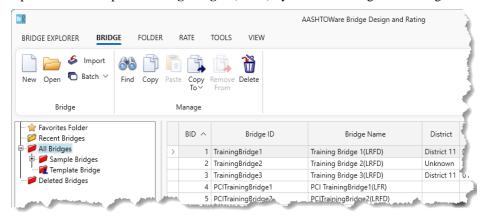
AASHTOWare BrDR 7.5.0

Feature Tutorial
Weld Design and Weld Fatigue Analysis

Topics Covered

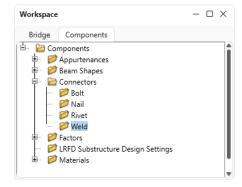
- Flange to web weld LRFD Design
- Flange to web weld LRFD Design Review
- Weld Fatigue Analysis


Weld Design and Design Review

Using **BID1** in the sample bridge database, the step-by-step process of fillet weld design at flange-web junction of a scheduled based plate girder is described below.

Weld Design and Design Review Steps

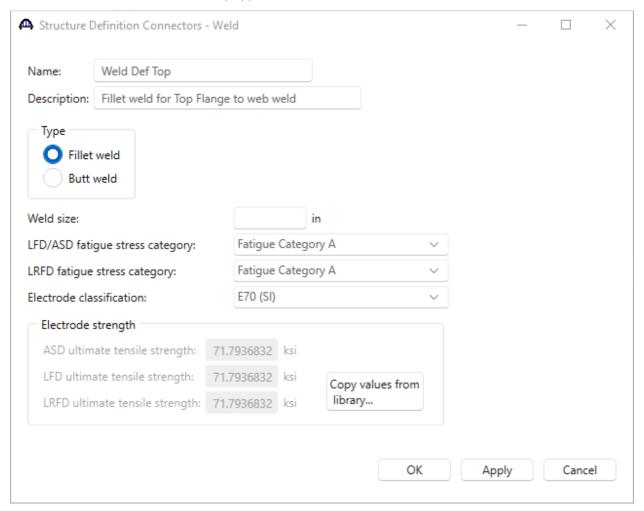
Open BID1


Open BrDR then open TrainingBridge1 (BID1) by double clicking on the bridge.

Open Connectors - Weld

In the **Bridge Workspace**, **Components** tab, expand **Connectors** and double click on **Weld** to add a weld definition.

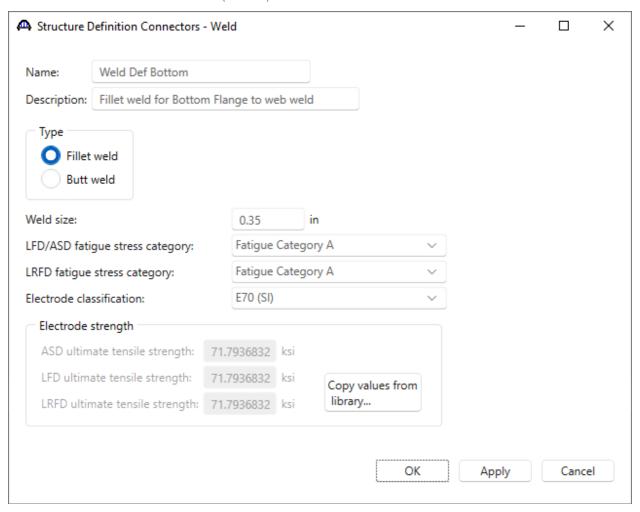
Bridge Workspace - Components tab


Last Modified: 2/7/2024

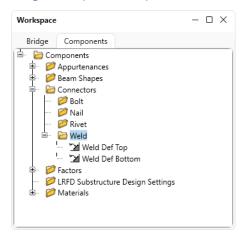
Define the Welds

For weld design of top flange – web fillet weld:

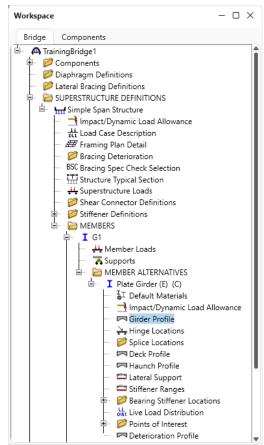
Leave the **Weld size** field blank to be designed as per LRFD article 6.13.3.2.4 (Weld Design). After entering all the fields shown below, click on the **Copy values from library...** button to populate the **Electrode strength** of the weld fields. Click **OK** to save the data.


Structure Definition Connectors – Weld (Top)

For weld design review of bottom flange – web fillet weld

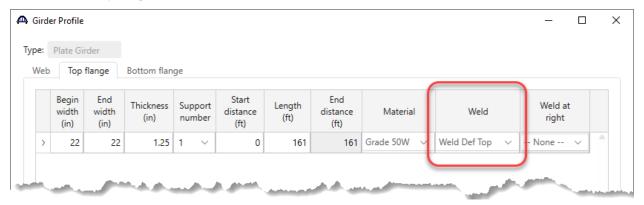

Open **Weld** again and repeat above to define **Weld Def Bottom**. Indicate a value in the **Weld size** field for it to undergo design review as per LRFD article 6.13.3.2.4. Click **OK** to save the definition.

Structure Definition Connectors – Weld (Bottom)

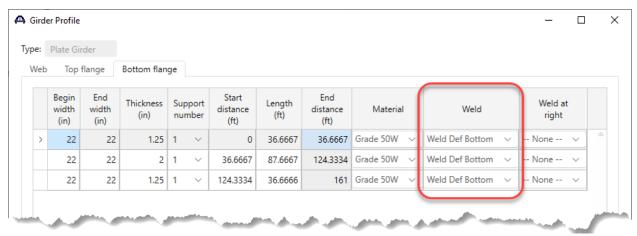

The Connectors->Weld->Weld Def Top & Weld Def Bottom as defined should reflect on the TrainingBridge1 tree as shown below.

Bridge Workspace – Components - Weld

Navigate to girder profile:


Navigate back to the Bridge tab and expand the **MEMBERS** folder. Expand **G1** and then expand the **MEMBER ALTERNATIVES** folder. Expand **Plate Girder** as shown below and open **Girder Profile**.

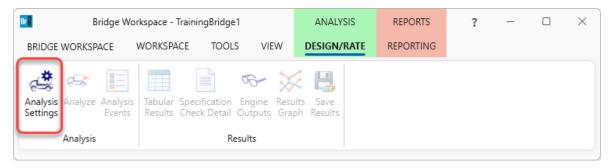
Allocate flange - web weld definition


In the **Girder Profile** window, for **Top Flange**, locate the **Weld** field, select **Weld Def Top** from the dropdown as shown below. This will design the top flange-web fillet weld for the range of the top flange plate indicated below.

Girder Profile – Top flange

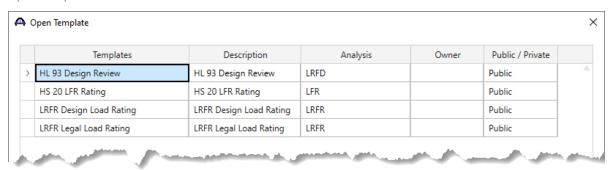
Repeat the same process for the bottom flange as shown below

Girder Profile – Bottom flange

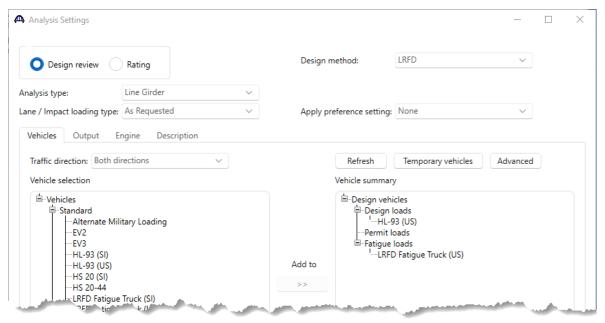

Please note that the same definition can be used for both the top and bottom flange to web welds provided that both the weld definitions are either undergoing design or design review. Similarly different weld definitions can also be used for different ranges of top and bottom flange plates.

Click **OK** to save the details of allocation and close the window.

Define Analysis Settings

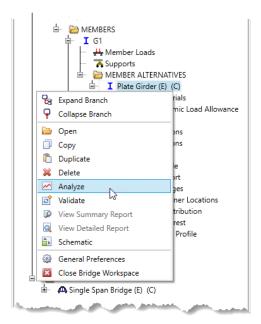

From the Analysis group of the DESIGN/RATE ribbon, click on the Analysis Settings button.

Bridge Workspace – Analysis Settings


In the **Analysis Settings** window, click on the **Open template** button and select **HL 93 Design Review** as shown below and click **Open**.

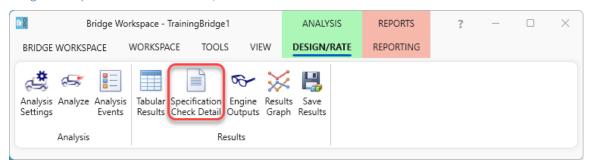
Open Template

The **Analysis Settings** window is shown below.

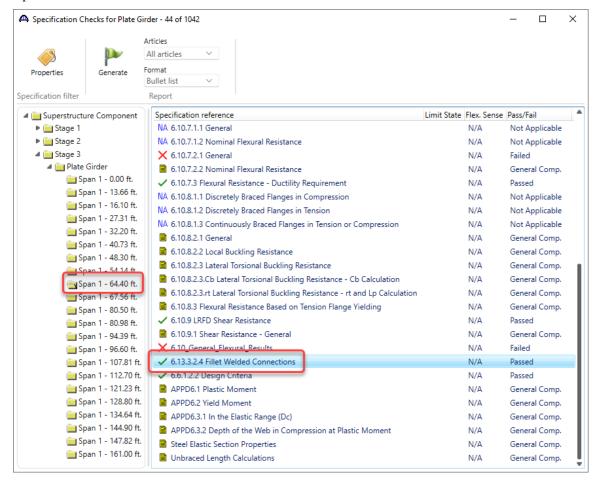

Analysis Settings

Click **OK** to save the settings.

Analyze G1 – Plate Girder:


To perform the analysis on the G1 member alternative, right click on Plate Girder and select Analyze.

View Spec Check for LRFD article 6.13.3.2.4


After the analysis completes, click on the **Specification Check Detail** button from the **Results** group of the **DESIGN/RATE** ribbon to open the **Specification Checks** window (with the **Plate Girder** highlighted as shown above).

Bridge Workspace – ANALYSIS DESIGN/RATE ribbon

Navigate to **Superstructure Component->Stage 3->Plate Girder-> Span 1** - **64.4 ft.** (this is a representative point for demonstration; you can navigate to any other spec check point you wish to check).

Open article 6.13.3.2.4 Fillet Welded Connections as shown below.

Weld details for top and bottom flange to web welds are provided as below. Note that the Top flange weld size is not visible since it has been designed and shown below.

Specification Check Detail for 6.13.3.2.4 Fillet Welded Connections

The weld resistances for the top and the bottom flange is shown below.

SUMMARY:

```
Weld Metal Resistance (top flange):
Rr1 = 0.6*Phie2*Fexx = 34.4610 (ksi) (6.13.3.2.4-1)
Rr2 = 0.58*Phivu*Fu_tf*SQRT(2) = 48.8045 (ksi) (6.13.5.3-2)
Rr3 = 0.58*Phivu*Fu_w*SQRT(2) = 48.8045 (ksi) (6.13.5.3-2)
Rr = Min(Rr1, Rr2, Rr3) = 34.4610 (ksi)

Weld Metal Resistance (bottom flange):
Rr1 = 0.6*Phie2*Fexx = 34.4610 (ksi) (6.13.3.2.4-1)
Rr2 = 0.58*Phivu*Fu_bf*SQRT(2) = 48.8045 (ksi) (6.13.5.3-2)
Rr3 = 0.58*Phivu*Fu_w*SQRT(2) = 48.8045 (ksi) (6.13.5.3-2)
Rr = Min(Rr1, Rr2, Rr3) = 34.4610 (ksi)
```

Fillet - weld design for the top flange to web

Design Step 1

Allowable weld size was determined as per the strength criteria as shown in the tables below. Please note that thickness and size have the same meaning here.

Factored load computation for weld design (top flange):

Limit State					DL Stage 2 (kip)	vDL Stage 2 (kip/in)		
STR-I STR-I STR-I STR-I STR-III	Pos Pos Pos	2 3 2	26.80 37.22 26.80	0.30 0.42 0.30	6.54 11.73 6.54	0.15 0.09 0.15 0.09 0.15		
STR-III STR-III	Pos Pos	2	26.80 37.22	0.30 0.42	6.54 11.73	0.09 0.15		
STR-III STR-V STR-V	Pos Pos	3	37.22 26.80	0.42	11.73 6.54	0.09 0.15 0.09		
STR-V STR-V	Pos Pos					0.15 0.09		
Limit State	Flex Type	Load Combo				Required Weld Size(Strength) (in)		Code
			(kip)	(kip/in)	(kip/in)	(in)		
Limit State STR-I STR-I	Pos	1 1	(kip) 124.24 -72.29	(kip/in) 1.71 -1.00	(kip/in) 2.29 -0.61	(in) 0.0939 0.0251	2.000	
STR-I	Pos Pos	1 1 2	(kip) 124.24 -72.29	(kip/in) 1.71 -1.00	(kip/in) 2.29 -0.61	(in)	2.000	Pass
STR-I STR-I STR-I STR-I	Pos Pos Pos Pos	1 1 2 2	(kip) 124.24 -72.29 101.61 -59.99	(kip/in) 1.71 -1.00 1.40 -0.83	(kip/in) 2.29 -0.61 1.97 -0.44	(in) 0.0939 0.0251 0.0810 0.0181	2.000 2.000 2.000 2.000	Pass Pass Pass Pass
STR-I STR-I STR-I STR-I STR-III	Pos Pos Pos Pos Pos	1 1 2 2	(kip) 124.24 -72.29 101.61 -59.99 0.00	(kip/in) 1.71 -1.00 1.40 -0.83 0.00	(kip/in) 2.29 -0.61 1.97 -0.44 0.57	(in) 0.0939 0.0251 0.0810 0.0181 0.0235	2.000 2.000 2.000 2.000 2.000	Pass Pass Pass Pass Pass
STR-I STR-I STR-I STR-I STR-III STR-III	Pos Pos Pos Pos Pos Pos	1 1 2 2 1	(kip) 124.24 -72.29 101.61 -59.99 0.00 0.00	(kip/in) 1.71 -1.00 1.40 -0.83 0.00 0.00	(kip/in) 2.29 -0.61 1.97 -0.44 0.57 0.39	(in) 0.0939 0.0251 0.0810 0.0181 0.0235 0.0159	2.000 2.000 2.000 2.000 2.000 2.000	Pass Pass Pass Pass Pass Pass
STR-I STR-I STR-I STR-I STR-III STR-III STR-III	Pos Pos Pos Pos Pos Pos	1 1 2 2 1 1	(kip) 124.24 -72.29 101.61 -59.99 0.00 0.00 0.00	(kip/in) 1.71 -1.00 1.40 -0.83 0.00 0.00 0.00	(kip/in) 2.29 -0.61 1.97 -0.44 0.57 0.39 0.57	(in) 0.0939 0.0251 0.0810 0.0181 0.0235 0.0159 0.0235	2.000 2.000 2.000 2.000 2.000 2.000 2.000	Pass Pass Pass Pass Pass Pass
STR-I STR-I STR-I STR-I STR-III STR-III STR-III	Pos Pos Pos Pos Pos Pos Pos	1 1 2 2 1 1 2 2	(kip) 124.24 -72.29 101.61 -59.99 0.00 0.00 0.00 0.00	(kip/in) 1.71 -1.00 1.40 -0.83 0.00 0.00 0.00 0.00	(kip/in) 2.29 -0.61 1.97 -0.44 0.57 0.39 0.57 0.39	(in) 0.0939 0.0251 0.0810 0.0181 0.0235 0.0159 0.0235 0.0159	2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000	Pass Pass Pass Pass Pass Pass Pass
STR-I STR-I STR-I STR-II STR-III STR-III STR-III STR-III STR-III	Pos Pos Pos Pos Pos Pos Pos Pos	1 1 2 2 1 1 2 2 2	(kip) 124.24 -72.29 101.61 -59.99 0.00 0.00 0.00 0.00 95.84	(kip/in) 1.71 -1.00 1.40 -0.83 0.00 0.00 0.00 0.00 1.32	(kip/in) 2.29 -0.61 1.97 -0.44 0.57 0.39 0.57 0.39	(in) 0.0939 0.0251 0.0810 0.0181 0.0235 0.0159 0.0235 0.0159 0.0778	2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000	Pass Pass Pass Pass Pass Pass Pass Pass
STR-I STR-I STR-I STR-I STR-III STR-III STR-III	Pos Pos Pos Pos Pos Pos Pos Pos Pos	1 1 2 2 1 1 2 2	(kip) 124.24 -72.29 101.61 -59.99 0.00 0.00 0.00 0.00 95.84 -55.77	(kip/in) 1.71 -1.00 1.40 -0.83 0.00 0.00 0.00 0.00 1.32	(kip/in) 2.29 -0.61 1.97 -0.44 0.57 0.39 0.57 0.39 1.90 -0.38	(in) 0.0939 0.0251 0.0810 0.0181 0.0235 0.0159 0.0235 0.0159 0.0778 0.0157	2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000	Pass Pass Pass Pass Pass Pass Pass

Design Step 2

The weld size was optimized using article 6.13.3.4 as shown below to provide the final designed weld size for the top flange to web weld.

Fillet - weld design review for the bottom flange to web:

Design Review Step 1

The bottom flange weld size (which was provided) was reviewed as per article 6.13.3.4 (allowable weld size) as shown below:

```
Bottom Flange Weld:
------
Throat(eff) = 0.2475 (in)
Area(eff) = 0.4950(in^2/in)
Weld Resistance = Rr*A(eff)
Weld Resistance = 17.0573(kip/in)

Article 6.13.3.4:
Maximum weld size allowed = 0.4375 (in)
Pass
Minimum weld size allowed = 0.3125 (in)
Pass
```

Design Review Step 2

The bottom flange weld size specification check was performed

Specification Check for bottom flange-web weld:

	Flex Type	VDL Sta	age 1 vDL	Stage 1 V	/DL Stage 2	vDL Stage 2		
	-12-				(kip)			
ern r	Doo				11 72	0.13		
STR-I						0.13		
STR-I						0.13		
STR-I						0.13		
STR-III					11.73			
	Pos		26.80	0.35	6.54	0.07		
						0.13		
STR-III			26.80	0.35	6.54	0.07		
STR-V	Pos		37.22	0.49	11.73	0.13		
STR-V	Pos					0.07		
STR-V						0.13		
STR-V	Pos		26.80	0.35	6.54	0.07		
Limit	Flev	Load				Demnired Weld	Degian	
		Load		vI.I.		Required Weld		Code
			VLL		vtotal	Size (Strength)		Code
			VLL		vtotal			Code
State STR-I	Type Pos	Combo	VLL (kip) 	(kip/in) 1.3	vtotal (kip/in) 2 1.94	Size(Strength) (in) 0.0798	Ratio	Pass
State STR-I STR-I	Type Pos Pos	Combo 	VLL (kip) 	(kip/in) 1.32 -0.7	vtotal (kip/in) 2 1.94 7 -0.34	Size(Strength) (in) 0.0798 0.0140	Ratio 8.771 49.910	Pass Pass
State STR-I STR-I STR-I	Type Pos Pos Pos Pos	Combo 1 1 1 2	VLL (kip) 124.24 -72.29 101.61	(kip/in) 1.32 -0.77	vtotal (kip/in) 2 1.94 7 -0.34 8 1.70	Size(Strength) (in) 0.0798 0.0140 0.0699	Ratio 8.771 49.910 10.010	Pass Pass Pass
State STR-I STR-I STR-I STR-I STR-I	Type Pos Pos Pos Pos Pos	Combo 1 1 2 2	VLL (kip) 	(kip/in) 1.32 -0.77 1.08 -0.64	vtotal (kip/in) 2 1.94 7 -0.34 8 1.70 4 -0.21	Size(Strength) (in) 0.0798 0.0140 0.0699 0.0087	Ratio 8.771 49.910 10.010 80.893	Pass Pass Pass Pass
State STR-I STR-I STR-I STR-I STR-I STR-II	Pos Pos Pos Pos Pos Pos	Combo 1 1 2 2	VLL (kip) 124.24 -72.29 101.61 -59.99 0.00	(kip/in) 1.32 -0.7 1.08 -0.64	vtotal (kip/in) 2 1.94 7 -0.34 8 1.70 4 -0.21 0 0.62	Size(Strength) (in) 0.0798 0.0140 0.0699 0.0087 0.0256	Ratio 8.771 49.910 10.010 80.893 27.369	Pass Pass Pass Pass Pass
State STR-I STR-I STR-I STR-I STR-I STR-III	Pos Pos Pos Pos Pos Pos Pos	Combo 1 1 2 2 1 1 1	VLL (kip) 124.24 -72.29 101.61 -59.99 0.00 0.00	(kip/in) 1.33 -0.7' 1.08 -0.6' 0.00	vtotal (kip/in) 2 1.94 7 -0.34 8 1.70 4 -0.21 0 0.62	Size(Strength) (in) 0.0798 0.0140 0.0699 0.0087 0.0256 0.0175	Ratio 8.771 49.910 10.010 80.893 27.369 39.930	Pass Pass Pass Pass Pass Pass
State STR-I STR-I STR-I STR-I STR-II STR-III STR-III	Pos Pos Pos Pos Pos Pos Pos Pos	Combo 1 1 2 2 1 1 2 2	VLL (kip) 124.24 -72.29 101.61 -59.99 0.00 0.00 0.00	(kip/in) 1.32 -0.7 1.08 -0.66 0.00 0.00	vtotal (kip/in) 2 1.94 7 -0.34 8 1.70 4 -0.21 0 0.62 0 0.43	0.0798 0.0140 0.0699 0.0087 0.0256 0.0175 0.0256	Ratio 8.771 49.910 10.010 80.893 27.369 39.930 27.369	Pass Pass Pass Pass Pass Pass Pass
State STR-I STR-I STR-I STR-I STR-III STR-III STR-III STR-III	Pos Pos Pos Pos Pos Pos Pos Pos Pos	Combo 1 1 2 2 1 1 1 2 2 2 1 2 2 1 2 2 2 2 2	VLL (kip) 124.24 -72.29 101.61 -59.99 0.00 0.00 0.00	(kip/in) 1.32 -0.7 1.08 -0.66 0.00 0.00 0.00	vtotal (kip/in) 2 1.94 7 -0.34 8 1.70 4 -0.21 0 0.62 0 0.43 0 0.62	0.0798 0.0140 0.0699 0.0087 0.0256 0.0175 0.0256 0.0175	Ratio 8.771 49.910 10.010 80.893 27.369 39.930 27.369 39.930	Pass Pass Pass Pass Pass Pass Pass Pass
State STR-I STR-I STR-I STR-II STR-III STR-III STR-III STR-III STR-III	Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos	Combo 1 1 2 2 1 1 2 2 1 1 1 2	VLL (kip) 124.24 -72.29 101.61 -59.99 0.00 0.00 0.00 0.00	(kip/in) 1.32 -0.7' 1.08 -0.66 0.00 0.00 0.00 1.02	vtotal (kip/in) 2 1.94 7 -0.34 8 1.70 4 -0.21 0 0.62 0 0.43 0 0.62 0 0.43	Size(Strength) (in) 0.0798 0.0140 0.0699 0.0087 0.0256 0.0175 0.0256 0.0175 0.0674	8.771 49.910 10.010 80.893 27.369 39.930 27.369 39.930 10.384	Pass Pass Pass Pass Pass Pass Pass Pass
STR-I STR-I STR-I STR-I STR-III STR-III STR-III STR-III STR-III STR-V STR-V	Type Pos Pos Pos Pos Pos Pos Pos Pos Pos Po	Combo 1 1 2 2 1 1 2 2 1 1 1 1	VLL (kip) 124.24 -72.29 101.61 -59.99 0.00 0.00 0.00 0.00 95.84 -55.77	(kip/in) 1.32 -0.7' 1.08 -0.64 0.00 0.00 0.00 1.02 -0.55	vtotal (kip/in) 2 1.94 7 -0.34 8 1.70 4 -0.21 0 0.62 0 0.43 0 0.62 0 0.43 2 1.64 9 -0.17	Size(Strength) (in) 0.0798 0.0140 0.0699 0.0087 0.0256 0.0175 0.0256 0.0175 0.0674 0.0068	8.771 49.910 10.010 80.893 27.369 39.930 27.369 39.930 10.384 99.000	Pass Pass Pass Pass Pass Pass Pass Pass
State STR-I STR-I STR-I STR-II STR-III STR-III STR-III STR-III STR-III	Type Pos Pos Pos Pos Pos Pos Pos Pos Pos Po	Combo 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 2 1 2	VLL (kip) 124.24 -72.29 101.61 -59.99 0.00 0.00 0.00 0.00 95.84 -55.77 78.39	(kip/in)	vtotal (kip/in) 7 -0.34 8 1.70 4 -0.21 0 0.62 0 0.43 0 0.62 0 0.43 0 0.62 1 1.64	Size(Strength) (in) 0.0798 0.0140 0.0699 0.0087 0.0256 0.0175 0.0256 0.0175 0.0674	8.771 49.910 10.010 80.893 27.369 39.930 27.369 39.930 10.384 99.000 11.707	Pass Pass Pass Pass Pass Pass Pass Pass

For article 6.13.3.2.4 to pass, the weld design (top flange) and the weld design review (bottom flange) should both Pass.

Close the bridge **BID1** without saving it.

Weld Fatigue Analysis

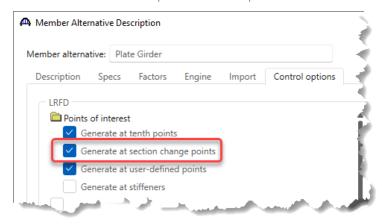
Table 1: Weld Fatigue Analysis Detail

Fatigue Detail	Conditions for Generation	Fatigue Category
Web to flange weld	Detail automatically generated at every analysis point for plate girders.	Category based on the 'LRFD fatigue stress category' defined on the 'Structure Definition Connectors – Weld definition' window. Otherwise, determined from the Specification.
Plate girder flange groove welded butt splices	Detail automatically generated at every analysis point where condition exists.	Schedule based beams: Category based on the 'LRFD fatigue stress category' defined on the 'Structure Definition Connectors – Weld Definition' window. Otherwise, determined from the Specification.
	Analysis point at transition is generated if user picks 'Generate at section change points'.	Cross Section based beams: Determined from the Specification since the user cannot assign a weld definition.
Bearing stiffener weld to top/bottom flange	 Analysis point generated at every bearing stiffener location at an offset distance from the C.L. of bearing specified by the user on the 'Bearing Stiffener Location' window if user picked 'Generate at stiffeners' Detail only generated if 'Top' or 'Bottom' flange welds are defined on the 'Bearing Stiffener Definition' window 	Category based on the 'LRFD fatigue stress category' defined on the 'Structure Definition Connectors – Weld Definition' window.
Bearing stiffener weld to web	Analysis point generated at every bearing stiffener location at an offset distance from the c.l. of bearing specified by the user on the 'Bearing'	Category based on the 'LRFD fatigue stress category' defined on the 'Structure Definition Connectors – Weld Definition'

Last Modified: 2/7/2024 12

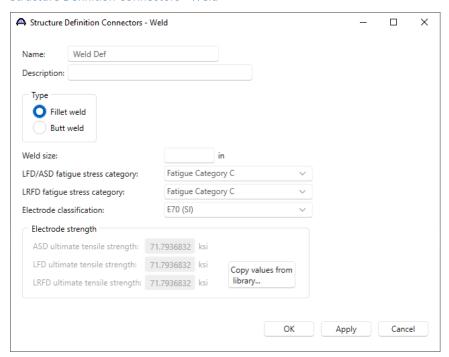
Fatigue Detail	Conditions for Generation	Fatigue Category
	Stiffener Location' window if user	window. Otherwise, determined
	picked 'Generate at stiffeners'	from the Specification.
	• Detail automatically generated at	
	every analysis point where stiffener	
	exists	
Transverse stiffener	Analysis point generated at every	Category based on the 'LRFD
weld to top/bottom	stiffener location defined on the	fatigue stress category' defined on
flange	'Stiffener Ranges' window if user	the 'Structure Definition
	picked "Generate at stiffeners'	Connectors – Weld Definition'
	• Detail only generated if the 'Top' or	window.
	'Bottom' flange welds are defined on	
	the 'Transverse Stiffener Definition'	
	• Detail not generated at the respective	
	flanges if the 'Top Gap' or 'Bottom	
	Gap' user input on the 'Transverse	
	Stiffener Definition' window is	
	greater than zero	
Transverse stiffener	Analysis point generated at every	Category based on the 'LRFD
weld to web	stiffener location if user picked	fatigue stress category' defined on
	"Generate at stiffeners'	the 'Structure Definition
	• Detail automatically generated at	Connectors – Weld Definition'
	every analysis point where stiffener	window. Otherwise, determined
	exists	from the Specification.
	• Distance to the fatigue detail from	
	the top or bottom of web is based on	
	the user input 'Top Gap' and /or	
	'Bottom Gap' on the 'Transverse	
	Stiffener Definition' window. If the	
	values are left blank, the distance is	
	considered to be 0.0	
Shear stud weld to	Detail automatically generated at	Determined from the Specification.
top flange	every analysis point where shear	
	connectors exist	
	Detail is only generated if a defined	
	shear connector is used. The detail	

Fatigue Detail	Conditions for Generation	Fatigue Category
	will not be generated for ranges where "Composite" is chosen as the Connector ID	
Longitudinal Stiffeners	 Analysis point generated at the start and end of the stiffener if user picked 'Generate at stiffeners' Detail automatically generated at every analysis point where a plate longitudinal stiffener exists 	 Category at the start and end of the stiffener is determined from the Specification Category based on the 'LRFD fatigue stress category' defined on the 'Structure Definition Connectors – Weld Definition' window. Otherwise, determined from the Specification
Welded cover plates	 Analysis point at start and end of cover plate is generated if user picks 'Generate at section change points' Start and end cover plate detail automatically generated at every analysis point where a welded cover plate starts or ends Cover plate side weld detail automatically generated at every analysis point that contains a welded cover plate 	Category based on the 'LRFD fatigue stress category' defined on the 'Structure Definition Connectors – Weld Definition' window. Otherwise, determined from the Specification.

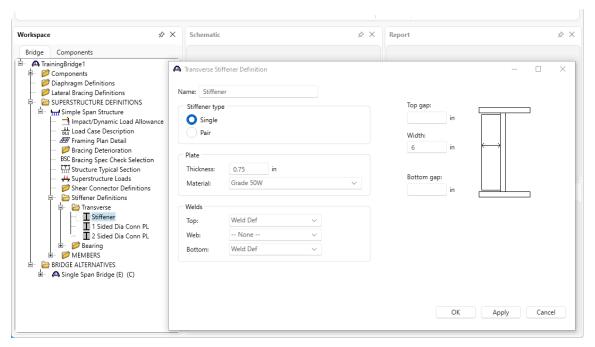

The above table provides the list of locations stating when and where the weld fatigue analysis is carried out.

The fatigue analysis of flange butt welds and welded cover plates at the start/end can be obtained by editing the

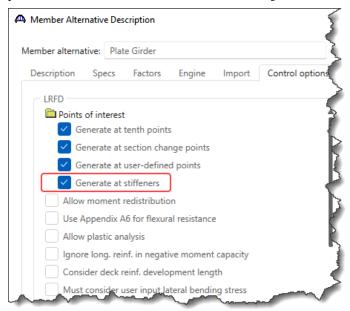
Member Alternative Description window -> Control Options tab -> LRFD -> Point of Interest -> Generate at section change points as shown below.


Last Modified: 2/7/2024 14

Member Alternative Description – Control options


As discussed in the beginning of this section, open **BID1** from the **Bridge Explorer** and define a weld definition as defined above in the section **Structure Definition Connector** and name it **Weld Def.** Assign the LRFD Fatigue Category as **Fatigue Category C**.

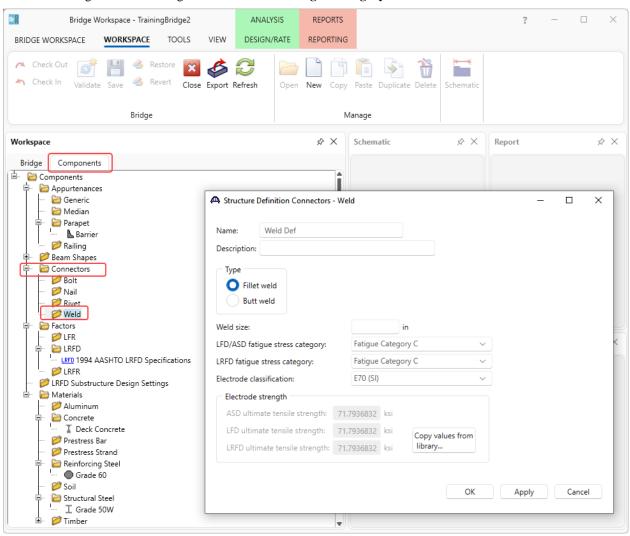
Structure Definition Connectors - Weld



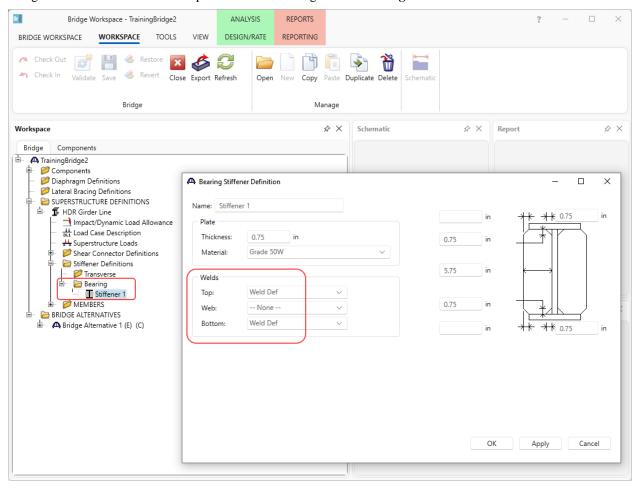
Stiffener Definitions – Transverse Stiffener Definition

Open the **Stiffener Definitions** – **Transverse Stiffener Definition** and assign the weld definition as shown below.

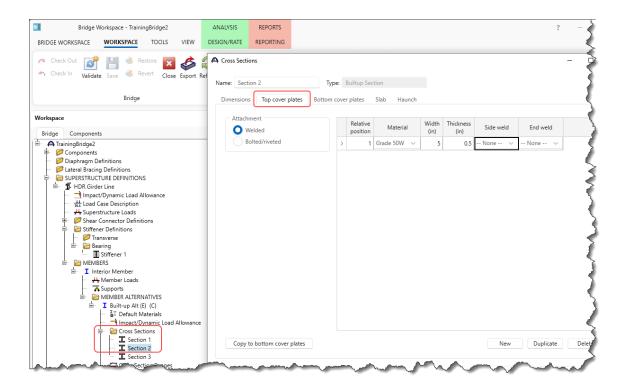
Before running the LRFD design review for **Member G1**, **Member Alternative: Plate Girder** as shown in the previous section, make sure that in the **Control options tab** the **Generate at Stiffeners** option is selected.


Perform the LRFD design review using the same settings shown in the previous section. After the LRFD design review, go to Spec check at Stage 3->Plate Girder->Span 1 – 16.08 ft., article 6.6.1.2.2 Design Criteria. This is a location of a transverse stiffener.

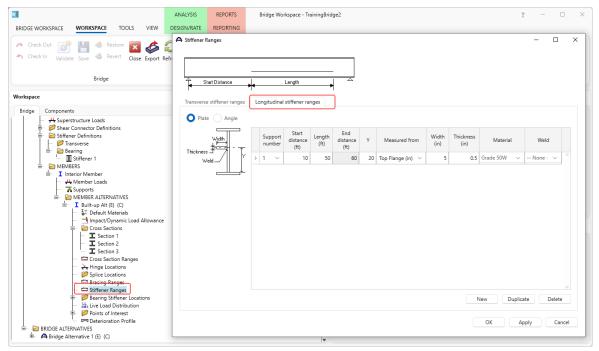
As shown below, the article shows the fatigue analysis for transverse stiffener to web weld (fatigue category from specification), for transverse stiffener to flange weld (fatigue category defined) and flange to web weld (fatigue category from specification).


Close the BID1 and open BID2 from the Bridge Explorer.

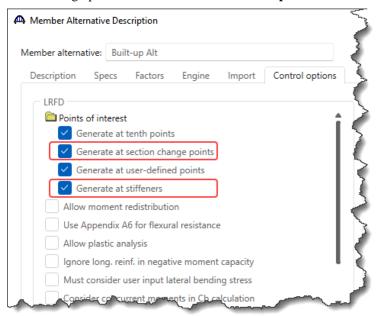
Define a bearing stiffener to flange weld with LRFD Fatigue Category C as shown below.


Bearing Stiffener Definition

Assign the weld definition to the top and the bottom flange of the **Bearing Stiffener** as shown below.


Cross Sections

Navigate to Cross Sections - Section 2, add a top cover plate as shown below


Stiffener Ranges

Open the Stiffener Ranges and define a plate longitudinal stiffener as shown below.

Last Modified: 2/7/2024

Before running the LRFD design review of **Interior Member - Member Alternative: Built-up Alt**, make sure that the following options are checked in the **Control options** tab of the **Member Alternative Description** window.

As described in the previous section, perform an LRFD Design review. After the LRFD design review completes, open the **Specification Check Detail** window. The article of interest is **6.6.1.2.2 Design Criteria**.

Open the Spec check at Stage 3->Built-up Alt->Span 1 - 63 ft. (Left)

This shows the fatigue analysis of flange and web groove weld and shear connector welds to the top flange as shown below. All the fatigue categories are from specification.

		ADTT (SL)		Stress										
Detail	Cat.	75 year T6.6.1.2.3-2	Max Mz LL+I (kip-ft)	Min Mz Limit LL+I State (kip-ft)	Dist from Bottom (in)	DL (ksi)	+LLz (ksi)	-LLz (ksi)	A*10^8 ((ksi^-3))	(F)TH (ksi)	(F)n (ksi)	f (ksi)	Fn/f	Code
ShearConnector	С	1680	494.15	-347.23 FAT-I	37.63	-0.80	-0.34	0.24***						
CovPlFlgEndWeld	E	4615	225.90	-158.74 FAT-II	37.63	-0.80	-0.16	0.11***						
FlgWeldAtRight	В	1120	494.15	-347.23 FAT-I	37.63	-0.80	-0.34	0.24***						
FlgWeldAtRight	В	1120	494.15	-347.23 FAT-I	0.00	1.09	7.15	-5.02	120.00	16.00	16.00	12.17	1.3	l Pass
WebWeldAtRight	В	1120	494.15	-347.23 FAT-I	36.88	-0.76	-0.19	0.13***						
WebWeldAtRight	В	1120	494.15	-347.23 FAT-I	0.88	1.05	6.97	-4.90	120.00	16.00	16.00	11.87	1.3	5 Pass

Spec check at Stage 3->Built-up Alt->Span 1 - 89.5 ft. (Left)

This shows the fatigue analysis of the bearing stiffener top and bottom flange (fatigue category defined) and the web weld (fatigue category from spec).

		ADTT (SL)			Stress								
Detail	Cat.	75 year T6.6.1.2.3-2	Max Mz LL+I (kip-ft)	Min Mz Limit LL+I State (kip-ft)	Dist from Bottom (in)	DL (ksi)	+LLz (ksi)	-LLz (ksi)	A*10^8 ((ksi^-3))	(F)TH (ksi)	(F)n (ksi)	f (ksi)	Fn/f Code
BrgStiffFlgWeld	C'	650 +	0.00	-493.29 FAT-I	37.50	23.77*	0.00	0.41	44.00	12.00	12.00	0.41	29.30 Pass
BrgStiffFlgWeld	C'	650 +	0.00	-493.29 FAT-I	1.50	-21.48*	0.00	-4.50***					
BrgStiffWebWeld	C'	650 +	0.00	-493.29 FAT-I	36.75	22.83*	0.00	0.31	44.00	12.00	12.00	0.31	39.04 Pass
BrgStiffWebWeld	C'	650 ÷	0.00	-493.29 FAT-I	2.25	-20.54*	0.00	-4.39***					
ShearConnector	C	1120 +	0.00	-493.29 FAT-I	39.00	25.65*	0.00	0.61	44.00	10.00	10.00	0.61	16.29 Pass
CovPlFlgSideWeld	В	746 +	0.00	-493.29 FAT-I	38.50	25.03*	0.00	0.55	120.00	16.00	16.00	0.55	29.31 Pass

Spec check at Stage 3->Built-up Alt->Span 1 - 90 ft. (Left)

This shows the fatigue analysis of the cover plate side weld to the top flange (fatigue category from specification).

ADTT (SL)									Stress							
		75 year	Max Mz	Min Mz	Limit	Dist from										
Detail	Cat.	T6.6.1.2.3-2	LL+I	LL+I	State	Bottom	DL	+LLz	-LLz	A*10^8	(F) TH	(F) n	£	Fn/f	Code	
			(kip-ft)	(kip-ft)		(in)	(ksi)	(ksi)	(ksi)	((ksi^-3))	(ksi)	(ksi)	(ksi)			
ShearConnector	C	1120 +	0.00	-496.05	FAT-I	39.00	26.27*	0.00	0.62	44.00	10.00	10.00	0.62	16.2	0 Pass	
CovPlFlgSideWeld	В	746 +	0.00	-496.05	FAT-I	38.50	25.62*	0.00	0.55	120.00	16.00	16.00	0.55	29.1	5 Pass	

Spec check at Stage 3->Built-up Alt->Span - 27 ft. (Left)

This shows the fatigue analysis of the cover plate end weld to the top flange (fatigue category from specification).

		ADTT (SL)						Stress							
Detail	Cat.	75 year T6.6.1.2.3-2	Max Mz LL+I (kip-ft)	Min Mz LL+I (kip-ft)	Limit State	Dist from Bottom (in)	DL (ksi)	+LLz (ksi)	-LLz (ksi)	A*10^8 ((ksi^-3))	(F) TH (ksi)	(F)n (ksi)	f (ksi)	Fn/f	Code
ShearConnector	С	1680	493.18	-346.23		39.00	-0.48	-0.61	0.43***						
CovPlFlgSideWeld	В	1120	493.18	-346.23	3 FAT-I	38.50	-0.47	-0.55	0.38***						

Speck check at Stage 3->Built-up Alt->Span 1 - 10 ft. (Right)

This shows the fatigue analysis of the start of the longitudinal stiffener (fatigue category from specification).

	Stress													
Detail	Cat.	75 year T6.6.1.2.3-2	Max Mz LL+I (kip-ft)		mit Dist ate Bot (i	tom DL	+LLz (ksi)	-LLz (ksi)	A*10^8 ((ksi^-3))	(F) TH (ksi)	(F)n (ksi)	f (ksi)	Fn/f	Code
LongStiffWebWeld	Ε	4615	162.59	-24.24 FA	T-II 1	5.88 1.2	1.19	-0.18	11.00	4.50	2.87	1.37	2.1	O Pass

Speck check at Stage 3->Built-up Alt->Span 1 - 60 ft. (Left)

This shows the fatigue analysis of the end of the longitudinal stiffener (fatigue category from specification).

		ADTT (SL)		Stress											
		75 year	Max Mz	Min Mz	Limit	Dist from									
Detail	Cat.	T6.6.1.2.3-2	LL+I (kip-ft)	LL+I (kip-ft)	State	Bottom (in)	DL (ksi)	+LLz (ksi)	-LLz (ksi)	A*10^8 ((ksi^-3))	(F)TH (ksi)	(F)n (ksi)	f (ksi)	Fn/f	Code
LongStiffWebWeld	E	4615	244.65	-149.0	FAT-II	16.88	0.59	1.79	-1.09	11.00	4.50	2.87	2.88	1.0	0 Fail