
AASHTOWare BrDR 7.5.0 Reinforced Concrete Structure Tutorial RC2 – Reinforced Concrete Slab Example Introduction – Elevation and Typical section

RC2 - Reinforced Concrete Slab Example

Typical Section

Material Properties

Slab Concrete: Class A (US) f'c = 4.0 ksi, modular ratio n = 8Slab Reinforcing Steel: AASHTO M31, Grade 60 with Fy = 60 ksi

Parapets

Weigh 300 lb/ft each. If slab cross section entered as 12" wide strip, member load due to parapets will be (2*300 lb/ft)/27' = 22 lb/ft.

BrDR Training

RC2 - Reinforced Concrete Slab Example

Topics Covered

- Single span reinforced concrete slab description
- Sacrificial wear thickness for a slab
- Cross-section based member alternative
- Schedule based member alternative

Single span reinforced concrete slab description.

From the Bridge Explorer create a new bridge and enter the following description data:

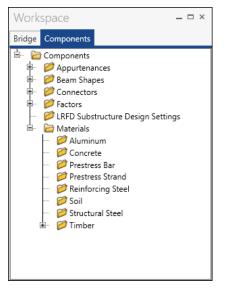
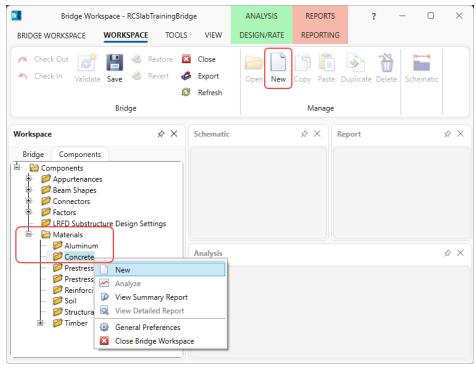

R		AASH	TOW	are Bridge Design and R	ating ?	_		\times
BRIDGE EXPLORER BRIDG	GE FOLDEF	R RA	ATE	TOOLS VIEW				
New Open C Batch ~	Find Copy	Paste	Copy To V					
Bridge		Ma	nage					
🗝 🚖 Favorites Folder		E	^	Bridge ID	Brid	ge Name	e	
🧭 Recent Bridges		>	1 1	FrainingBridge1	Training Bridge 1(LRFD)		
All Bridges ± Ø Templates			2 1	FrainingBridge2	Training Bridge 2(LRFD)		
Deleted Bridges			3 T	FrainingBridge3	Training Bridge 3(LRFD)		
- beleted billages			4 F	CITrainingBridge1	PCI TrainingBridge1(LF	R)		
			5 F	CITrainingBridge2	PCITrainingBridge2(LRI	D)		
			6 F	CITrainingBridge3	PCI TrainingBridge3(LF	R)		
			7 F	CITrainingBridge4	PCITrainingBridge4(LRI	D)		
		-	8 F	CITrainingBridge5	PCI TrainingBridge5(LF	R)		•
				т-	tal Bridge Count: 33			

Image ID: RCSlabTrainingBridge NBI structure ID (8): RCSlabTrainingB Bridge completely defined Cuverts Description Description (cont'd) Alternatives Global reference point Traffic Custom agency fields Name: RC Slab Training Bridge Vear built: Reinforced concrete slab example bridge Single span, girderline Description: Single span, girderline Location: Length: ft Reinforced (0): Route number: 1 Petault units: US Customary Y Bridge association Bridge association BrR BrD	RCSIabTraining	Bridge							- I	
Vame: RC Slab Training Bridge Year built: Reinforced concrete slab example bridge Single span, girderline ft acility carried (7): tracellity carried (7): reat. intersected (6): US Customary V	dge ID: RCSI	labTraini	ingBridge	NBI structur	e ID (8): RCSIabTrainingB			etely defined	Culverts	
Reinforced concrete slab example bridge Single span, girderline Location: Location: Length: ft Facility carried (7): Route number: -1 Feat. intersected (6): Default units: US Customary	Description	Descri	ption (cont'd)	Alternatives	Global reference point	Traffic	Custom agency fie	lds		
Description: Single span, girderline ft in	Name:		RC Slab Training	Bridge			Year built:			
Facility carried (7): Feat. intersected (6): Default units: US Customary	Description:				ple bridge					
ieat. intersected (6): Mi. post: Default units: US Customary	ocation:						Length:		ft	
Default units:	acility carried	(7):					Route number	: -1		
	eat. intersect	ed (6):					Mi. post:			
Bridge association	Default units:		US Customary	~						
Bridge association										
Bridge association										
Bridge association										
Bridge association										
Bridge association										
	Bridge a	associati	on 🗹 B	rR 🗹 BrD 🗌	BrM					


Close the window by clicking **OK**. This applies the data and closes the window.

Bridge Materials

To enter the materials to be used by members of the bridge, click on the **Components** tab of **Bridge Workspace**, and expand the tree for Materials. The tree with the expanded **Materials** branch is shown below:

To add a new concrete material, click on **Concrete** in the **Components** tree and select **New** from the **Manage** group of the **WORKSPACE** ribbon (or right mouse click on **Concrete** and select **New**).

Add the concrete material by selecting from the Concrete Materials Library by clicking the **Copy from Library** button.

A Bridge Materials - Concrete			-		Х
Name:					
Description:					
Compressive strength at 28 days (f'c):		ksi			
Initial compressive strength (f'ci):		ksi			
Composition of concrete:	Normal ~				
Density (for dead loads):		kcf			
Density (for modulus of elasticity):		kcf			
Poisson's ratio:	0.2				
Coefficient of thermal expansion (α):	0.000006] 1/F			
Splitting tensile strength (fct):		ksi			
LRFD Maximum aggregate size:		in			
Compute					
Std modulus of elasticity (Ec):		ksi			
LRFD modulus of elasticity (Ec):		ksi			
Std initial modulus of elasticity:		ksi			
LRFD initial modulus of elasticity:		ksi			
Std modulus of rupture:		ksi			
LRFD modulus of rupture:		ksi			
Shear factor:	1				
Сору	to library Copy	from library OK App	oly	Cance	2

The following window opens:

N	lame	Description	Library	Units	fc	f'ci	alpha	DL density	Modulus density	Std modulus of elasticity	LRFD modulus of elasticity		Modulus of rupture	
C	lass A	Class A cement concrete	Standard	SI / Metric	28.00		0.0000108000	2400.00	2320.00	25426.08	27730.36	0.200	3.33	-
) (Class A (US)	Class A cement concrete	Standard	US Customary	4.000		0.0000060000	0.150	0.145	3644.15	3986.55	0.200	0.480	
C	Class B	Class B cement concrete	Standard	SI / Metric	17.00		0.0000108000	2400.00	2320.00	19811.84	23520.23	0.200	2.60	
C	Class B (US)	Class B cement concrete	Standard	US Customary	2.400		0.0000060000	0.150	0.145	2822.75	3368.12	0.200	0.372	
C	Class C	Class C cement concrete	Standard	SI / Metric	28.00		0.0000108000	2400.00	2320.00	25426.08	27730.36	0.200	3.33	
C	Class C (US)	Class C cement concrete	Standard	US Customary	4.000		0.0000060000	0.150	0.145	3644.15	3986.55	0.200	0.480	

Select the Class A (US) material and click OK.

🗛 Bridge Mat	terials - Concrete				_		×
Name:	Class A (US)						
Description:	Class A cement concrete	2					
Compressive	strength at 28 days (f'c):	4.0000006	ksi				
Initial compre	essive strength (f'ci):		ksi				
Composition	of concrete:	Normal ~	·]				
Density (for c	dead loads):	0.15	kcf				
Density (for r	modulus of elasticity):	0.145	kcf				
Poisson's rati	0:	0.2					
Coefficient of	f thermal expansion (α):	0.000006	1/F				
Splitting tens	ile strength (fct):		ksi				
LRFD Maximu	um aggregate size:		in				
	Compute						
Std modulus	of elasticity (Ec):	3644.149254	ksi				
LRFD modulu	us of elasticity (Ec):	3986.548657	ksi				
Std initial mo	dulus of elasticity:		ksi				
LRFD initial m	nodulus of elasticity:		ksi				
Std modulus	of rupture:		ksi				
LRFD modulu	us of rupture:	0.479857	ksi				
Shear factor:		1					
	Сору	to library Cop	y from library OK	Appl	y	Cance	<u> </u>

The selected material properties are copied to the Bridge Materials - Concrete window as shown below.

Click **OK** to apply the data and close the window.

🕰 Bridge Mat	terials - Reinforc	ing Steel					_		×
Name:	Grade 60								
Description:	60 ksi reinforci	ing steel]				
Material prop	perties								
Specified yiel	ld strength (fy):	60.000087		ksi					
Modulus of e	elasticity (Es):	29000.0042	06	ksi					
Ultimate stre	ngth (Fu):	90.0000131		ksi					
Туре									
O Plair	n								
	-								
Galv	anized								
	Copy t	o library	Copy f	rom library		ОК	Apply	Cance	el

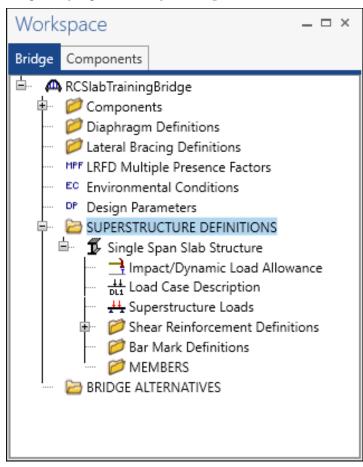
Add the following reinforcement steel in the same manner.

Since a reinforced concrete slab is used, beam shapes need not be defined. The slab will be entered later using two different methods, as a cross section and as a schedule based member alternative.

Reinforced concrete slabs may be entered as Girderline Superstructure Definitions in BrDR or as slab systems. This example uses the girderline option. Since a Structure Typical Section is not defined for girderline structures, appurtenances are not defined. The dead load due for the appurtenances will be entered later as member loads.

The default impact factors, standard LRFD and LFD factors will be used so the next step will be to define a Superstructure. Bridge Alternatives will be added after a superstructure is defined.

Superstructure Definition


Navigate back to the **Bridge** tab of the **Bridge Workspace**. Double click on **SUPERSTRUCTURE DEFINITIONS** (or click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the **Manage** group of the **WORKSPACE** ribbon or right mouse click on **SUPERSTRUCTURE DEFINITIONS** and select **New** from the popup menu) to create a new structure definition.

Select **Girder line superstructure** and click **OK**. The **Girder Line Superstructure Definition** window will open. Enter the data as shown below:

A New Superstru	cture Definition		×				
Concrete mul	perstructure superstructure erstructure superstructure	Superstructure definition wizard					
🕰 Girder Line Superstruc	ture Definition	OK Cancel					×
Definition Analysis	Engine						
Name: Description:	Single Span Slab Structure	Deck type: Concrete For PS/PT only Average humidity: %					
Default units: Reference line length: Live load lanes Multi-lane Single lane	US Customary Y ft LRED faigue Truck lanes: Override Truck fraction:	Member alt. types steel p/S R/C Timber p/T					
				ОК	Apply	Cance	2

Click **OK** to apply the data and close the window.

The partially expanded Bridge Workspace tree is shown below:

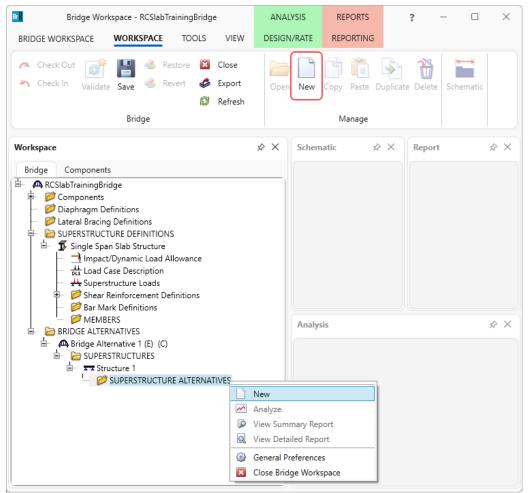
BRIDGE ALTERNATIVES

Navigate to the **BRIDGE ALTERNATIVES** node in the **Bridge Workspace** tree and create a new bridge alternative by double-clicking on **BRIDGE ALTERNATIVES** (or click on **BRIDGE ALTERNATIVES** and select **New** from the **Manage** group of the **WORKSPACE** ribbon).

Bridge Workspace - RCSlabTraini BRIDGE WORKSPACE	ingBridge TOOLS VIEW	ANALYSIS DESIGN/RATE	REPORTS REPORTING	?	_	
Check Out 💣 💾 🚳 Resto	-	Open New	Copy Paste D	uplicate Dele	ete Scher	matic
Bridge			Manage			
Workspace	s≫ × Sch	ematic	\$ X	Report		x x
Piaphragm Definitions Piaphragm Definitions Diaphragm Definitions Diaphragm Statement Definitions Diaphragm Structure Definitions Diaphragm Structure Load Allow Diaphragm Superstructure Loads Diaphragm Shear Reinforcement Definition		Ilysis				& X
Bar Mark Definitions MEMBERS BRIDGE ALTERNATIVES.						~ ~
	e ummary Report Jetailed Report					
	al Preferences Bridge Workspace					

Enter the following data.

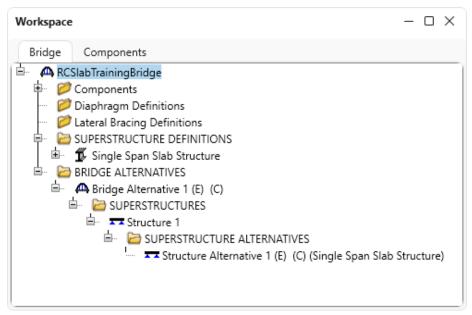
ge Alternative 1 ructures				
ructures				
ture	- Global posit	ioning		
: ft	Distance:	0	ft	
End bearing	Offset:	0	ft	
ft	Elevation:		ft	
N 0^ 0' 0.00" E				
	Start tangent le	ength:		ft
	Curve length:			ft
red, tangent	Radius:			ft
	Direction:	Left	\sim	
ent	End tangent le	ngth:		ft
Culvert wizard	~	-		
	red, tangent	ft Distance: End bearing Offset: ft Elevation: N 0^ 0' 0.00" E Start tangent le ved, tangent Radius: ent Direction: ent End tangent le	ft Distance: 0 End bearing Offset: 0 ft Elevation: Elevation: N 0^ 0' 0.00" E Start tangent length: Curve length: ved, tangent Radius: Direction: Left ent End tangent length: Image: Image:	ft End bearing ft ft ft Offset: 0 ft Offset: 0 ft Elevation: ft N 0^ 0' 0.00" E Start tangent length: ved, tangent red ent Start tangent length: Left


Click **OK** to apply the data and close the window.

Expand the Bridge Alternative 1 node in the Bridge Workspace tree by clicking the 🛨 button. Double-click on the SUPERSTRUCTURES node (or select SUPERSTRUCTURES, click New from the Manage group of the WORKSPACE ribbon) and enter the following new superstructure.

Br Bridge W	orkspace - RCSlabTraining	Bridge	ANALYSIS	REPORTS	?	- 0	×	
BRIDGE WORKSPACE		OLS VIEW	DESIGN/RATE	REPORTING				
A Check Out	Bridge	CloseExportRefresh	Open New	Copy Paste D Manage	uplicate Delete	Schematic		
Workspace		s × Sch	iematic	\$ ×	Report		& X	
Bridge Compone								
· · · · · · · · · · · · · · · · · · ·	s Definitions Ing Definitions CTURE DEFINITIONS oan Slab Structure (ct/Dynamic Load Allowar Case Description rstructure Loads r Reinforcement Definitio							
📁 MEN		An	alysis				\$ X	
	ERIVATIVES Iternative 1 (E) (C) ERSTRUCTURES							
	Q View		t					
A Superstructure							_	
Superstructure name:	Structure 1							
Description Alter	natives Vehicle path	Engine S	ubstructures					
Description:								
Distance:	0 ft							
Offset: Angle:	0 ft 0 Degrees							
	0 begrees							
					OK	Ap	ply	Cancel

Click **OK** to apply the data and close the window.

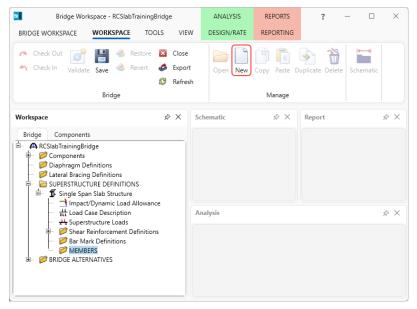

Expand the Structure 1 node in the Bridge Workspace tree by clicking the → button. Double-click on the SUPERSTRUCTURE ALTERNATIVES node (or select SUPERSTRUCTURE ALTERNATIVES and click New from the Manage group of the WORKSPACE ribbon) and enter the following new superstructure alternative.

Select the **Superstructure definition Single Span Slab Structure** as the current superstructure definition for this Superstructure Alternative.

A Superstructure Alternativ	e		_		×
Alternative name:	Structure Alternative 1				
Description:					
Superstructure definition:	Single Span Slab Structure	~			
Superstructure type:	Girder Line				
Number of main members:	0				
	C	Ж	Apply	Cance	el

The partially expanded **Bridge Workspace tree** is shown below.

Load Case Description


Navigate back to the superstructure definition **Single Span Slab Structure**. Double click on the **Load Case Description** node in the Bridge Workspace tree to open the **Load Case Description** window and define the dead load case as shown below. The completed **Load Case Description** window is shown below.

Load case name	Description	Stage	Туре	Time* (days)	
Parapets		Composite (long term) (Stage 2) *	D,DC	*	
estressed members only	Add default load		New	Duplicate	Delete

Click **OK** to apply the data and close the window.

Member

Open the **Member** window by selecting **Member** in the **Bridge Workspace** tree and clicking on **New** from the **Manage** tab of the **WORKSPACE** ribbon (or by double clicking on **Member** in bridge workspace tree).

Fill in the window with the following information. If F1 is selected while this window is active, the Help topic for the **Member** window will be displayed. This help topic describes that the girder spacing, and member location are not required for a slab member so no data will be entered for those items.

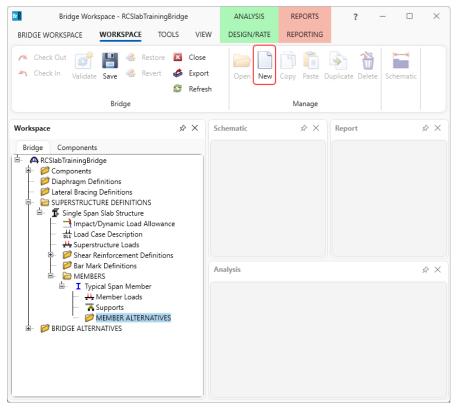
The first **Member Alternative** that is created will automatically be assigned as the **Existing** and **Current** member alternative for this member.

A Member					-		×
Member name:	Typical Span Me	mber					
Description:					Modeling Open girder M0 Frame member simplified of		
	Existing (Current Member	alternative name	Description			
							-
Number of span	IS: 1 🗘	Span	Span length	Deck concrete crack control parameter (Z):	kip/in		
Girder spacing:	ft	no.	(ft)	Deck exposure factor:			
		> 1	30	Member location Interior Exterior			
				7	OK Apply	Canc	el

Member Loads

Expand the newly added member node. Double-click on **Member Loads** in the **Bridge Workspace** tree to open the **Girder Member Loads** window. This structure has 2 parapets each weighing 300 lb/ft. A 12" wide strip of slab is defined as the member, and the width of the bridge cross section is 27 ft. So, the parapet load applied to this member will be (2*300 lb/ft)/27' = 22 lb/ft.

Girder	r Member Loads					-		×
Ł	_ + + + +	+ + +	+ + +					
edestr	rian load:] lb/ft						
Unifo	orm Distributed (Concentrated	Settlement					
	Load case name	Span	Uniform load (kip/ft)	WS field measured*	Description			
÷.	Parapets -	All Spans 🔹	0.022				-	
							4	
*DW	V=1.25 if checked				New Duplicate	De	elete	
					ОК Арр	bly	Cance	


Click **OK** to apply the data and close the window.

Cross Section Based Member Alternative

This portion of the example describes the creation of a cross-section based member alternative.

Defining a Member Alternative:

Select **MEMBER ALTERNATIVES** in the **Bridge Workspace** tree and click on **New** from the **Manage** group of the **WORKSPACE** ribbon (or double-click **MEMBER ALTERNATIVES** in the tree) to create a new alternative.

The New Member Alternative window shown below will open. Select Reinforced Concrete for the Material type and Reinforced Concrete Slab for the Girder type.

Girder type:
Advanced Concrete RC
Reinforced Concrete I
Reinforced Concrete Slab
Reinforced Concrete Tee

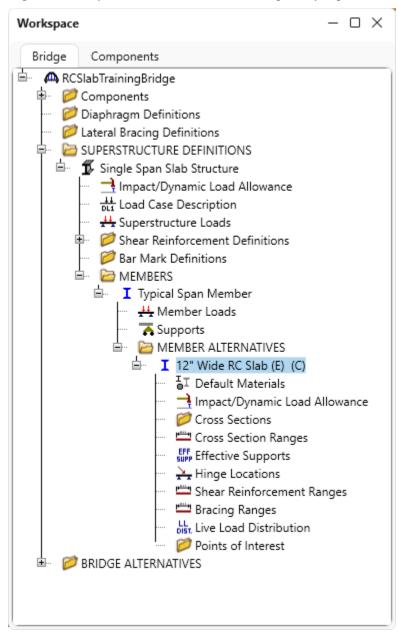
Click **OK** to close the window and create a new member alternative.

A Member Alte	rnative D	escription					_		×
Member alterna	ative: 12	2" Wide RC SI	ab						
Description	Specs	Factors	Engine	Import	Control options				
Description:					Material type:	Reinforced Concrete			
					Girder type:	Reinforced Concrete Slab			
					Modeling type:	Open Girder			
					Default units:	US Customary ~			
Girder pro	operty inp	out method	End bea	aring locati	ons				
Sche	dule bas	ed	Left:	9	in				
Cros	s-section	based	Right:	9	in				
Load case	2:	Engine As	signed	~	Default rating me	\sim			
Additiona	al self load	d: 0.00625	kip/ft)					
Additiona	al self load	d:	%						
				_					
Crack con	trol para	meter (Z) —		Exposu	ire factor				
Crack con Bottom o		meter (Z)	kip/in		n of beam:				
		meter (Z)	kip/in						
		meter (Z)	kip/in						
		meter (Z)	kip/in						
		meter (Z)	kip/in			ΟΚ	Apply	Can	cel

The **Member Alternative Description** window will open. Enter the data as shown below.

Sacrificial wear thickness for a slab

In this example, $\frac{1}{2}$ " of the slab is to be a sacrificial wear thickness. When the cross-section properties are entered later, the effective slab thickness will be entered. An **Additional self load** is entered here on the member alternative window to account for the $\frac{1}{2}$ " sacrificial wear.


 $(\frac{1}{2})/12 \ge 0.150 \text{ kcf} = 0.0063 \text{ k/ft}$

AASHTO Article 3.24.4 states that concrete slabs designed in accordance with AASHTO Article 3.24.3 shall be considered satisfactory in bond and shear so navigate to the **Control options** tab select the **Ignore shear** checkbox under the **LFR** group of the **Control options** tab.

ember alterna	ative: 12"	Wide RC SI	ab]			
Description	Specs	Factors	Engine	Import	Control	options				
LRFD						LRFR				
Dints (of interest				^	🚞 Po	oints of interest			\sim
🗸 Gen	erate at te	nth points	except supp	oorts		\checkmark	Generate at tenth p	oints except sup	ports	
🗸 Gen	erate at su	upport poin	ts			\checkmark	Generate at support	t points		
🗸 Gen	erate at su	pport face	& critical sł	near points		\checkmark	Generate at support	t face & critical s	hear point	s
🗸 Gen	erate at se	ection chang	ge points			\checkmark	Generate at section	change points		
🗸 Gen	erate at us	ser-defined	points			\checkmark	Generate at user-de	fined points		
🚞 Shear o	omputatio	on method				🚞 Sh	near computation me	thod		
Igno	ore					۲	lgnore			
Gen	eral proce	dure				0) General procedure			
Gen	eral proce	dure - Appe	endix B5			0) General procedure -	- Appendix B5		
🔾 Sim	plified pro	cedure			\sim	0) Simplified procedur	e		~
LFR						ASR				
De Points d	of interest				\sim	🚞 Po	pints of interest			\wedge
🗸 Gen	erate at te	nth points	except supp	oorts		\checkmark	Generate at tenth p	oints except sup	ports	
🗸 Gen	erate at su	upport poin	ts			\checkmark	Generate at support	t points		
🗸 Gen	erate at su	upport face	& critical sł	near points		\checkmark	Generate at support	t face & critical s	hear point	s
🗸 Gen	erate at se	ection chang	ge points			\checkmark	Generate at section	change points		
🗸 Gen	erate at us	ser-defined	points			\checkmark	Generate at user-de	fined points		
✓ Ignore	shear					🚞 Sh	near computation me	thod		
Distribu	ution facto	r applicatio	n method			۲	lgnore			
🔵 Ву а	ixle					0) Use AASHTO 1973 a	or earlier code		
🖲 By F	POI					0) Use AASHTO 1974 i	nterim		
					\sim	0	Use current AASHT	C		\sim

Click **OK** to apply the data and close the window.

Expand the newly added member alternative. The partially expanded Bridge Workspace tree is shown below.

Cross Sections

New cross section can be defined by double-clicking on **Cross Sections** in the **Bridge Workspace** tree. Enter the data as shown below. The completed **Cross Sections** window is as follows. Note that the effective slab thickness is entered here.

A Cross Sections	-		×
Name: Standard Section Type: Reinforced Concrete Slab			
Dimensions Reinforcement			
Concrete material: Class A (US) Modular ratio:	>		
12.0000 in ← → ↓ ↓ 17.5000 in			
ОК Аррі	y	Cance	I

				1				
me: Standard Section	Type: Reinforced (Concrete Sla	c					
Dimensions Reinforcement								
Distance from top	Row	Std bar count	LRFD bar count	Bar size	Distance (in)	Material	Bar spacing (in)	
	Top of Slab 👻	1.00	1.00	5 -	1.9375	Grade 60 🔹		-
<u>+</u>	▶ Bottom of Slab *	2.00	2.00	9 -	3.1890	Grade 60 👻		
L Distance from bottom	Distance from the Top of Slab measured from top of the effect slab thickness.	is the						
L								

Switch to the **Reinforcement** tab of this window. The **reinforcement** for the section is shown below.

Click **OK** to apply the data and close the window.

Cross Section Ranges

Open the **Cross Section Ranges** window from the **Bridge Workspace** tree. The cross section defined in the previous step is now applied over the length of the member as shown below.

A Cross Section Ranges	_	
Start Distance Length Start End Section Section		
Start sectionEnd sectionWeb variationSupport numberStart distance (ft)Length (ft)	End distance (ft)	
Standard Section * Standard Section * None * 1 * 0.000 30.000	30.000	
		~
New Dup	plicate	Delete
OK A	pply	Cancel

Shear Reinforcement Ranges and Bracing Ranges are not applicable to this member so no data will be entered in these windows. There is no requirement to define any **points of interest** since none of the information entered will be overridden in this example.

Live Load Distribution

Double click on Live Load Distribution on the Bridge Workspace tree to open the Live Load Distribution window.

Standard:

Enter values as shown below and Click **Apply** to apply the standard live load distribution factors and keep the window open.

	ndard LRF										
	Distribution fa										
0	Use simplif	ied method	Use adva	anced method	Use adva	ced method with	1994 guide sp	iecs			
	Allow distribu	ution factors f	to be used to o	ompute effects	of permit loads	vith routine traffic					
			Distribu	tion factor							-
	Lanes			neels)							
	loaded	Shear	Shear at supports	Moment	Deflection						
	1 Lane	0.000	0.000	0.172	0.000					4	
	Multi-lane	0.000	0.000	0.172	0.000						

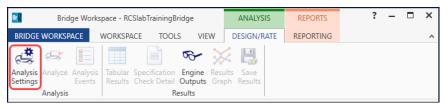
LRFD:

Navigate to the **LRFD** tab of the **Live Load Distribution** window and check the **Allow distribution factors to be used to compute effects of permit loads with routine traffic** box. Click the **Compute from typical section** button and enter the values shown below in the pop up window.

Use s		od 🔾 u	Jse advanced m	effects of permit loads	with routine traffic			
Suppo	ort Start distance	Length	End distance		ion factor nes)			
numb	er (ft)	(ft)	(ft)	1 lane	Multi-lane			
				Girderline RC Slat Overall slab width: Number of lanes: Slab width: Skew:	27.00 ft 2 12.0000 in 0.00 Degrees Continue	Cancel		
Compute typical se		View calcs				New	Duplicate	Delete

Click the **Continue** button, BrDR will compute LRFD live load distribution factors. Click **OK** on the **LRFD Distribution Factor Progress** window to close this progress window. The **Live Load Distribution** window will be populated as shown below.

	ribution						-	-		>
tandard L	RFD									
Distribution	n factor inpu	it method -								
Use sim			lse advanced me	thod						
0										
Allow dist	ribution fact	tors to be us	ed to compute e	ffects of permit loads w	ith routine traffic					
Action: Defle	ection 🕚	/								
	Start			Distributior	factor					
Support number	distance	Length (ft)	End distance (ft)	(lanes	;)					
	(ft)			1 lane	Multi-lane					
1 *	0.00	30.000	30.00	0.100	0.083				-	
Compute fr		View calcs				New	Duplicate	D	elete	
Compute fr typical section		View calcs				New	Duplicate	D	elete	
		View calcs				New	Duplicate	D	elete	
		View calcs				New	Duplicate	D	elete	


Drop down options for **Action** can be used to verify the computed distribution factors for each action (Deflection, Moment, and Shear). Click **OK** to apply the data and close the window.

There is no requirement to define any **points of interest** since none of the information entered will be overridden in this example.

The description of this structure is complete.

LRFR Analysis

The member alternative created can now be analyzed. To perform an **LRFR** rating, select the **Analysis Settings** button on the **Analysis** group of the **DESIGN/RATE** ribbon to open the window shown below.

Click the **Open Template** button and select the **LRFR Design Load Rating** to be used in the rating and click **OK**.

¢	À	Open Template					×
		Templates	Description	Analysis	Owner	Public / Private	
		HL 93 Design Review	HL 93 Design Review	LRFD		Public	A
		HS 20 LFR Rating	HS 20 LFR Rating	LFR		Public	
	Þ	LRFR Design Load Rating	LRFR Design Load Rating	LRFR		Public	
		LRFR Legal Load Rating	LRFR Legal Load Rating	LRFR		Public	
							*
		Delete				Open	Cancel

The Analysis Settings window will be updated as shown below.

Design review Rating	Rating method:	LRFR	~		
alysis type: Line Girder 🗸					
e / Impact loading type: As Requested V	Apply preference settin	g: None	~		
/ehicles Output Engine Description					
Traffic direction: Both directions	Refresh	Temporary vehicles	Advanced	1	
Vehicle selection	Vehicle summ	ary		-	
 ➡ Venicles ➡ Standard ↓ = £V3 ↓ + 15-44 → H 20-44 → H 20-44 → H 20-33 (S) → H 1-93 (US) → H S 15-44 → H S 20 (SI) → NRL → SU4 → SU5 → SU5 → SU4 → SU5 → SU5 → SU4 → SU5 → SU5 → SU5 → SU5 → SU5 → SU4 → SU5 → SU4 → SU5 → SU5<!--</td--><td>Add to</td><td>icles sign load rating -Inventory '-HL-93 (US) -Operating HL-93 (US) -Fatigue LRPD Fatigue Truck (US) gal load rating -Routine -Specialized hauling rmit load rating</td><td>,</td><td></td><td></td>	Add to	icles sign load rating -Inventory '-HL-93 (US) -Operating HL-93 (US) -Fatigue LRPD Fatigue Truck (US) gal load rating -Routine -Specialized hauling rmit load rating	,		

Tabular Results

Next with the member alternative selected, click the **Analyze** button on the **Analysis** group of the **DESIGN/RATE** ribbon to perform the rating.

Br	Bridge Work	space - RCSlabTraining	Bridge	ANALYSIS	REPORTS	?	-	×
BRIDGE	E WORKSPACE	WORKSPACE TOO	OLS VIEW	DESIGN/RATE	REPORTING			^
æ	F		∽ }	2 🖪				
Analysis Settings	Analyze Analysis Events		n Engine Reso il Outputs Gra	ults Save ph Results				
	Analysis		Results					

When the rating is finished results can be reviewed by clicking the **Tabular Results** button on the **Results** group of

the ribbon.

Bridge Workspace - RCSlabTraining	Bridge	ANALYSIS	REPORTS	?	-	×
BRIDGE WORKSPACE WORKSPACE TOO	OLS VIEW	DESIGN/RATE	REPORTING			^
Analysis Analyze Analysis Events Analysis Analysis						

The window shown below will open.

🕰 Analysis Results - 12" W	ide RC Slab									_	
Print Print											
Report type:		ct loading type	Displa	ay Format							
Rating Results Summary	As requ	uested O Det	ailed Sing	le rating level pe	er row	~					
1											
Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane	
HL-93 (US)	Truck + Lane	LRFR	Inventory	40.02	1.112	12.00	1 - (40.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
HL-93 (US)	Truck + Lane	LRFR	Operating	51.88	1.441	12.00	1 - (40.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
HL-93 (US)	Tandem + Lane	LRFR	Inventory	34.62	0.962	15.00	1 - (50.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
	Tandem + Lane	LRFR	Operating	44.88	1.247	15.00	1 - (50.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
HL-93 (US)	landem + Lane										
HL-93 (US)	landem + Lane										
]]										
AASHTO LRFR Engine Versio	on 7.5.0.3001										
HL-93 (US) AASHTO LRFR Engine Versio Analysis preference setting:	on 7.5.0.3001			, , , , , , , , , , , , , , , , , , ,							Close

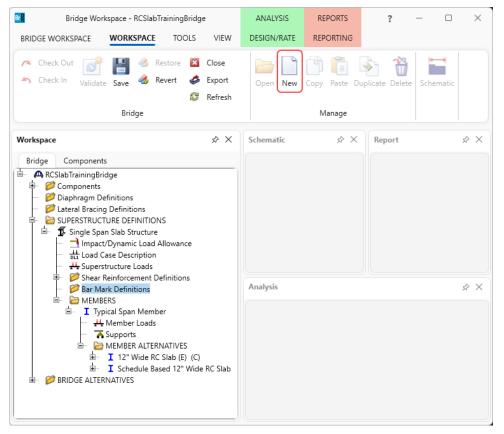
Schedule Based Member Alternative

This portion of the example describes the creation of a schedule based member alternative. Create a new reinforced concrete member alternative (as per the steps shown in the previous section) for the member **Typical Slab Member** and enter the following data.

🗛 Member Alter	rnative De	scription					-	-		×
Member alterna	ative: Sch	edule Based	12" Wide	RC Slab						
Description	Specs	Factors	Engine	Import	Control options					
Description:					Material type:	Reinforced Concrete				
					Girder type:	Reinforced Concrete Slab				
					Modeling type:	Open Girder				
					Default units:	US Customary \lor				
Girder pro	operty inpu	t method	End be	aring locati	ons					
O Sche	dule based	ł	Left:	9	in					
Cross	s-section b	ased	Right:	9	in					
Additiona			igned kip/ft %	← Exposu	Default rating me LFR	thod:				
Bottom of	f beam:		kip/in	Bottor	n of beam:					
						ОК	Apply		Cance	

Since a slab member is described and since shear will be ignored using a control option, ignoring the shear in the slab in the following discussion does not affect this example. However, it is an important item to be aware of when considering shear in the member so it will be reviewed now.

Y


For a schedule based reinforced concrete member, it is important to enter a value for the **End Bearing Locations** in the **Member Alternative Description** window shown above. This data describes the distance from the physical end of the beam to the centerline of the end bearings. It is important to enter this value here so that when assigning bar

mark definitions to the reinforcement profile, we can start our bars to the left of the first support line and to the right of the last support line.

If the bars start to the left of the first support line and to the right of the last support line, BrDR will consider the bars to be partially developed at the centerline of the bearing. Then the analysis engine will be able to compute the **d** distance from the extreme compression fiber to the centroid of the tension reinforcement. This **d** value is required to compute the shear capacity of the section. If the rebar starts at the centerline of the bearing, it will be considered as zero percent developed at this point so a **d** distance cannot be computed, and the shear capacity of the beam will be zero.

Bar Mark Definitions

Before defining the girder and reinforcement profile for the member alternative, **Bar Mark Definitions** need to be defined. **Bar Mark Definitions** are used to define the longitudinal flexural reinforcement in schedule based reinforced concrete members. Select **Bar Mark Definitions** from the Bridge Workspace tree and click the **New** button from the **Manage** group of the **WORKSPACE** ribbon.

Vame:	#5	Material:	Grade 60			~	
Bar types:		Bar size:	5	>			
	A Type: Straight	Bar type:	Straight	\checkmark			
	.,,,		Dimension				
	<u>к</u> н	A:	31.0000	ft			
	Type: 1						
	Type: 2						
			OK		Apply	Cance	I

This bridge uses the following bar mark definitions. Add these definitions one by one.

🕰 Bar Mar	k Definition			-		×
Name:	#9	Material:	Grade 60		~	
Bar types:		Bar size:	9 🗸			
	A Type: Straight	Bar type:	Straight 🗸			
			Dimension			
	K B → H	A:	31.0000 ft			
	Type: 1					
	Type: 2					
	K C K C K C K C K C K C K C K C K C K C					
			OK	Apply	Cance	ł

The **Girder Profile** can now be defined. Expand the **Schedule Based 12**" **Wide RC Slab** member alternative on the **Bridge Workspace** tree, double click on **Girder Profile** to open the **Girder Profile** window and enter the data on each tab as shown below:

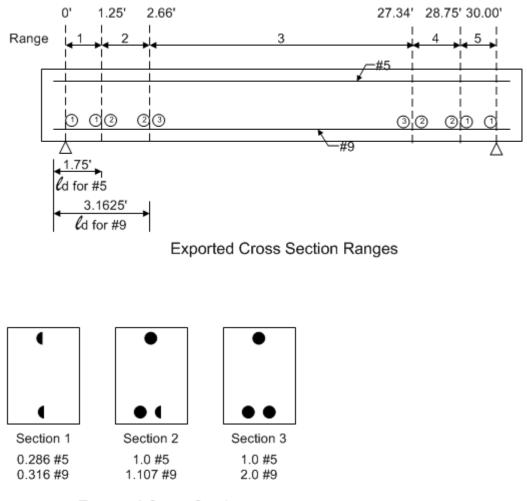
Girder Profile - Section	Girc	ler	Profi	le -	Section
--------------------------	------	-----	-------	------	---------

Girder Profile	
Type: Reinforced Concrete Slab	
Section Web Reinforcement	
	Material: Class A (US)
	Modular ratio:
12.0000 in	Sacrificial wear thickness: 0.5000 in
	OK Apply Cancel

Girder Profile - Web

A	Gir	der Profile										×
Ту	/pe:	Reinforce	ed Concrete S	lab								
	Sec	tion W	eb Reinfor	rcement								
		Begin depth (in)	Depth vary	End depth (in)	Support number	Start distance (ft)	Length (ft)	End distance (ft)				
	Þ	18.0000	None *	18.0000	1 ×	0.000	30.000	30.000				-
	L											T
									New	Duplicate	Delete	
									ОК	Apply	Can	cel

Girder Profile - Reinforcement


be:	Reint	forced	Conc	rete Sla	b															
Sectio	n	Web	F	Reinford	ement															
	Set	Ba ma		Invert	Measured from		Distance (in)	Std number	LRFD number	Bar spacing (in)	Side cover (in)	Support number	Direc	ction	Start distance (ft)	Straight length (ft)	End distance (ft)	Start fully developed	End fully developed	
	1	#5	~		Top of Slab	~	1.9375	1	1	12		1 ~	Left	\sim	0.5	31	30.5			-
>	2	#9	~		Bottom of Slab	~	3.189	2	2	6		1 ~	Left	\sim	0.5	31	30.5			
									the '	Dista Top of										

The BrDR export to the analysis engine will compute the required development lengths for the reinforcing steel based on the data entered in this window. These required development lengths are considered when the girder profile is exported to the analysis engine. In the export, BrDR transforms the schedule-based definition of the concrete member into a list of cross sections and assigns these cross sections to ranges along the length of the member. Cross sections are **cut** where the reinforcing steel is developed.

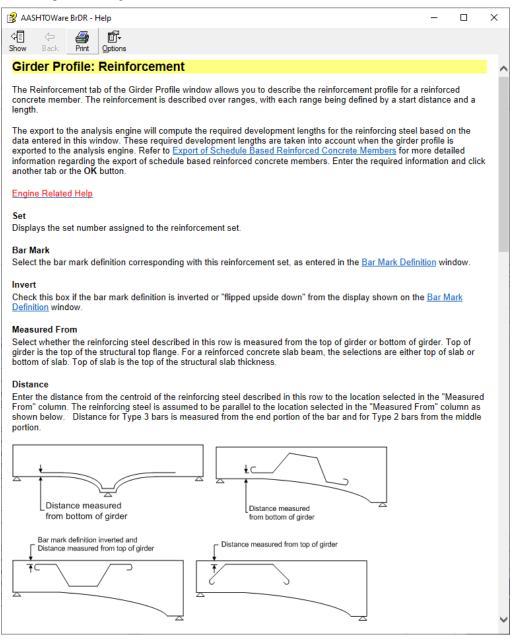
BrDR assumes that the user has described the schedule of reinforcement as it physically exists in the bridge. BrDR considers the required development length of the reinforcement when it exports cross sections for use by an analysis engine. If the user does not want BrDR to consider the required development length, either the **Fully Developed** box for the range of reinforcement on the **Girder Profile: Reinforcement** tab should be checked or the **Fully Developed** box on the **Point of Interest: Development** tab needs to be checked. Checking either of these **Fully Developed** boxes means that the reinforcement as entered is fully developed and the full length of the bar will be included in the generated cross sections.

The following shows the cross sections and cross section ranges that are generated for this example when the member alternative is analyzed.

BrDR computes the development length of the bars as ℓ_d . The bars are fully developed at the ℓ_d distance from the end of the bar.

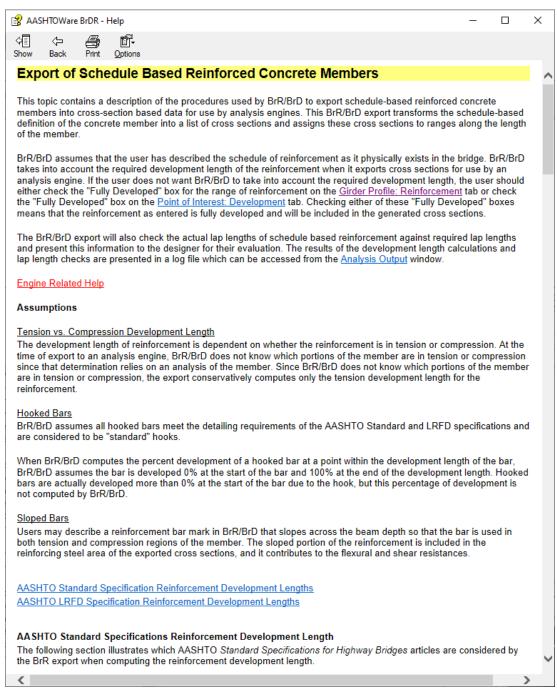
Exported Cross Sections

BrDR assumes the reinforcement develops in the bar in a linear fashion, starting with 0% development at the bar end and 100% development at the point of full development (l_d)


Three cross sections are generated in this example. At 0.0', the #5 bar is 28.6% developed and the #9 bars are 15.8% developed. These percentages are found as follows (note that the bars start 6" to the left of the centerline of the bearing):

#5 bar 0.5'/1.75' = 0.286* 1 bar = 0.286 bar #9 bar 0.5'/3.1625' = 0.158 * 2 bars = 0.316 bars

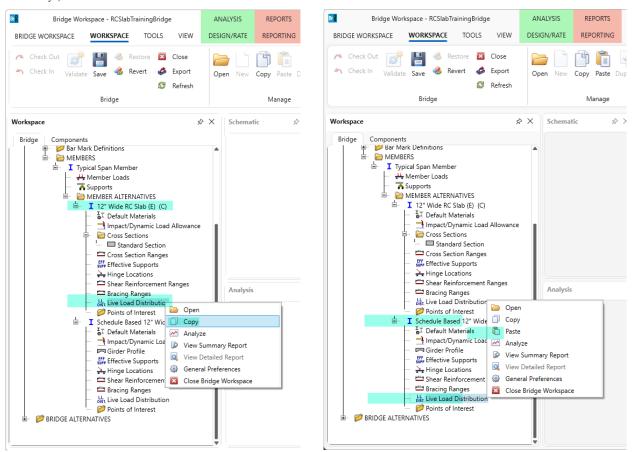
This cross section is applied from the 0.0' start of the member alternative to 1.25' where the #5 bar is fully developed.


A similar procedure is followed at 1.25' which is where the #5 bar is fully developed and at 2.66' which is where the #9 bars are fully developed.

If **F1** is selected while the **Reinforcement** tab is open, the BrDR help topic for this window will open as shown below. This help topic contains important information regarding the data on this window and it should be thoroughly reviewed prior to using the schedule based reinforcement features in BrDR.

This help topic contains links to several other useful topics that should be reviewed prior to defining schedule-based reinforcement in BrDR.

The **Export of Schedule Based Reinforced Concrete Members** topic contains the rules and assumptions BrDR uses when exporting schedule based reinforced concrete members to the analysis engine.



The BrDR export will also check the actual lap lengths of schedule-based reinforcement against required lap lengths and present this information to the designer for their evaluation. BrDR considers bars to be lapped if the vertical distance to their centroids is equal or if their clear cover is equal and the bars overlap along the length of the member. This example does not have any lapped bars .

Live Load Distribution

Double click on **Live Load Distribution** on the Bridge Workspace tree to open the **Live Load Distribution** window. Enter data on each tab as shown below:

(Note: In **Standard** tab of this window, if the standard live load distribution factors are not entered, the values can be copied from the cross-section member alternative to the schedule-based member alternative. To copy, right click the **Live Load Distribution** label under the cross-section member alternative and select **Copy** from the menu. Then right click the **Live Load Distribution** label under the schedule-based member alternative and select **Paste**. If the Standard factors are not entered for the cross-section based member alternative, then, enter the following distribution factors manually.)

Standard:

.ive	Load Distrib	ution					_	. C	
Stan	dard LRF	D							
D	istribution fa	ctor input m	ethod						
0) Use simplif	ied method	🔿 Use adva	anced method	🔿 Use adva	ced method with 1994 guide specs			
_ /	Allow distrib	ution factors	to be used to c	ompute effects	of permit loads	vith routine traffic			
	Lanes			tion factor neels)					
	loaded	Shear	Shear at supports	Moment	Deflection				
Ī	1 Lane	0.000	0.000	0.172	0.000				-
	Multi-lane	0.000	0.000	0.172	0.000				
									Ŧ
						ОК	Apply	(Cancel

Enter values as shown above and Click **Apply** to apply the data and keep the window open.

LRFD:

Open the **Live Load Distribution** window, **LRFD** tab. Click the **Compute from Typical Section** button and enter the values as shown below in the pop up window.

Distribution	lified metho	od 🔾 l	Jse advanced metho	od ects of permit loads with r	outine traffic				
Support	Start distance	Length	End distance	Distribution fac (lanes)	tor				
number	(ft)	(ft)	(ft)		Multi-lane				
				Girderline RC SI Overall slab width Number of lanes: Slab width: Skew:	27.00 2 12.0000 0.00	ft in Degrees	×		
Compute fro typical sectio		/iew calcs				New	Duplicate	Delete	Y

Click the **Continue** button, BrDR will compute the LRFD live load distribution factors. Click **OK** to close the analysis window. Live load distribution factors will be calculated as shown below.

Deflection distribution factors.

🕰 Live L	.oad Distrib	oution							-		×
Stand	dard LR	FD									
	-	factor input		Use advanced	method						
	Allow distr		ors to be u	sed to compute	effects of pe	ermit loads wi	h routine traffic				
	Support number	Start distance	Length (ft)	End distance (ft)		ion factor nes)					
		(ft)			1 lane	Multi-lane					
	1 ~	0	30	30	0.1	0.0833333					
Cor typ	mpute fron pical sectior	n n V	iew calcs					New Duplicat	e	Delete	
								ОК Ар	ply	Cance	

Moment and shear have the same distribution factors. The moment distribution factor is shown below.

🗛 Live l	Load Distrik	oution								-		×
Stand	dard LR	FD										
		factor input		Use advanced	method							
_	Allow distr		ors to be u	sed to compute	effects of pe	ermit loads wit	h routine traffi	-				
	Support	Start distance	Length (ft)	End distance (ft)		ion factor nes)						
		(ft)			1 lane	Multi-lane						
	1 ~	0	30	30	0.0787906	0.096013						
	ompute fror		iew calcs					New	Duplicate	•	Delete	
L								OK	Арр	ly	Cance	

LRFR Analysis

The member alternative can now be analyzed. To perform an **LRFR** rating, select the **Analysis Settings** button from the **Analysis** group of the **DESIGN/RATE** ribbon to open the **Analysis Settings** window as shown below.

Br	Bridge Workspace - RCSIabTrainingBridge							REPORTS	?	-	×
BRIDGE W	ORKSPACE	WORKSPACE	TOOLS	VIE	w c	ESIGN/RAT	E I	REPORTING			^
**	S E			6	$\overset{\sim}{\sim}$	Ľ,					
Analysis Ar Settings	nalyze Analysis Events										
Ar	nalysis										

Click the **Open Template** button and select the **LRFR Design Load Rating** to be used in the rating and click **OK**.

Templates	Description	Analysis	Owner	Public / Private	
HL 93 Design Review	HL 93 Design Review	LRFD		Public	
HS 20 LFR Rating	HS 20 LFR Rating	LFR		Public	
LRFR Design Load Rating	LRFR Design Load Rating	LRFR		Public	
LRFR Legal Load Rating	LRFR Legal Load Rating	LRFR		Public	

The Analysis Settings window will be updated as shown below.

Design review Rating	Rating method: LRFR 🗸
nalysis type: Line Girder v ne / Impact loading type: As Requested v Vehicles Output Engine Description	Apply preference setting: None
Traffic direction: Both directions	Refresh Temporary vehicles Advanced
I⇒ Vehicles I⇒ Velicles I⇒ EV2 -EV3 -EV4 -H03 (IS) -H1-93 (IS) -H1-93 (IS) -H5 15-44 -H5 20-541 -LRFD Fatsgue Truck (IS) -NRL -SU5 -SU4 -SU5 -SU6 -SU6 -SU6 -SU6 -SU6 -Type 32 -Agency -User defined -Temporary	Add to Add to >> Remove from <<

Tabular Results

With the schedule based member alternative – Schedule Based 12" Wide RC Slab selected, click the Analyze button from the Analysis group of the DESIGN/RATE ribbon to perform the rating.

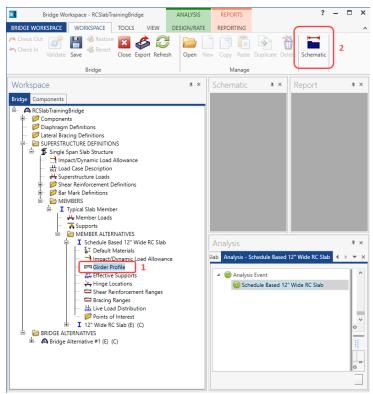
Bridge Works	pace - RCSIabTrainingBridge	ANALYSIS	REPORTS	?	-	×
BRIDGE WORKSPACE	WORKSPACE TOOLS VIEW	DESIGN/RATE	REPORTING			^
Analysis Settings Analysis Analysis	Tabular Specification Engine Results Check Detail Outputs Gra	ults Save aph Results				

When the rating is finished the results can be reviewed by clicking the **Tabular Results** button on the **Results** group of the ribbon. The window shown below will open.

Analysis Result	s - Schedule Based 12	" Wide RC Slal	0								_	×
Report type: Lane/Impact loading type Display Format Rating Results Summary As requested Detailed Single rating level per row V 												
Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane		
HL-93 (US)	Truck + Lane	LRFR	Inventory	39.62	1.100	12.00	1 - (40.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested		
HL-93 (US)	Truck + Lane	LRFR	Operating	51.36	1.427	12.00	1 - (40.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested		
HL-93 (US)	Tandem + Lane	LRFR	Inventory	34.25	0.951	15.00	1 - (50.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested		
HL-93 (US)	Tandem + Lane	LRFR	Operating	44.40	1.233	15.00	1 - (50.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested		
AASHTO LRFR Engi Analysis preference	ne Version 7.5.0.3001 : setting: None											ose

Engine Outputs

 (\mathbb{M})


When an analysis or design review is run, a file is created that contains the input and output of the calculations BrDR performed to compute the required development lengths and to check the lap lengths. This file can be accessed from the **Engine Outputs** button on the **DESIGN/RATE** ribbon.

RCSIabTrainingBridge	_		×
ⁱ ⊡-RCSIabTrainingBridge			
ia-Single Span Slab Structure			
Typical Slab Member			
Schedule Based 12" Wide RC Slab			
Lrfd Reinf Dev Length Calcs Log File (Wednesday Jan. 04, 2023 04	8:43:55)		
ia-AASHTO_LRFR			
·····Stage 3 Spec Check Results			
·····Log File			
and the second	and the	and the second s	

Schematic

A schematic view of the reinforcement profile is available while the Girder Profile label is selected on the Bridge

Workspace tree.

LRFD Design review

An LRFD design review of this girder for HL93 loading can be performed. To perform an LRFD design review, enter the Analysis Settings window as shown below.

Analysis Settings					-		×
Design review Rating			Design method:	LRFD			>
Analysis type: Lane / Impact loading type: As Re Vehicles Output Engine		>	Apply preference set	ting: None			~
Traffic direction: Both direction]	Refresh Vehicle summary	Temporary vehicles	Adv	/anced]
 Image: Standard Im	SI)	Add to >> Remove fro <<		ads (US) ds			
Reset Clear	Open template	Save template		OK Aş	oply	Can	cel

Engine Outputs

LRFD analysis will generate a spec check results file. Click on the **Engine Outputs** button on the **Results** group of the **Design/Rate** ribbon to open the following window. To view the spec check results, double click on the **Stage 3 Spec Check Results** in this window.

A RCSIabTrainingBridge —		×
	2.501	^
☐Log File ⊟-AASHTO_LRFR ☐ Stage 3 Spec Check Results ☐ Log File	,,,,,	~
<		>

The Spec Check Results match the following results from the cross section based member alternative.

Bridge ID : RCSlabTrainingBridge Bridge : RC Slab Training Bridge Superstructure Def : Single Span Slab Structure Member : Typical Slab Member Analysis Preference Setting : NBI Structure ID : RCSlabTrainingB Bridge Alt :

Member Alt : Schedule Based 12" Wide RC Slab

AASHTO LRFD Specification, Edition 9, Interim 0

Specification Check Summary

Article	Status
Flexure (5.6.3.2, 5.6.3.3)	Fail
Crack Control (5.6.7)	Pass
Shear (5.7.3.3, 5.7.2.5, 5.7.2.6, 5.7.3.5)	Ignore by User
Fatigue (5.5.3.2)	Pass
Deflection (2.5.2.6.2)	Pass

Girder Positive Flexure Analysis

Location (ft)	LS	Load Comb	Mr (kip-ft)	Mu (kip-ft)	Design Ratio Mr/Mu	Code
0.000	STR-I	1	23.84	0.00	99.000	Pass
1.450	STR-I	1	85.97	22.13	3.885	Pass
2.207	STR-I	1	116.22	33.68	3.451	Pass
3.000	STR-I	1	116.22	45.78	2.539	Pass
6.000	STR-I	2	116.22	79.70	1.458	Pass
9.000	STR-I	2	116.22	103.77	1.120	Pass
12.000	STR-I	2	116.22	117.31	0.991	Fail
15.000	STR-I	2	116.22	120.34	0.966	Fail
18.000	STR-I	2	116.22	117.31	0.991	Fail
21.000	STR-I	2	116.22	103.77	1.120	Pass
24.000	STR-I	2	116.22	79.70	1.458	Pass
27.000	STR-I	1	116.22	45.78	2.539	Pass
27.793	STR-I	1	116.22	33.68	3.451	Pass
28.550	STR-I	1	85.97	22.13	3.885	Pass
30.000	STR-I	1	23.84	0.00	99.000	Pass

NR = Spec check not required at this location

~