AASHTOWare BrDR 7.5.0 Feature Tutorial WIZ1 – Wizards in BrDR A wide variety of wizards and tools are available in BrDR to provide shortcuts for entering data. This example describes the wizards and tools and describes how to access these tools in BrDR.

- What Wizards are Available?
 - Superstructure Definition Wizard
 - Diaphragm Wizard
 - Floorbeam Location Wizard
 - o Stringer Unit Layout Wizard
 - o Floorbeam Member Alternative Wizard
 - o Reinforced Concrete Point of Interest Wizard
 - Culvert Wizard
- Other Tools Available
 - Compute Lane Position button
 - Compute Standard and LFD Live Load Distribution Factors from Typical Section button
 - o Compute Deck Profile from Typical Section button
 - Stiffener Ranges Apply at Diaphragms and Stiffeners Between Diaphragms buttons
 - Export to Prestress Design Tool
 - RC Box Culvert Design Tool Wizard

What Wizards are Available?

Superstructure Definition Wizard

Provides a shortcut for adding a girder system or girder line superstructure definition.

Diaphragm Wizard

Provides a shortcut for defining the diaphragms for a girder system superstructure definition.

Floorbeam Location Wizard

Provides a shortcut for creating floorbeam members in a floor system superstructure definition.

Stringer Unit Layout Wizard

Provides a shortcut for creating stringer member alternatives in a floor system superstructure definition.

Floorbeam Member Alternative Wizard

Provides a shortcut for creating floorbeam member alternatives in a floor system superstructure definition.

Reinforced Concrete Point of Interest Wizard

Provides a shortcut for creating and deleting points of interest in a reinforced concrete member alternative.

Culvert Wizard

Provides a shortcut for creating Culvert, Culvert Structure Alternative and assign Culvert Definition to the new bridge alternatives.

Superstructure Definition Wizard

This wizard provides a shortcut for creating a girder system or girder line superstructure definition. The new superstructure definition can be composed of steel rolled beams or plate girders, or prestressed concrete I, Box, U or Tee beams.

This wizard creates members and member alternatives as well as populating applicable windows within the **Superstructure Definition** portion of the **Bridge Workspace** tree. The wizard is primarily intended for a design based on LRFD.

The wizard can be accessed by selecting the **SUPERSTRUCTURE DEFINITION** folder in the **Bridge Workspace** tree and clicking the **Wizard** button from the **TOOLS** ribbon (or right click and select **Wizard**) as shown below.

Bridge Workspace - Traini	ngBridge1	ANALYSIS	REPORTS	?	_		\times
BRIDGE WORKSPACE WORKSPACE	TOOLS VIEW	DESIGN/RATE	REPORTING				
Multimedia Attachments Preferences Tool Bridge		nport gn Tool					
Workspace	☆ X Schema	tic	× %	Report		;	× ×
Bridge Components	문 Expand Branch						
🕮 · 🕰 Single Span Bridge (E) (C)	New Analyze					;	× ×
	 View Summary View Detailed 						
	Wizard	::					
	Import Design						
	 General Prefer Close Bridge V 						
(

After a superstructure definition has been created using the wizard, the following windows may need to be visited to revise or enter additional data for both LFD and LRFD analysis.

Steel Bridge

Framing Plan Detail: Enter the diaphragm locations.

Structure Typical Section: Enter wearing surface data.

Bearing Stiffener Definition: Enter a bearing stiffener definition.

Deck Profile and Haunch Profile windows (for exterior girders): Enter the data for exterior girders.

Lateral Support: Enter the lateral support for the top flange.

Stiffener Ranges: Revise or enter the transverse stiffener ranges.

Bearing Stiffener Ranges: Assign bearing stiffener definitions to locations of bearing stiffeners.

Prestressed Concrete Bridge

Framing Plan Detail: Enter the diaphragm locations.

Structure Typical Section: Enter wearing surface data.

Shear Reinforcement Definitions: Enter a shear reinforcement definition.

Stress Limit Sets: Enter the final allowable slab compression.

Deck Profile and Haunch Profile windows (for exterior girders): Enter the data for exterior girders.

Strand Layout: Enter the strand layouts for the prestressed beams.

Interior Diaphragms: Enter the interior diaphragms for prestressed box beams.

Shear Reinforcement Ranges: Enter the shear reinforcement ranges.

The following windows may need to be visited to enter additional data for an LFR analysis:

Stress Limit Sets: Enter the LFR allowable stresses for a prestressed concrete bridge.

Live Load Distribution: Enter the standard (LFR) distribution factors.

Deck Profile: Enter the standard (LFR) effective slab width.

Diaphragm Wizard

This wizard provides a shortcut for defining the diaphragms for a girder system superstructure definition. This wizard will create diaphragms for all the girder bays in the structure based on the diaphragm layout and the spacing input. Using the wizard causes previously entered diaphragm locations to be deleted and replaced by newly computed locations.

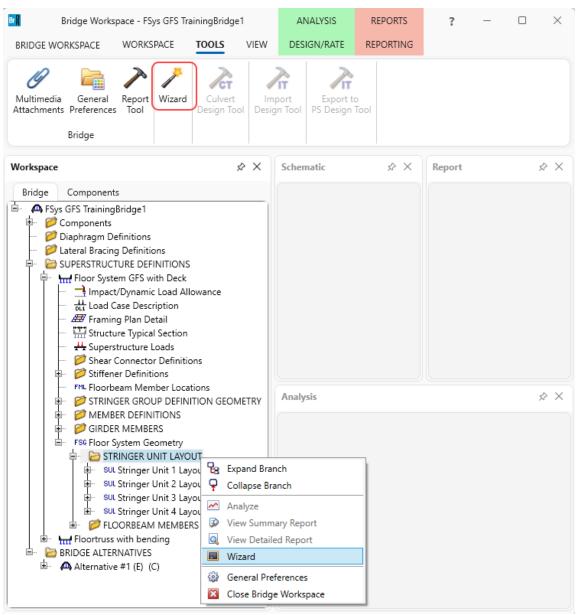
This wizard can be accessed by clicking the **Diaphragm Wizard** button on the **Structure Framing Plan Details**: **Diaphragms** tab as shown below.

mb	er of	spans:	1	Number of	girders: 4								
ayo	ut	Diap	hragms l	ateral bracing	ranges								
iird	er ba	y: 1		~	Copy bay to		Diaph wiza						
num		pport mber	dis	tart tance (ft)	Diaphragm spacing (ft)	Number of spaces	Length (ft)	dist	ind tance (ft)	Load (kip)	Diaphragm		
			Left girder	Right girder	(11)			Left girder	Right girder				
>	1	\sim	0	0	0	1	0	0	0		Not Assigned $~~$ $~~$		1
	1	~	27.311	18.2083	0	1	0	27.311	18.2083		Not Assigned 🗸 🗸		
	1	\sim	27.311	18.2083	26.8333	4	107.3	134.6442	125.5415		Not Assigned $~~$ $~~$		
	1	~	161	161	0	1	0	161	161		Not Assigned 🗸 🗸		
											New Duplicate	Delete	-

A diaphragm wizard is also available for creating diaphragms for a **Stringer Group Definition Geometry** in a floor system superstructure definition. It is accessed by clicking the **Diaphragm Wizard** button on the **Stringer Group Definition Geometry** window as shown below.

ie:	Def 1	Descri	ption:					
ringe	er span lengths	Diaphragn	ns					
Diap	hragm Bay: 1	~	Copy bay	to	Diaphragi	n wizard		
	Star distar (ft)	nce	Diaphragm spacing	Number of spaces	Length (ft)	Er dist (f	ance	Load (kip)
	Left	Right	(ft)			Left	Right	
>	0.958333	0.958333	0	1	0	0.958333	0.958333	0.12
	0.958333	0.958333	19	2	38	38.958333	38.958333	0.12

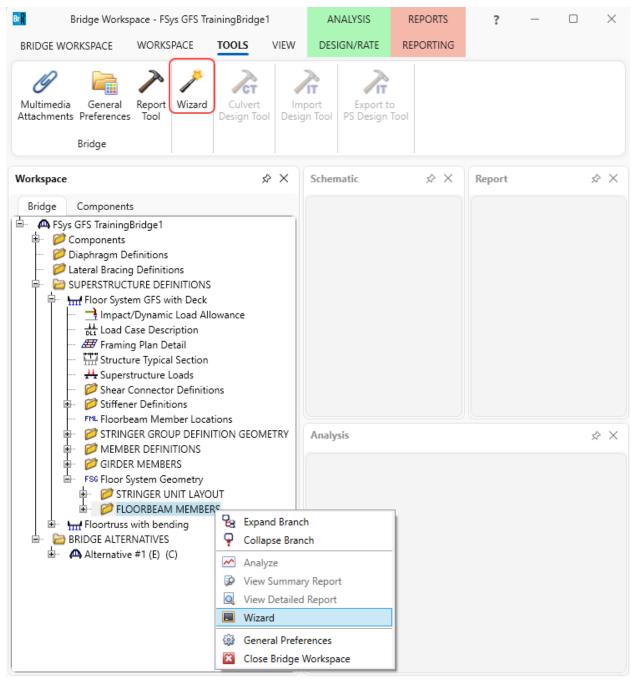
Floorbeam Location Wizard


The Floorbeam Location Wizard provides a shortcut for creating floorbeam members in a floor system superstructure definition. This wizard will create floorbeam members based on the naming convention and spacing being input. The floorbeam member locations can then be modified on the Floorbeam Member Locations window. The Floorbeam Location Wizard can be accessed by clicking the Floorbeam location wizard... button on the Floorbeam Member Locations window as shown below.

a) Flo	oorbeam Membe	er Locations					_		×
		Floorbeam name	Reference distance (ft)	Offset (ft)	Location (ft)	Skew (degrees)				
	>	Floorbeam1	0	0	0	0				
		Floorbeam2	0	20	20	0				
		Floorbeam3	20	20	40	0				
		Floorbeam4	40	20	60	0				
		Floorbeam5	60	20	80	0				
		Floorbeam6	80	20	100	0				
		Floorbeam7	100	20	120	0				
		Floorbeam8	120	20	140	0				
		Floorbeam9	140	20	160	0				
										The second se
	1	Floorbeam ocation wizard					New	Duplicate	Dele	ncel
							UK	Apply		icei

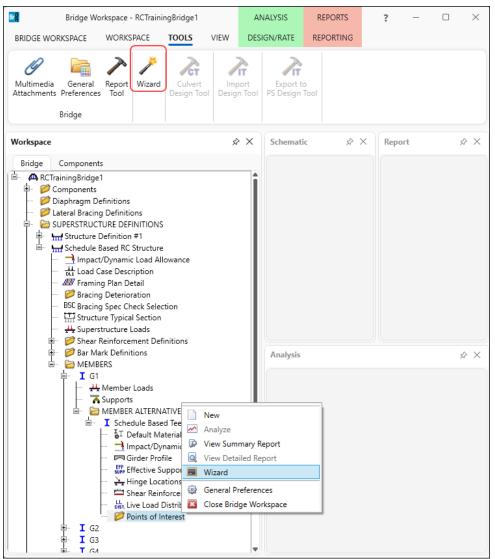
Stringer Unit Layout Wizard

The **Stringer Unit Layout Wizard** provides a shortcut for creating stringer member alternatives in a floor system superstructure definition. This wizard permits the assignment of stringer definitions and live load distribution factors to the newly created stringer member alternatives. **Stringer Group Definition Geometry** objects should be created before using this wizard as the wizard requires these objects.


The **Stringer Unit Layout Wizard** can be accessed by clicking on **STRINGER UNIT LAYOUT** in the **Bridge Workspace** and then clicking the **Wizard** button from the **TOOLS** ribbon (or right click and select **Wizard**) as shown below.

Floorbeam Member Alternative Wizard

The **Floorbeam Member Alternative Wizard** provides a shortcut for creating floorbeam member alternatives in a floor system superstructure definition. This wizard permits the assignment of floorbeam definitions to the newly created floorbeam member alternatives.


The Floorbeam Member Alternative Wizard can be accessed by clicking FLOORBEAM MEMBERS in the Bridge Workspace and then clicking the Wizard button from the TOOLS ribbon (or right click and select Wizard) as shown below.

Reinforced Concrete Point of Interest Wizard

The **Reinforced Concrete Point of Interest Wizard** provides a shortcut for creating and deleting points of interest in a reinforced concrete member alternative. This wizard is available for schedule-based reinforced concrete member alternative. The wizard will create or delete points of interest based on the source types selected. The available source types are **Location of interest**, **Location of change of girder properties**, **Schedule based reinforcement development – Std Specs**, and **Schedule based reinforcement development – LRFD Specs**. Detailed information on the point of interest can then be entered on the **Point of Interest** window.

The **Reinforced Concrete Point of Interest Wizard** can be accessed by selecting **Points of Interest** in the **Bridge Workspace** tree and then clicking the **Wizard** button from the **TOOLS** ribbon (or right click and select **Wizard**) as shown below.

Culvert Wizard

This wizard permits the creation of an initial culvert based on the properties entered including the number of culverts and distance of the location of the culvert.

The button for the culvert wizard can be found in the **Bridge Alternative** window as shown below.

A Bridge Alternative		_	
Alternative name:]		
Description Substructures			
Description:			
Horizontal curvature	Global positioning		
Reference line length: ft	Distance:	ft	
O Start bearing End bearing	Offset:	ft	
Starting station: ft	Elevation:	ft	
Bearing: N 90^ 0' 0.00" E			
Bridge alignment	Start tangent length:		ft
O Curved	Curve length:		ft
Tangent, curved, tangent	Radius:		ft
Tangent, curved	Direction:	Left 🗸	
Curved, tangent	End tangent length:		ft
Superstructure wizard			
	ОК	Apply	Cancel

Other Tools Available

Compute Lane Position Button

This button will compute the locations of travelways based on the appurtenances entered. This button, labeled **Compute**, is available on the **Structure Typical Section: Lane Position** tab as shown below.

A Structure Typical Section	_		×
(A) (B) Superstructure Definition Reference Line Travelway 1 (Travelway 2) (Cont'd) Parapet Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface			
Travelway numberDistance from left edge of travelway to superstructure definition reference line 			
> 1 -14 14 -14 14			
LRFD fatigue Lanes available to trucks: Override Truck fraction: New Duplica	ate [Pelete	
OK A	Apply	Cance	I

Compute LFD and LRFD Live Load Distribution Factors from Typical Section Button

This button, labeled **Compute from typical section**, will compute the LFD live load distribution factors for a member alternative in a girder system superstructure definition. The travelway locations on the **Structure Typical Section:** Lane Position tab must be entered prior to using this button. This button is available on the Live Load Distribution Factor: Standard tab and LRFD tab as shown below.

	Load Distribu													
and	dard LRF	D												
- D)istribution fa	ctor inpu	it method -											
	🔵 Use simp			Use adva	nced method		Use ad	vanced m	nethod w	vith 199	4 guide s	pecs		
											-			
	Allow distrib	oution fac	tors to be u	ised to comp	oute effects of	permi	it loads wi	th routin	e traffic					
				ution factor wheels)										
	Lanes loaded	Shear	Shear at supports	Moment	Deflection									
>	1 Lane	1.25	1.25	1.25	0.5									1
	Multi-lane	1.25	1.25	1.25	1									
	ompute from pical section.		View calcs											
			View calcs											

Compute Deck Profile from Typical Section button

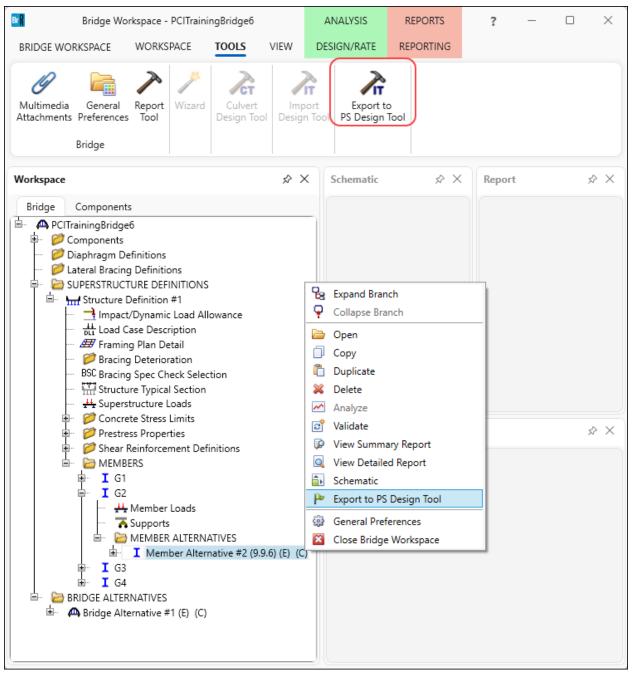
This button, labeled **Compute from typical section**, will generate the deck profile ranges for member alternative including computing the Standard and LRFD effective deck widths. This button is available only for girder system superstructure definitions with concrete decks. This button is available on the **Deck Profile: Deck Concrete** tab as shown below.

	Plate												
	k concrete Reinforcem	ent She	ar connectors										
	Material	Support number	Start distance (ft)	Length (ft)	End distance (ft)	Structural thickness (in)	Start effective flange width (Std) (in)	End effective flange width (Std) (in)	Start effective flange width (LRFD) (in)	End effective flange width (LRFD) (in)	n		
>	4500 psi Concrete 🗸 🗸	1 ~	0	161	161	9.5	125	125	125	125	8		-
	Compute from												v

Stiffener Ranges – Apply at diaphragms and Stiffeners between diaphragms buttons

These buttons (see below) are available on the **Stiffener Ranges: Transverse** tab for steel girder member alternatives in a girder system or girder line superstructure definition. Transverse and bearing stiffener definitions must be created prior to using these buttons.

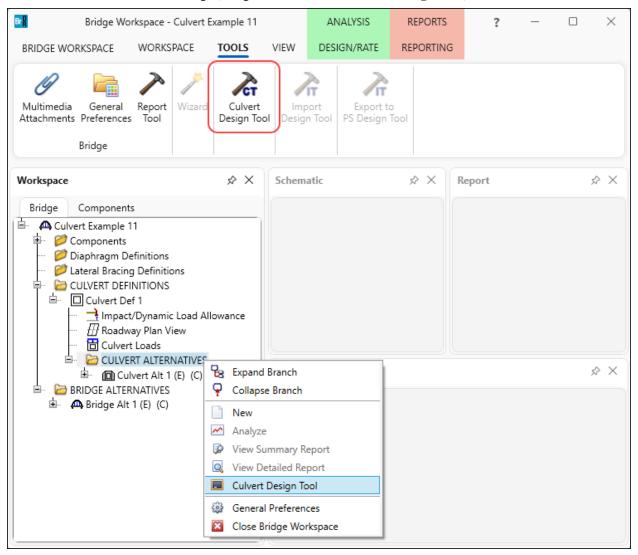
The **Apply at diaphragms** button places transverse stiffener and bearing stiffener definitions at the locations of previously defined diaphragms. This button will not delete any existing transverse stiffener locations. It will create new, additional transverse stiffener locations.


The **Stiffeners between diaphragms** button places transverse stiffener definitions at equal spaces between the locations of previously defined diaphragms. This button will not delete any existing transverse stiffener locations. It will create new, additional transverse stiffener locations.

Ì.	Start Distance	•										
ran	sverse stiffener ranges	ongitudir	nal sti	fener	ranges							
	Name			port 1ber	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)			
>	Stiffener	\sim	1	\sim	0	1	58	4.833333	4.833333			1
	Stiffener	\sim	1	\sim	4.83333	1	135	11.25	16.08333			
	1 Sided Dia Conn PL	\sim	1	\sim	27.31	1	0	0	27.31			
	Stiffener	\sim	1	\sim	27.31	1	207	17.25	44.56			
	1 Sided Dia Conn PL	~	1	\sim	54.14	1	0	0	54.14			
	1 Sided Dia Conn PL	\sim	1	\sim	54.14	2	322	53.666667	107.806667			
	Stiffener	\sim	1	\sim	107.806	1	161	13.416667	121.223334			
	1 Sided Dia Conn PL	\sim	1	\sim	107.80667	1	322	26.833333	134.640003			
	Stiffener	\sim	1	\sim	134.640	1	130	10.833333	145.473336			
	Stiffener	\sim	1	\sim	134.64	1	258.32	21.526667	156.166667			
	Apply at stiffeners ber diaphragms							Nev	v Dup	licate	Delete	

Prestress Design Tool

BrDR/BrD contains a prestress design tool that can be used to compute a preliminary strand pattern for a prestressed concrete I beam or box beam member alternative. Harped and straight strand layouts are determined according to AASHTO LRFD specifications.


The **Prestress Design Tool** is available during the BrDR/BrD installation and can be accessed from Start menu once the installation is complete. From BrDR, **Export to PS Design Tool** option is available by selecting the name of the prestressed I beam or box beam member alternative in the **Bridge Workspace** and then clicking the **Export to PS Design Tool** button from the **TOOLS** ribbon (or right click and select **Export to PS Design Tool**) as shown below.

RC Box Culvert Design Tool

BrDR/BrD contains a culvert design tool that can be used to design a preliminary reinforced concrete box culvert member alternative.

The button for the culvert wizard can be found on the **TOOLS** ribbon while sitting on the **CULVERT ALTERNATIVES** in a culvert bridge (or right click and select **Culvert Design Tool**).

