution

The Method of Solution manual can be accessed from the Help menu in BrDR.

Click on the Bridge Workspace ribbon to access the Support menu.

In the **Engine Help** column select **AASHTO LRFD** to access the **Engine Help** and **Method of Solution** for the selected engine. Double-click on **Method of Solution** from the **Engine Help Configuration** column to open the method of solution for the selected engine

\bigotimes	Bridge Wo	orksp	pace - RCTrainingBridge1	-		, x
🖶 Print	Support					
Help	 Help Topics Getting help using the software 					
🖾 Close	Frequently Asked Questions Find questions that are frequently asked					
	Support Find more information on technical support					
	Engine					
	Engine Help		Engine Help Configuration			
	AASHTO ASR	`	Engine Help			
	AASHTO Culvert LFR	Ŀ	Method of Solution			
	AASHTO Culvert LRFD	Ŀ				
	AASHTO Culvert LRFR	Ŀ				
	AASHTO LFR	Ŀ				
	AASHTO LRFD Default Engine Help					
	AASHTO LRFD Substructure (BrD)					
	AASHTO LRFR					
	AASHTO Metal Culvert LFR					
	AASHTO Metal Culvert LRFR 🗸	-			_	
	Set As Main Engine Help					
	About					
	About					
	Bridge Design & Rati Version 7.5.0.1 Build date Oct 12 2022	ing				۲

